v期权定价BS期权定价公式文档
期权定价的连续模型及BS公式

2020/10/8
可以在c 和k 之间建立一个关系式,使得 cWk 的方差
等于 2T
即令: Var(cWk ) c2Var(Wk ) c2k 2T
于是式(5-6)
ST S0eT eWT e 2T / 2
其中 WT ~ N (0,T )
20120/10/8
对数正态模型(为什么?)
为能对模型进行标准正态变换,并对不确定性进行合并。
对 S1 进行重新定义:
S1 e e t cZ1c2 / 2S0
为什么?
210220/10/8
随机变量Z 的一个重要等式
c2
E ecZ e 2
(5-5)
于是
E exp(cZ c2 / 2) 1
E S1 et S0
第二个因素表示的随机变量的漂移率为零
20520/10/8
特别注意:
ln
St S0
Bt
2
2
t
Bt
2
2
t
~
N
2
2
t,
2t
目的:对期权进行定价
20620/10/8
几何布朗运动参数估计:
波动率 漂移率
思路:用样本均值和方差来代替总体的均值和方差
若已知在一段较长时间[0,T]内的股价数据 ,这段时间由n个
长度相等的子区间 t 所构成,如果已知第 i(i 0,1, , n) 个
3月21日 5.27 5.22 5.29 5.26 5.27 5.27 5.27 5.26
3月22日 5.3 5.28 5.31 5.43 5.46 5.46 5.53 5.56
3月23日 5.6 5.68 5.69 5.69 5.67 5.61 5.68 5.68
B-S期权定价模型、公式与数值方法

B-S期权定价公式:假设条件
1.证券价格遵循几何布朗运动,,为常数 2.允许卖空标的证券 3.没有交易费用或税收 4.所有证券都是无限可分的 5.标的证券在有效期内没有红利支付 6.不存在无风险套利机会 7.交易是连续的 8.无风险利率为常数
B-S期权定价公式
经典的B-S期权定价公式是对于欧式股票期权给出的。
期权的价值正是来源于签订合约时,未来标的资产价格与合约执 行价格之间的预期差异变化,在现实中,资产价格总是随机变化 的。需要了解其所遵循的随机过程。
研究变量运动的随机过程,可以帮助我们了解在特定时刻,变量 取值的概率分布情况。在下面几节中我们会用数学的语言来描述 这种定价的思想。
6.1 证券价格的变化过程
**随机微积分与非随机微积分的差别 d ln S dS
S
变量x和t的函数G也遵循Ito 过程:
dG ( G xa G t1 2 2 x G 2b2)d t G xbdz
dSSdtSdz
根据Ito引理,衍生证券的价格G应遵循如下过程:
d G ( G SS G t1 2 S 2 G 22 S2)d t G SSdz
但是当人们开始采用分形理论研究金融市场时,发现它的运行并 不遵循布朗运动,而是服从更为一般的分数布朗运动。
对于标准布朗运动来说:设t 代表一个小的时间
间隔长度,z代表变量z在 t 时间内的变化,遵循标
准布朗运动的 z 具有两种特征:
特征1:z和 t 的关系满足:
z = t
其中, 代表从标准正态分布中取的一个随机值。
的普通布朗运动:
Ito过程
dxadb t dz d xa (x,t)d tb (x,t)dz
or:x( t)x0a t bz(t)x(t)x00 tad s0 tbd
期权定价期权定价公式

期权定价—期权定价公式什么是期权定价?期权定价是指确定期权在市场上的合理价格的过程。
期权是一种金融工具,它授予买方在未来某一特定时间点购买或出售标的资产的权利,而不是义务。
期权的价格取决于多种因素,包括标的资产价格、行使价格、到期时间、无风险利率和波动率等。
期权定价的目标是确定一个公平的市场价格,使得买卖双方在交易中均获得合理回报。
对于买方来说,期权的价格应该对应于未来可能获得的收益;对于卖方来说,期权的价格应该对应于承担的风险以及可能获得的收益。
期权定价公式的重要性期权定价公式是用于计算期权合理价格的数学模型。
它基于一些假设和前提条件,通过对相关变量进行运算,得出期权的价格。
期权定价公式对于市场参与者来说具有重要意义,它为投资者提供了一个参考,可以帮助他们做出更明智的投资决策。
期权定价公式的提出可以追溯到20世纪70年代初,当时经济学家Fischer Black 和 Myron Scholes 提出了著名的Black-Scholes模型。
该模型基于一些假设,包括期权在到期前不支付股息、标的资产价格在特定时间内的变动是连续且满足几何布朗运动以及市场不存在无风险套利机会等。
Black-Scholes模型是第一个用于计算期权价格的理论模型,它提供了一个简单而有效的方法来评估期权的价格。
在此之后,许多其他的期权定价模型相继被提出,如Binomial模型、Trinomial模型、Monte Carlo模拟和Heston模型等。
这些模型都是基于不同的假设和计算方法,用于满足不同的情景和需求。
期权定价公式的基本要素期权定价公式通常包括以下几个基本要素:1.标的资产价格(S):标的资产是期权所关联的基础资产,它可以是股票、商品、外汇等。
标的资产价格是期权定价的一个重要变量,它代表了期权的内在价值。
2.行使价格(X):行使价格是期权合约约定的价格,买方可以在到期时基于该价格购买或者出售标的资产。
行使价格与标的资产价格之间的差异会影响期权的价值。
6_期权定价的连续模型及BS公式

Black-Scholes方程的结果认为,由于在方程中消掉 了漂移项 ,而漂移项代表人们对证券价格未来变化的预期, 也即证券的风险期望收益率。因此,这意味着期权的价格与 人们对证券价格未来变化的预测无关,投资者的风险偏好并 不影响期权价格。
2020/11/28
36
从BS微分方程中我们可以发现:衍生证券的价值决定公式中出 现的变量为标的证券当前市价(S)、时间(t)、证券价格的 波动率(σ)和无风险利率r,它们全都是客观变量,独立于主 观变量——风险收益偏好。而受制于主观的风险收益偏好的标 的证券预期收益率并未包括在衍生证券的价值决定公式中。
38
应该注意的是: 实际期权交易中,很多看涨期权是通过竞价市场而非
理论公式定价。
2020/11/28
39
习题: 若某日某股票的相关数据如下,求V
S0 80 X 100
0.8
r 0.05
b-s期权公式课件

连续复利收益率的问题: 尽管时间序列的收益率加总可以很容易的实现;但是
横截面的收益率加总则不是单个资产收益率的加权平均值,因为对数之和不是
2和024/的9/1对5 数。但是在很短时间内几乎可以认为是近似。JP摩根银行的
11
RiskMetrics方法就假定组合的收益率是单个资产连续复利收益率的加权平均。
ST
Se(T-t),=
1 T-t
ln
ST S
,
由ln
ST
ln
S
~
[(
2 2
)(T
t),
T t ]可得
~
[(
2 2
),
]
T t
2024/9/15
16
结论
几何布朗运动较好地描绘了股票价格的运动过 程。
2024/9/15
17
参数的理解
μ:
几何布朗运动中的期望收益率,短时期内的期望值。
根据资本资产定价原理, μ取决于该证券的系统性风险、无风险 利率水平、以及市场的风险收益偏好。由于后者涉及主观因素, 因此的决定本身就较复杂。然而幸运的是,我们将在下文证明,
益率单位时间的标准差,简称证券价格的波动率 (Volatility),z遵循标准布朗运动。 一般μ和σ的 单位都是年。
很显然,这是一个漂移率为μS、方差率为σ2S2的
伊藤过程。也被称为几何布朗运动
2024/9/15
9
为什么证券价格可以用几何布朗运动 表示?
一般认同的“弱式效率市场假说”:
证券价格的变动历史不包含任何对预测证券价格未来变动有用的 信息。
这个随机过程dG的 (特 征 2:)dt dz 普通布朗运动: 恒定的2 漂移率和恒定的方差率。
期权定价公式

期权定价公式期权定价公式是:期权价格=内在价值+时间价值。
期权定价模型,由布莱克与斯科尔斯在20世纪70年代提出。
该模型认为,只有股价的当前值与未来的预测有关;变量过去的历史与演变方式与未来的预测不相关。
模型表明,期权价格的决定非常复杂,合约期限、股票现价、无风险资产的利率水平以及交割价格等都会影响期权价格。
期权是购买方支付一定的期权费后所获得的在将来允许的时间买或卖一定数量的基础商品的选择权。
期权价格是期权合约中唯一随市场供求变化而改变的变量,其高低直接影响到买卖双方的盈亏状况,是期权交易的核心问题。
在国际衍生金融市场的形成发展过程中,期权的合理定价是困扰投资者的一大难题。
随着计算机、先进通讯技术的应用,复杂期权定价公式的运用成为可能。
简单期权定价模型。
我们把股价随机末态简化为两个等效的等概率量子态,要么50%的概率上涨到+1X的右边一个标准差处,要么50%的概率下跌到-1X的左边一个标准差处。
显然,对于认购期权,在-1X末态的行权收益是0;在+1X末态的行权收益是S*(1+σ)-K。
其中S是当前(初态)股价,K是到期日的行权价。
根据初态=末态期望值的原理,认购期权价格C=0.5*0+0.5*[S*(1+σ)-K]= 0.5*[S*(1+σ)-K]。
这对于平值和浅度虚值期权是适用的。
对于平值期权K=S,C=0.5*S*σ。
比如,当前股价S=3.3元,月波动率为σ=6%,那么行权价K=3.3元,剩余T=30天期限的平值认购期权价格就是,C=0.5*3.3*6%=0.0990元。
对于深度实值期权,当股价末态为-1X处,仍然会有行权收益。
所以,认购期权价格C=0.5*[S*(1-σ)-K]+0.5*[S*(1+σ)-K]=S-K。
比方说,对于深度实值期权实三K=3.0元,当股价从当前价S=3.3元下跌至末态(-1X处)ST=3.1元,仍然会有3.1-3.0=0.1元的行权收益。
所以,实三期权价格C=S-K=3.3-3.0=0.3元。
期权定价分析公式说明文档

2. 选定
, 代入 BS 公式计算期权价格得 。判断 是否成立, 若成立则 并且退出计算; 若不成立, 则继续 判断 是否成立,若成立,则赋值 ; 若不成立 则赋值 。 (波动率下限 , 波动率上限 ) 3. 把波动率上下限代入 BS 公式分别计算对应的期权价格, 记为 。 (其中我们采用边界条件: ) 4. 令 , 代入 BS 公式计算其相应 的期权价格,即为 , 判断 <0.001 是否成立,若成立则最后 ,并退出计算; 若不成立, 则判断 ,若成立,则进行赋 值 , ;若不成立,则进行赋值 。然 后循环计算直到满足条件为止。
3.1.3 Gamma 的计算: Gamma 的定义为 . 以及二阶导数的近似公式为: 我们可以取 因此我们首先计算 最后得到: 情况下的值: , .
3.1.4 Vega 的计算: Vega 的定义为: 波动率值。选取 。同样的, 表示客户输入的 情况下,计算相应的 V 值记为
. 容易得到 vega 值为:
3.1.5 Rho 的计算: Rho 的定义为: . r 表示客户输入的无风险利
率。 同样选取不同的无风险利率: 0.9r, r, 1.1r, 用二叉树方法 计算相应的 V 值为: . 容易得到 Rho 值为:
3.2 BS 公式中的敏感性参数计算
BS 公式只能计算欧式期权,而且对于看涨看跌期权有不同 的敏感性参数计算公式。具体如下图所示:
5, 6,
表示二叉树中期权价格上涨的幅度,d 表示下跌的幅度。 表示风险中性概率 表示无风险利率, 表示标的价格的
波动率。上述两个 p 的表达式中,后者适用期货期权。 7, 表示时间步长,T 表示期权的到期日。以年为单位。
无红利的美式看跌期权的逆向递推公式为:
边界条件为:
B―S期权定价模型为公司股票和债权定价

d1=ln+tσf=d1-σt
σ是股票价格的年化波动率。
另外,我们简单介绍下看涨-看跌平价理论。设计以下交易:1)卖出看涨期权,到期日t,交割价格X。2)买入看跌期权,到期日t,交割价格X。3)买入对应的标的资产。4)借入Xe-rt的资金。令C表示看涨期权价格,P表示看跌期权价格。则期初现金流为:C-P-S+Xe-rt。则到到期日,不论股票价格大于或者小于交割价格X,净现金流均为0,由无套利可知,初始的现金流也该为0。即:P= C-S+Xe-rt=SN-Xe-rtN-S+Xe-rt=Xe-rtN-SN
现在,我们考虑到一个有负债的公司,其资本结构由权益资本和债务资本组成,设V为此公司在t时刻的总价值,E表示t时刻的权益资本,D为t时刻的债务资本价值,根据MM定理有:
V= E+ D
设T时刻公司的债务价值为B= B*T-t即为发行债券时的票面价值),其中rb为借款利率,大于无风险利率r。V为T时刻的公司总价值,它是不确定的,E为T时刻权益的价值。我们假设债务在T时刻进行清算,则到期日T时,若VB,根据上述分析的,股东将执行看涨期权,支付B给债权人,可视为股东以B,即低于公司资产价值的价格向债权人买入公司。股东获得差额E= V- B,即公司股票价格在T时为V- B。相反,若VB,即资不抵债,股东不执行权利,宣布破产,将公司交予债权人,债权人获得公司价值V,而股东一无所获,此时股票的价值将等于0。综上所述,T时债券的价值等于Min[V,B],而T时股票的价值等于E=Max[V- B,0]。可见,公司股票确实可视为基于公司资产的看涨期权,因此,其价值可以用B-S看涨期权定价公式估计为:子可知,期权的价格只和S,X,r,t,σ这五个变量有关,而前四个变量都可以通过数据观察得到,σ则可以通过历史的价格数据进行估计。投资者的风险偏好和股票的预期收益率没有出现在定价公式中,这正是期权定价方法不同于开篇所述的现金流绝对定价法的地方。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
tnS,那tn D么n,D在nX最e后Xre一T次rTtn分tn红 前,S夕即执tn行 期X权不是最优方
6. 如D果n X 1 erT tn ,可以证明,在股价充分高的情况下,执行期
权是最优方案 Dn X
1 erT tn
S t, t
S
3. 约定:在没有特别声明的情况下,股票收益率指瞬时期望收益率
11
BSM随机微分方程——假设
1. 股价过程为Ito过程 2. 卖空无限制 3. 没有交易成本、税收,证券是无限可分的 4. 衍生工具在到期之前不产生红利 5. 不存在套利机会 6. 证券可以连续交易 7. 所有期限的无风险利率同为常数
dG
G S
S
G t
1 2
2G S 2
2S2
dt
G S
Sdz
9
股价过程——对数正态分布
1. 股价对数过程, G ln S
dG d ln S S 2 2 dt dz
ln ST S0 2 2 T , T ln ST ln S0 2 2 T , T
依赖于股价过去的路径
股价的历史信息全部包含在当前的股价当中,简单的技术分析不能战胜 市场 股价过程是马尔科夫过程等价于股票市场的弱有效性
3
Wiener过程(布朗运动)——定义
1. 瞬时增量为 z
增量的均值等于0 增量的标准差等于
t t
2. 在任意两个微小时间段内的改变量是独立的 Wiener过程是Markov过程
第六章
期权定价
教学内容
1. 股价过程 2. BSM随机微分方程 3. 风险中性定价 4. B-S期权定价公式 5. 标的资产支付连续红利情况下的期权定价 6. 欧式指数期权、外汇期权和期货期权
2
马尔科夫过程(Markov process)
1. 无记忆性:未来的取值只与现在有关,与过去无关 2. 如果股价过程是马尔科夫过程,那么股价在未来某时刻的概率分布不
股票远期的价格满足BSM方程
f S KerT t
f t
rKerT t , f S
1,
2 f S 2
0
f t
rS f S
1
2
2S2
2 f S 2
rKerT t rS rf
16
BSM随机微分方程
1. BSM的任何解
4
Wiener过程(布朗运动)——基本性质
1. Wiener过程(长时间段内)的增量
N
z T z 0 i t i 1
N T t
增量的均值等于0
增量的标准差等于
T
2. 在任意时间段内的期望路径长度为无穷大
3. 在任意时间段内,z取某一给定值的期望次数等于无穷大
2. 称股价呈对数正态分布
E ST S0eT
var ST
S02e 2T
e
2T
1
10
股价过程——收益率分布
1. 股票收益率(长时间尺度)
ST S0eT
或者, 1 ln ST
T S0
2
2
,
T
2. 与瞬时期望收益率的差异
2. 该论文推导出了确定欧式期权价值的解析表达式——Black-Scholes 欧式期权定价公式,探讨了期权定价在估计公司证券价值方面的应用, 更重要的是,它采用的动态复制方法成为期权定价研究的经典方法
3. M. Scholes主要因为这一工作与R. Merton一道荣膺了1997年的诺 贝尔经济学奖
1. 分红前夕: 0 t1 t2 tn T
2. 相应的分红数量:
Di 0, i 1, 2 n
3. 如果在最后一次分红前夕执行期权,投资者得到的价值为
4. 如果在最S 后t一n 次分X红前夕不执行期权,那么,期权的下界告诉我们,
5. 所‘C以,如c果 S
案
18
风险中性定价——应用于股票远期
1. 边界条件: fT ST K
2. 根据风险中性定价原则,
f erT t E ST K erT t E ST erT t K
erT terT t S erT t K
S erT t K
f 都S是, t某 种可以交易的衍生工具的理论价格,
并且它的交易不会导致套利机会
2. 如果 f S不, t满 足BSM方程,它是某种衍生工具的价格,那么该衍
生工具的交易必然导致套利机会
17
风险中性定价(risk-neutral valuation)
1. Black-Scholes-Merton方程不包含股票收益率,说明衍生工具的价 值与投资者的风险偏好无关。因此,在定价衍生工具时,可以采用任 何风险偏好,特别地,可以假设投资者是风险中性的
2. Ito引理:G是x与t的函数,在一定的正则条件下,
dG
G x
a
G t
1 2
2G x 2
b2
dt
G x
bdz
因此,G也是Ito过程
7
Ito引理——应用于股票远期价格
1. 标的资产为不分红的股票,则远期价格为
F0 S0e rT
F Se rT t
2. 如果标的股票在期权到期之前分配现金红利,由于股票期权没有分红 的保护,因此不能直接利用B-S期权定价公式确定欧式期权的价值。 解决这个问题的办法是:用股票的市场价格减去股票在期权到期日之 前分配的红利的现值作为股价代入到B-S公式中,从而得到欧式期权 的价值
23
美式买权的执行问题——股票分红
12
BSM随机微分方程——推导
1. f表示股票衍生工具的价值,则它是股价与时间的函数
dS Sdt Sdz
df
f S
S
f t
1 2
2 f S 2
2S2
dt
f S
Sdz
2. 离散形式
S St Sz
f
20
BS期权定价公式
f erT t E ST K
c S0 N (d1 ) Xe rT N (d2 )
p Xe rT N (d2 ) S0 N (d1 )
d1
ln S0
X
r 2 2
T
T
d2
ln S0
24
美式买权的执行问题——股票分红
1. 一般地,如果 是最优方案
Di X 1 e,r那ti1 么ti 在第I次分红前夕执行期权不
2. 总结
美式买权如果提前执行,通常发生在最后一次分红的前夕
如果
行不是最优D方i 案X
1 e r对ti1i=ti 1,2…n (
2. 运用Ito引理,得到,
dF r Fdt Fdz
8
股价过程
1. 股价过程:几何布朗运动
dS Sdt S,dz dS dt dz
S :单位时间内股价的期望收益率(瞬时)
:股价的波动率
S t, . t
S
2. S为股价过程,则
c S0e qT N (d1 ) Xe rT N (d2 ) p Xe rT N (d2 ) S0e qT N (d1 )
d1
ln
S0
X
r q T
3. 他们于是向经济学与统计学评论投稿,同样在没有得到审稿意见的情
况下遭到拒绝 4. 在芝加哥人E. Fama和M. Miller与JPE杂志的编辑打了招呼以后,
JPE才最终发表了这篇论文 5. 这一番波折导致他们检验B-S公式的论文发表在先
22
BS期权定价公式——离散红利
1. 不分红的股票欧式期权的价值由五个因素决定:股票的市场价格、期 权执行价格、期权距离到期的时间、无风险利率以及标的股票的波动 率
t
r
f
f S
S
t
f t
rS
f S
1
2
2S2
2 f S 2
rf
6. 股票衍生工具都满足上述方程,不同工具的差异体现在边界条件上
欧式买权:当t=T时, 欧式卖权:当t=T时,
f max S X f max X S
15
BSM随机微分方程——应用于股票远期
X
r 2 2
T
T
d1
T
21
欧式期权定价——轶事
1. 巧合的是,国际上第一个期权交易所——芝加哥期权交易所于1973 年4月底挂牌营业,略早于B-S公式的正式发表(5-6月号)
2. 两位作者最先把论文投给JPE,遭到了编辑的拒绝,而且没有得到审 稿意见。拒绝的理由:
金融太多,经济学太少
在风险中性世界中,所有证券的期望收益率都等于无风险利率
2. 风险中性定价的一般程序
假设标的资产的期望收益率等于无风险利率 计算衍生工具在到期日的期望支付(payoff) 把期望支付按无风险利率贴现
3. 风险中性定价是求解BSM方程的一种人造方法,用该方法求得的解 适用于任何投资者(不仅限于风险中性的投资者)
5
广义Wiener过程
1. x是广义Wiener过程,如果