常见的假设检验(完全手打总结-图吐血推荐)

合集下载

假设检验公式汇总判断统计显著性的关键计算方法

假设检验公式汇总判断统计显著性的关键计算方法

假设检验公式汇总判断统计显著性的关键计算方法在统计学中,假设检验是一种常用的方法,用于判断某个假设是否与观察数据相一致。

假设检验涉及多种公式和计算方法,用来确定统计显著性,即观察到的差异是否仅仅是由于随机因素引起的。

本文汇总了一些常用的假设检验公式和计算方法,帮助读者更好地理解和运用假设检验。

一、单样本均值假设检验单样本均值假设检验用于比较一个样本的平均值与一个已知的总体平均值是否存在显著差异。

假设样本服从正态分布,而总体的均值已知。

下面是关键的计算方法:1. 计算样本均值(x):将样本中所有观测值求和,然后除以样本容量(n)。

2. 计算标准误差(SE):SE是样本均值的标准差,用来衡量样本均值与总体均值之间的差异。

计算公式为:SE = σ / √n,其中σ表示总体标准差。

3. 计算t值:t值用于测量样本均值与总体均值之间的标准差差异。

计算公式为:t = (x - μ) / SE,其中μ表示总体均值。

4. 判断统计显著性:根据t值与自由度(df = n - 1)在t分布表中查找对应的临界值。

比较t值与临界值,如果t值大于临界值,则拒绝原假设,认为样本均值与总体均值存在显著差异。

二、双样本均值假设检验双样本均值假设检验用于比较两个样本的平均值是否存在显著差异。

假设两个样本都服从正态分布,且两个总体的方差相等。

以下是关键的计算方法:1. 计算样本均值(x1和x2):分别计算两个样本的均值。

2. 计算标准误差(SE):SE用于衡量两个样本均值之间的差异,计算公式为:SE = √[(s1^2 / n1) + (s2^2 / n2)],其中s1和s2分别表示两个样本的标准差,n1和n2分别表示两个样本的容量。

3. 计算t值:t值用于测量两个样本均值之间的差异相对于标准误差的大小。

计算公式为:t = (x1 - x2) / SE。

4. 判断统计显著性:根据t值与自由度(df = n1 + n2 - 2)在t分布表中查找对应的临界值。

假设检验的常用方法

假设检验的常用方法

假设检验的常用方法一种常见的方法是Z检验呢。

这个Z检验呀,就像是一个很直爽的小伙伴。

它比较适合那种总体方差已知,样本量还比较大的情况哦。

比如说,你想知道一个大工厂生产的产品尺寸是不是符合标准,你手里又清楚总体的方差情况,这时候Z检验就可以闪亮登场啦。

它通过计算样本统计量和总体参数之间的差异,然后看这个差异在标准正态分布下是不是合理的。

就好像是在一个大家都知道规则的游戏里,看看新的情况是不是符合这个规则一样。

还有t检验呢,这个就更灵活一点啦。

当总体方差未知,但是样本是小样本的时候,t检验就派上用场啦。

它就像是一个贴心的小助手,在数据不那么完整的时候来帮忙。

比如说你在研究一个新的小范围的实验结果,样本不多,总体方差也不清楚,t 检验就会说“我来看看这到底有没有啥不一样的”。

t检验会根据样本的数据来估算总体的情况,然后判断样本和假设的总体之间有没有显著差异呢。

卡方检验也很有趣哦。

它像是一个爱整理的小管家。

这个方法主要是用来检验分类变量之间的关系的。

比如说,你想知道男生和女生对于不同颜色的喜好有没有差别,这就是分类变量啦。

卡方检验就会把这些数据整理好,看看实际观察到的情况和我们假设的没有差异的情况之间的距离有多远。

如果这个距离很大,那就说明这两个分类变量之间可能存在着某种联系哦。

最后呀,还有F检验呢。

F检验就像是一个大管家,它主要是用来比较两个总体的方差是否相等的。

比如说有两组数据,你想知道它们的波动情况是不是差不多,F 检验就可以来帮忙啦。

它通过计算两个样本方差的比值,然后看看这个比值在F分布下是不是合理的。

如果不合理,那就说明这两组数据的方差可能是不一样的呢。

这些假设检验的方法呀,就像是我们在数据海洋里的小导航,帮助我们判断各种情况,是不是很神奇呢? 。

假设检验经典总结

假设检验经典总结

假设检验
一、假设检验的概念
先对总体参数/分布形式提出某种假设,然后利用样本信息/相关统计量的分布特征检验这个假定是否拒绝原假设。

二、假设检验的目的
找出样本均值x 与总体均值μ存在差距的原因。

三、如何进行假设检验
小概率事件原理:取05.0=α的显著性水平。

1.提出原假设和备选假设;
某一数值)某一数值;某一数值(或≥≤=μμμ:0H
某一数值)某一数值;某一数值(或 μμμ≠:0H
2.选定检验统计量:(Z 统计量/t 统计量) n x z σμ0-=,n
s x t 0μ-=; 3.选定显著性水平:(第一类错误,第二类错误)
第一类错误:(弃真错误)
0H 为真时拒绝,拒绝正确0H ;(第一类错误的概率为α);
第二类错误:(取伪错误)
0H 为假时接受,当1H 正确时,反而认为0H 正确;(第二类错误的概率为β);
两类错误不可同犯,也不是必犯其一,犯第一类错误的概率最大不超过α,但无法算出犯第二错误的概率。

4.根据数据计算检验统计量的值与其对应的概率p 值,并进行决策。

检验统计量的值:
根据给定α,查临界值2
2ααααt t z z 或,或
将z 值,t 值与临界值进行比较后得出结论。

P 值:
单侧检验:2 p ,不能拒绝0H ; 2 p ,拒绝0H ;
双侧检验: 2α
p ,拒绝0H ; 2α
p ,不能拒绝0H ;。

从本章开始介绍一些常用的假设检验方法对单个

从本章开始介绍一些常用的假设检验方法对单个

2
df 2
2
1 df1 df2
2
df1 df2
(x1 x1)2 (x1 x1)2 (n1 1) (n2 1)
所以:均数差异标准误为
S x1x2
(x1 x1)2 (x1 x1)2 • 1 1
(n1 1) (n2 1)
n1 n2
x12
( x1 )2
n1
x2 2
( x2 )2
5. 2 两个总体平均数的比较
x1 x2 1 2
为了比较两个总体均数的差异,不可能对两个总 体的所有个体进行测定,只能通过样本来推断总 体。 分别从两个总体随机抽取一定数量的个体,从而 获得两个独立的样本,然后通过对样本数据的分 析来对两个总体平均数有无差异进行检验。
5. 2 两个总体平均数的比较
如果检验结果显著,接受备择假设σ12 ≠ σ22,
那么按照下面的t检验方法进行检验。
(二) σ12 ≠ σ22,但是n1=n2
统计量的计算与前面的t检验方法,只是查t 表时,自由度改为n-1,而不是2(n-1).
例100页
(三) σ12 ≠ σ22,而且n1 ≠ n2
Cochran-Cox检验 例103页
上次课内容回顾
一、本章的内容为样本平均数的差异显著性检验 非配对实验和配对实验两类
二、显著性检验的目的:
x1 x2 1 2
x1 x2 (1 2 ) (1 2 )
1 2 : 处理效应 1 2 : 试验误差
x1 x2 : 表面效应
x1 x2 1 2
表面效应
排除实验误差
处理效应
设第一个总体的平均数为1,方差为
2,
1
由该总体抽取了一个含量为n1的样本,

假设检验总结

假设检验总结
拒绝域
F ≤ F−α (n −1, m−1) 1
2
原假设 备择假设 检验统计量及其在 H0为真时的分布 H1 H0
σ 1 = σ 2 σ 1 ≠σ 2
2 2 2 2
S F= ~ S F(n −1, m−1)
µ1, µ 2 均未知
2 1 2 2
或 F ≥ Fα (n −1, m−1)
2
σ 12 ≥σ 22 σ 12 < σ 22 σ 12≤ σ 22 σ 12 > σ 22
F ≤ F1−α (n −1, m−1)
F ≥ Fα (n −1, m−1)
(8)总体分布的假设检验 (8)总体分布的假设检验 总体分布的假设
H0 :
总体服从某分布
H1 : 总体不服从某分布来自个区间: 将 X 的可能取值的范围划为 m 个区间: 记在第i个区间取值的概率 记在第 个区间取值的概率 p i
拒绝域
T ≥ tα (n + m − 2)
T ≤ −t2α (n + m − 2)
µ1≥µ2 µ1 ≤ µ2
~ t(n + m − 2)
( σ12=σ22 未知 未知)
T ≥ t2α (n + m − 2)
大样本(n>50) (6) W1-W2的检验 大样本(n>50) )
原假设 备择假设 检验统计量及其 H0为真时的分布 H0 H1 W1=W2 W1 ≥W2 W1 ≠W2 W1<W2
U ≥ u2α
大样本(n>50) (2) U 检验法 - 大样本(n>50) )
原假设 备择假设 检验统计量及其 H0为真时的分布 H0 H1 µ = µ0 µ ≠ µ0 X − µ0 U= µ ≥ µ0 µ < µ0 S n µ ≤ µ0 µ > µ0

常见的假设检验方法

常见的假设检验方法

常见的假设检验方法嘿,咱今儿就来说说常见的假设检验方法!这可真是个有意思的事儿呢!你想想啊,生活中咱经常会碰到各种各样需要判断的情况。

就好比说,你觉得今天会不会下雨,这其实就是一种假设呀!那怎么去检验这个假设对不对呢?常见的假设检验方法里有个叫 Z 检验的。

这就好像是个厉害的侦探,能通过一些数据线索来判断假设是不是成立。

比如说,咱要检验一批产品是不是合格,Z 检验就能派上大用场啦!它能通过对样本数据的分析,告诉咱这批产品大体上是个啥情况。

还有 T 检验呢!它就像是个精细的工匠,专门处理一些比较“小气”的数据。

比如样本量没那么大的时候,T 检验就能发挥它的作用啦!它能在有限的数据里找出真相来。

那这两种方法怎么用呢?就好比你要去开一把锁,Z 检验和 T 检验就是不同的钥匙。

你得根据锁的情况,也就是数据的特点,来选择合适的钥匙呀!不然你拿着 T 检验这把钥匙去开 Z 检验能开的锁,那可不得折腾半天也打不开呀!咱再说说卡方检验。

这个呀,就像是个分类专家!它能把一堆杂乱的数据按照不同的类别整理得清清楚楚。

比如说,你想知道不同性别对某个事物的看法是不是有差异,卡方检验就能帮你搞明白。

假设检验方法可真是神奇啊!它们就像我们的秘密武器,能让我们在面对一堆数据和假设的时候不再迷茫。

你说要是没有这些方法,我们该多抓瞎呀!比如说,一个公司要推出新产品,要是没有这些假设检验方法,怎么知道这个新产品会不会受欢迎呢?那不就跟闭着眼睛走路一样,容易摔跟头嘛!这些方法还能帮我们在科学研究里找到真理呢!科学家们通过假设检验,不断地验证自己的理论,推动着知识的进步。

所以啊,常见的假设检验方法可真是太重要啦!咱可得好好学一学,用一用,让它们为我们的生活和工作服务呀!别小看了这些方法,它们能发挥的作用可大着呢!你还在等什么呢?赶紧去研究研究吧!。

常见假设检验公式概览

常见假设检验公式概览假设检验是统计学中一种重要的推断方法,用于判断总体参数的真实情况。

在假设检验中,我们通常会提出一个原假设和一个备择假设,并通过采样数据来判断是否拒绝原假设。

在实际应用中,常见的假设检验方法有如下几种。

1. 单样本均值检验单样本均值检验用于判断一个样本的平均值是否等于一个已知的常数。

其中,我们常用的假设检验公式为:t = (x - μ) / (s / √n)其中,t表示t值,x为样本均值,μ为总体均值,s为样本标准差,n为样本容量。

通过比较t值与临界值,我们可以判断是否拒绝原假设。

2. 双独立样本均值检验双独立样本均值检验用于比较两个独立样本的平均值是否相等。

常用的假设检验公式如下:t = (x1 - x2) / √(s1²/n1 + s2²/n2)其中,t表示t值,x1和x2分别为两个样本的均值,s1和s2为两个样本的标准差,n1和n2为两个样本的容量。

通过比较t值和临界值,可以判断是否拒绝原假设。

3. 配对样本均值检验配对样本均值检验用于比较同一组样本的两个相关变量的平均值是否相等。

常用的假设检验公式如下:t = (x d - μd) / (sd / √n)其中,t表示t值,x d为配对差值的均值,μd为总体差值的均值,sd为配对差值的标准差,n为配对样本容量。

通过比较t值和临界值,可以得出是否拒绝原假设。

4. 单样本比例检验单样本比例检验用于判断一个样本比例是否等于一个已知的比例。

常用的假设检验公式如下:z = (p - π) / √(π(1-π)/n)其中,z表示z值,p为样本比例,π为总体比例,n为样本容量。

通过比较z值和临界值,可以判断是否拒绝原假设。

5. 独立样本比例检验独立样本比例检验用于比较两个独立样本的比例是否相等。

常用的假设检验公式如下:z = (p1 - p2) / √(p(1-p)(1/n1 + 1/n2))其中,z表示z值,p1和p2分别为两个样本的比例,n1和n2分别为两个样本的容量。

常见的假设检验(完全手打总结,图吐血推荐)

常见的假设检验一般地说,根据样本对总体某项或某几项作出假设,并对该假设作出接受或拒绝的判断,这种方法称为假设检验。

u—检验法检验的是:在大样本(n>30)的情况下,某一随机变量的期望是否等于一个常数C。

t检验法/学生检验检验的是:在小样本(n<30)的情况下,两个变量的平均值差异程度。

对于两个变量的解释:可以看作是两个不同的样本;也可以看作是抽样样本和总体。

据此就分为:单样本T检验、配对样本T检验和独立样本T检验例子:难产婴儿和总体婴儿对比;治疗前后对比;北京人和南京人对比χ2检验法(卡方检验)检验的是:两个及其以上的频率/构成比例之间的差异分析,对比的数是“比例”案例:某咨询公司想了解南京和北京的市民对最低生活保障的满意程度是否相同。

他们从南京抽出600居民,北京抽取600居民,每个居民对满意程度(非常满意、满意、不满意、非常不满意)任选一种,且只能选一种。

南京和北京居民对最低生活保障满意程度比例相同吗?检验的是:来自不同总体的两个样本的方差是否存在差异。

F检验又叫方差齐性检验。

简单的说,检验两个样本的方差是否有显著性差异。

从两个研究总体中随机抽取样本,要对这两个样本进行比较的时候,首先要判断两总体方差是否相同,即方差齐性。

若两总体方差相等,则直接用t检验,若不等,可采用t'检验或变量变换或秩和检验等方法。

要判断两个总体方差是否相等,就可以用F检验。

(在OLS中,假设随机扰动项是0均值、同方差——方差齐性、非序列相关)。

在两样本t检验(两个样本的均值差异性检验)中要用到F检验。

这是选择何种T检验(等方差双样本检验,异方差双样本检验)的前提条件。

F检验法是英国统计学家Fisher提出的,主要通过比较两组数据的方差 σ2,以确定他们的精密度是否有显著性差异。

至于两组数据之间是否存在系统误差,则在进行F检验并确定它们的精密度没有显著性差异之后,再进行t检验。

计算方法:检验的是:比较两个独立样本的分布是否存在差异适用范围:在实践中我们常常会遇到以下一些资料,如需比较患者和正常人的血铁蛋白、血铅值、不同药物的溶解时间、实验鼠发癌后的生存日数、护理效果评分等,这类资料有如下特点:(1)资料的总体分布类型未知;(2)资料的总体分布类型已知,但不符合正态分布;(3)某些变量可能无法精确测量;(4)方差不齐。

统计学几种常见的假设检验

定义假设检验是用来判断样本与样本,样本与总体的差异是由抽样误差引起还是本质差别造成的统计推断方法。

其基本原理是先对总体的特征作出某种假设,然后通过抽样研究的统计推理,对此假设应该被拒绝还是接受作出推断。

基本原理(1)先假设总体某项假设成立,计算其会导致什么结果产生。

若导致不合理现象产生,则拒绝原先的假设。

若并不导致不合理的现象产生,则不能拒绝原先假设,从而接受原先假设。

(2)它又不同于一般的反证法。

所谓不合理现象产生,并非指形式逻辑上的绝对矛盾,而是基于小概率原理:概率很小的事件在一次试验中几乎是不可能发生的,若发生了,就是不合理的。

至于怎样才算是“小概率”呢?通常可将概率不超过0.05的事件称为“小概率事件”,也可视具体情形而取0.1或0.01等。

在假设检验中常记这个概率为α,称为显著性水平。

而把原先设定的假设成为原假设,记作H0。

把与H0相反的假设称为备择假设,它是原假设被拒绝时而应接受的假设,记作H1。

假设的形式H0——原假设,H1——备择假设双侧检验:H0:μ = μ0,单侧检验:,H1:μ < μ0 或,H1:μ > μ0假设检验就是根据样本观察结果对原假设(H0)进行检验,接受H0,就否定H1;拒绝H0,就接受H1。

假设检验的种类下面介绍几种常见的假设检验1.T检验亦称student t检验(Student's t test),主要用于样本含量较小(例如n<30),总体标准差σ未知的正态分布资料。

目的:比较样本均数所代表的未知总体均数μ和已知总体均数μ0。

计算公式:统计量:自由度:v=n - 1适用条件:(1) 已知一个总体均数;(2) 可得到一个样本均数及该样本标准误;(3) 样本来自正态或近似正态总体。

T检验的步骤1、建立虚无假设H0:μ1= μ2,即先假定两个总体平均数之间没有显著差异;2、计算统计量T值,对于不同类型的问题选用不同的统计量计算方法;1)如果要评断一个总体中的小样本平均数与总体平均值之间的差异程度,其统计量T值的计算公式为:2)如果要评断两组样本平均数之间的差异程度,其统计量T值的计算公式为:3、根据自由度df=n-1,查T值表,找出规定的T理论值并进行比较。

经典案例,假设检验

经典案例,假设检验从经典案例理统计学中的假设检验生活中存在大量的非统计应用的假设检验,一个众所周知的例子就是对罪犯的审讯。

当一个人被控告为罪犯时,他将面临审讯。

控告方提出控诉后,陪审团必须根据证据做出决策。

事实上,陪审团就进行了假设检验。

这里有两个要被证明的假设。

第一个称为原假设,用H0表示(发音为H-nought, nought是零的英国表示方法)。

它表示H0:被告无罪第二个假设称为备择假设,用H1表示。

在罪犯审讯中,它表示H1:被告有罪当然,陪审团不知道哪个假设是正确的,他们根据控辩双方所提供的证据做出判断。

这里只有两种可能:判定被告有罪或无罪释放。

在统计应用中,判定被告有罪就相当于拒绝原假设;而判定被告无罪也就相当于不能拒绝原假设。

应当注意,我们并不能接受原假设。

在罪犯审判中,接受原假设意味着发现被告无罪。

在我们司法系统中,并不允许这样的判定。

当我们进行假设检验时,存在两种可能的错误。

第一类错误是当原假设正确时,我们却拒绝了它。

第二类错误被定义为当原假设有错误时,我们却并没有拒绝。

在上面的例子中,第一类错误就是一个无罪的人被判定有罪。

当一个有罪的被告被判定无罪时,第二类错误就发生了。

我们把发生第一类错误的概率记为a,通常它也被称作显著性水平。

第二类错误发生的概率记为b。

发生错误的概率a 和b是相反的关系,这就意味着任何尝试减少某一类错误的方法都会使另外一类错误发生的概率增加。

在司法系统中,第一类错误被认为是更加严重的。

这样,我们的司法系统的构建就要求第一类错误发生的概率要很小。

要达到这样的结果,往往会对起诉证据进行限制(原告必须证明罪犯有罪,而被告则不需要证明什么),同时要求陪审团只有具有“远非想象的证据”时才能判定被告有罪。

在缺少大量证据的情况下,尽管有一些犯罪证据,陪审团也必须判定其无罪。

这样的安排必然使有罪的人被判无罪的概率比较大。

美国最高法院法官奥利弗·温德尔·霍姆斯(Oliver Wendell Holmes)曾经用下面一段话描述了第一类错误发生的概率与第二类错误发生概率之间的关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常见的假设检验
一般地说,根据样本对总体某项或某几项作出假设,并对该假设作出接受或拒绝的判断,这种方法称为假设检验。

u—检验法
检验的是:在大样本(n>30)的情况下,某一随机变量的期望是否等于一个常数C。

t检验法/学生检验
检验的是:在小样本(n<30)的情况下,两个变量的平均值差异程度。

对于两个变量的解释:可以看作是两个不同的样本;也可以看作是抽样样本和总体。

据此就分为:单样本T检验、配对样本T检验和独立样本T检验
例子:难产婴儿和总体婴儿对比;治疗前后对比;北京人和南京人对比
χ2检验法(卡方检验)
检验的是:两个及其以上的频率/构成比例之间的差异分析,对比的数是“比例”
案例:某咨询公司想了解南京和北京的市民对最低生活保障的满意程度是否相同。

他们从南京抽出600居民,北京抽取600居民,每个居民对满意程度(非常满意、满意、不满意、非常不满意)任选一种,且只能选一种。

南京和北京居民对最低生活保障满意程度比例相同吗?
F检验
检验的是:来自不同总体的两个样本的方差是否存在差异。

F检验又叫方差齐性检验。

简单的说,检验两个样本的方差是否有显著性差异。

从两个研究总体中随机抽取样本,要对这两个样本进行比较的时候,首先要判断两总体方差是否相同,即方差齐性。

若两总体方差相等,则直接用t检验,若不等,可采用t'检验或变量变换或秩和检验等方法。

要判断两个总体方差是否相等,就可以用F检验。

(在OLS中,假设随机扰动项是0均值、同方差——方差齐性、非序列相关)。

在两样本t检验(两个样本的均值差异性检验)中要用到F检验。

这是选择何种T检验(等方差双样本检验,异方差双样本检验)的前提条件。

F检验法是英国统计学家Fisher提出的,主要通过比较两组数据的方差 σ2,以确定他们的精密度是否有显著性差异。

至于两组数据之间是否存在系统误差,则在进行F检验并确定它们的精密度没有显著性差异之后,再进行t检验。

计算方法:
秩和检验
检验的是:比较两个独立样本的分布是否存在差异
适用范围:在实践中我们常常会遇到以下一些资料,如需比较患者和正常人的血铁蛋白、血铅值、不同药物的溶解时间、实验鼠发癌后的生存日数、护理效果评分等,这类资料有如下特点:
(1)资料的总体分布类型未知;
(2)资料的总体分布类型已知,但不符合正态分布;
(3)某些变量可能无法精确测量;
(4)方差不齐。

秩和——秩次之和signed-ranktest
对配对比较的资料应采用符号秩和检验(signed-rank test),其基本思想是:若检验假设成立,则差值的总体分布应是对称的。

检验的基本步骤:
两样本成组资料的比较应用Wilcoxon秩和检验,其基本思想是:若检验假设成立,则两组的秩和不应相差太大。

检验的基本步骤是:。

相关文档
最新文档