全等三角形SSSPPT课件

合集下载

三角形全等的判定一SSS(课件)

 三角形全等的判定一SSS(课件)

证明:连接BC.
在△ABC和△DCB中,
AB DC
AC
DB
BC CB
∴△ABC≌△DCB (SSS),
∴∠A=∠D.
例3.如图,点E、F在BC上,AB=DC,AF=DE,BE=CF,B、E、F、C在同
一直线上,求证△ABF≌△DCE. 证明:BE=CF,
∴BE+EF=CF+EF,
即BF=CE,
证明两个三角形全等的书写步骤: ①准备条件:证全等时要用的条件要先证好; ②指明范围:写出在哪两个三角形中; ③摆齐根据:摆出三个条件用大括号括起来; ④写出结论:写出全等结论.
AF
DE
BF CE
∴△ABF≌△DCE(SSS).
例4.如图,已知AB=AC,AD=AE,BD=CE,且B,D,E三点共线,求证:
∠3=∠1+∠2.
证明:∵AB=AC,AD=AE,BD=CE,
在△ABD和△ACE中,
AB AC
AD
AE
BD CE
∴△ABD≌△ACE(SSS) , ∴∠BAD=∠1 ,∠ABD=∠2 , ∵∠3=∠BAD+∠ABD ,
1.探索三角形全等条件.(重点) 2.掌握“边边边”判定方法及其应用.(难点) 3.会用尺规作一个角等于已知角,了解图形的作法.
1.什么叫全等三角形?
能够重合的两个三角形叫全等三角形.
2.全等三角形有什么性质?
全等三角形的对应边相等,对应角相等.
3.已知△ABC ≌△DEF,你能得到哪些相等的边与角.
C′A′=CA. 把画好的△A′B′C′剪下,放到△ABC上,它们全等吗? 一定全等
基本事实---“边边边”判定方法
文字语言:三边对应相等的两个三角形全等. (简写为“边边边”或“SSS”)

人教版初二数学上册三角形全等的判定定理(sss)ppt课件

人教版初二数学上册三角形全等的判定定理(sss)ppt课件
“×”) • (1 )两个等边三角形全等. × ( ) • (2 √)三角形具有稳定性. ( ) • (3 √)一边相等的两个等边三角形全等. ( ) • (4)各有两边长为5cm和3cm的两个等腰 三角形全等 . × ( ) • (5)各有两边长为6cm和3cDC
C
D
• 前面我们学过,全等三角形的三条对应边
相等。那么三条对应边相等的三角形会是 全等三角形么?
探索新知
• 如图在△ABC和△DEF中,如果AB=DE, BC=EF,
AC=DF,那么△ABC和△DEF全等吗?
A D
B
C
E
F
• 如果能够说明∠A=∠D,就可以利用SAS定理得
出△ABC和△DEF全等.

说一说
• 思考教材P81“说一说”中的问题.
例题解答
• 例1、如图,已知AB=CD,AD=BC. • 求证:∠B=∠D. D • ∵AB=CD • AD=BC • 又AC=CA(公共边) A B • ∴△ABC≌△CDA(SSS) • ∴ ∠B=∠D(全等三角形对应角相等)
C
• 1、判断题. (正确的打“√”,错误的打
知识小结
• SAS:两边和它们的夹角对应相等…… • ASA:两角和它们的夹边对应相等…… • AAS:两角和其中一角的对边对应相等…… • SSS :三边对应相等…… • 课后思考,三个对应角相等的三角形也一
定全等么。
• •
再见谢谢
• 2、如图,A、B、D、F在同一直线上,AD=BF, • • • • • • •
AC=FE,BC=DE,试判定∠A与∠F相等吗?为什 么? ∵A,B,D,F在一条直线上 C 又AD=BF 所以AB=FD 又AC=FE D F A B BC=DE ∴△ABC≌△FDE(SSS) ∴ ∠A=∠F(全等三角形对应角相等) E

全等三角形课件ppt

全等三角形课件ppt

与三角函数的关系
三角函数是研究三角形边和角之间关系的数学工具。在全等 三角形中,可以利用三角函数来证明两个三角形全等。例如 ,在直角三角形中,可以利用勾股定理和三角函数来证明两 个直角三角形全等。
三角函数还可以用于计算三角形的角度、边长等几何量,这 些计算在证明两个三角形全等时也是非常有用的。
与四边形的联系
全等三角形的性质
全等三角形的对应边相等,对应角相 等。
全等三角形的周长、面积和角度和相 等。
全等三角形的分类
根据全等三角形的边长关系,可以分为SSS(三边全等)、SAS(两边和夹角全 等)、ASA(两角和夹边全等)和AAS(两角和非夹边全等)四种类型。
根据全等三角形的形状,可以分为直角三角形、等腰三角形、等边三角形等类型 。
详细描述
利用全等三角形的性质证明线段相等或 角相等。
综合练习题
详细描述
总结词:结合其他数学知识 ,考察学生综合运用全等三
角形的能力
01
02
03
将全等三角形与其他几何知 识结合,如平行线、角平分
线等。
在实际问题中应用全等三角 形的知识,如测量、构造等

04
05
结合其他数学知识,解决涉 及全等三角形的综合问题。
04
CHAPTER
练习题与解析
基础练习题
总结词:考察全等三角形 的基本性质和判定方法
详细描述
给出两个三角形,判断它 们是否全等。
根据给定的条件,判断能 否证明两个三角形全等。
进阶练习题
总结词:深化全等三角形的性质和判定 方法的应用
在复杂的图形中识别和构造全等三角形 。
利用全等三角形的判定方法证明两个三 角形全等。

初二数学《全等三角形》PPT课件

初二数学《全等三角形》PPT课件

02
全等三角形判定方法
SSS判定法
定义
三边对应相等的两个三角 形全等。
符号语言
在△ABC和△A'B'C'中, AB=A'B',AC=A'C', BC=B'C' ⟹ △ABC≌△A'B'C' (SSS)
注意事项
在应用SSS判定法时,需 要确保三个边分别对应相 等,不能只满足其中两个 边相等。
SAS判定法
注意事项
在应用AAS判定法时,需要确保两个角和其中一个角的对边分别对应相等。同时,需要注意 的是,AAS判定法和ASA判定法的区别在于,AAS判定法中的两个角不是夹边所对的角,而 是任意两个角。
03
全等三角形证明技巧
已知条件梳理与分析
已知条件分类
01
边、角、高、中线、角平分线等。
已知条件之间的关系
能够灵活运用这些判定方法解决相关问题。
关键知识点回顾与总结
全等三角形的应用 了解全等三角形在几何证明和实际问题中的应用。
能够运用全等三角形的知识解决一些实际问题。
拓展延伸:相似三角形简介
相似三角形的定义与性质 了解相似三角形的定义,即两个三角形对应角相等、对应边成比例。
掌握相似三角形的性质,如相似比、面积比等。
符号语言
在△ABC和△A'B'C'中,∠A=∠A', AB=A'B',∠B=∠B' ⟹ △ABC≌△A'B'C'(ASA)
注意事项
在应用ASA判定法时,需要确保 两个角和它们之间的夹边分别对
应相等。
AAS判定法
定义

《全等三角形》ppt课件

《全等三角形》ppt课件

《全等三角形》ppt课件•全等三角形基本概念与性质•判定全等三角形方法探讨•辅助线在证明全等过程中作用•相似三角形与全等三角形关系探讨目录•生活中全等三角形应用举例•总结回顾与拓展延伸全等三角形基本概念与性质全等三角形定义及判定方法定义SSS(边边边)SAS(边角边)HL(斜边、直角边)ASA(角边角)AAS(角角边)对应边相等对应角相等对应关系确定030201对应边、对应角关系全等三角形性质总结判定全等三角形方法探讨SSS判定法定义应用举例注意事项应用举例SAS判定法定义在证明两个三角形全等时,若已知两边及夹角相等,则可直接应用SAS判定法。

注意事项ASA判定法定义AAS判定法定义比较分析案例分析01020304ASA和AAS判定法比较与案例分析辅助线在证明全等过程中作用构造辅助线策略与技巧分享观察图形特征在证明全等三角形时,首先要仔细观察图形,分析已知条件和目标结论,从而确定需要构造的辅助线类型。

利用基本图形熟悉并掌握一些基本图形(如角平分线、中线、高线等)的性质,可以帮助我们更快地构造出合适的辅助线。

构造平行线或垂直线根据题目条件,有时需要构造平行线或垂直线来利用相关性质进行证明。

典型辅助线构造方法剖析角平分线法01中线法02高线法03复杂图形中辅助线应用实例在复杂图形中,有时需要综合运用多种辅助线构造方法才能解决问题。

例如,可以先构造角平分线,再利用中线或高线的性质进行证明。

在一些特殊情况下,可能需要构造多条辅助线才能找到解决问题的突破口。

这时需要仔细分析图形特点,灵活运用所学知识进行构造和证明。

通过学习和掌握典型辅助线的构造方法和应用实例,可以提高学生的几何思维能力和解决问题的能力,为后续的数学学习打下坚实的基础。

相似三角形与全等三角形关系探讨性质面积比等于相似比的平方。

定义:两个三角形如果它们的对应角相等,则称这两个三角形相似。

周长比等于相似比;010203040506相似三角形定义及性质回顾相似三角形判定方法简介预备定理判定定理1判定定理2判定定理3相似三角形与全等三角形联系和区别联系区别全等三角形的性质在相似三角形中同全等三角形的性质更为严格和具体,而相似三角形的性质相对较为宽松和生活中全等三角形应用举例建筑设计中全等三角形应用稳定性美学效果美术创作中全等三角形构图技巧平衡感动态感其他领域(如工程、测量)中全等三角形应用工程测量机械设计地图制作总结回顾与拓展延伸全等三角形的判定方法熟练掌握SSS、SAS、ASA、AAS及HL等全等三角形的判定方法。

全等三角形的判定SSS-获奖课件-PPT

全等三角形的判定SSS-获奖课件-PPT

7
大家学习辛苦了,还是要坚持
继续保持安静
8
(两角)
③如果三角形的两个内角分别是30°,45°时
30◦ 45◦
30◦
45◦
结论:两个角对应相等的两个三角形不一定全等.
9
思考1:我们通 过探究1探究2
得到的结论
思考2:如果给出三个 条件画三角形,你能说 出:哪几种可能的情况?
• 结论:只给出 1.三边
求证: ∠ A =∠ D
AD
B E
CF
16
练习3
已知: 如图,AB = DC ,AD = BC . 求证: ∠ A =∠ C
证明: 连结 BD
A
D
在△BAD 和△DCB中
AB = CD (已知)
AD = CB (已知) B
C
BD = DB (公共边)
∴ △BAD ≌ △DCB( SSS )
∴ ∠ A =∠ C (全等三角形的对应角相等)
18
全等三角形的判定SSS 获奖课件

1 什么叫全等三角形?

2 全等三角形的边角关系:
知识回顾:
2
3
探究活动1: 只有一个相等条件时
1.只有一条边相等时;
3㎝
3㎝
2.只有一个角相等;
3cm
结论:只有一 条边或一个 角对应相等 的两个三角 形不一定全 等.
45◦
45◦
45◦
4
如果给出两个条件画三角形, 你能说出有哪几种可能的情况?
的 顺
12
例题巩固,加油!
例题1
如图, △ABC 是钢架,AB = AC ,AD是
连结点A与BC中点D的支架.
求证: △ABD ≌ △ACD

人教版八年级数学上册课件:12.2三角形全等的判定(SSS和SAS)(共28张PPT)

人教版八年级数学上册课件:12.2三角形全等的判定(SSS和SAS)(共28张PPT)
⑴先确定实际问题应用哪些几何知识解决. ⑵根据实际抽象出几何图形. ⑶结合图形和题意写出已知,求证. ⑷经过分析,找出证明途径. ⑸写出证明过程.
谢谢!
3. ∠ADB= ∠AEC
二、例题:
A
D
E
变式:已知:如图,AB⊥AC,AD⊥AE,AB=AC,AD=AE. 求证: ⑴ △DAC≌△EAB
B
1. BE=DC 2. ∠B= ∠ C 3. ∠ D= ∠ E 4. BE⊥CD
D
A
C
F M
E
探究2
我们知道,两边和它们的 夹角分别相等的两个三角形全 等。由“两边及其中一边的对角 分别相等”的条件能判定两个三 角形全等吗?为什么?
习 (1) AC=DC=∠ABD.
答案:
(1)全等
(2)全等
1. 边角边的内容是什么?
2. 边角边的作用:
(证明两个三角形全等,也可间接证明线段,角相等)
3. 怎样找已知条件:
[一是已知中给出的,二是图形中隐含的(如:公共边 、公共角、对顶角、邻补角,外 角、平角等)]
A
B
C
D

1. 如图,已知AB和CD相交于点O, OA=OB, OC=O
固 练
说明 △ OAD与

△ OBC全等的理由。
解:在△OAD 和△OBC中
C
2
O
1
A
D
B
OA = OB(已知), ∠1 =∠2(对顶角相等), OD = OC (已知),
∴△OAD≌△OBC (SAS)。
巩 固 练
2. 如图所示, 根据题目条件,判断下面的三角形是否全 等.
求证: △ABD≌△ACE.
证明:∵∠BAC=∠DAE(已知),

全等三角形的判定PPT课件共34张

全等三角形的判定PPT课件共34张
24
2024/1/30
06
判定全等三角形的注意事项
25
准确理解全等三角形的定义和性质
2024/1/30
全等三角形的定义
两个三角形如果三边及三角分别对应 相等,则称这两个三角形全等。
全等三角形的性质
全等三角形的对应边相等,对应角相 等;全等三角形的周长、面积相等; 全等三角形的对应边上的中线、高线 、角平分线分别相等。
结论
三边分别相等的两个三角 形全等,简称“SSS”。
16
SAS判定法的证明
已知条件
两边和它们的夹角分别相 等的两个三角形。
2024/1/30
证明过程
将其中一个三角形旋转至 与另一个三角形两边重合 ,由于夹角相等,因此两 个三角形全等。
结论
两边和它们的夹角分别相 等的两个三角形全等,简 称“SAS”。
示例
若三角形ABC和三角形DEF中,∠A=∠D,∠B=∠E ,BC=EF,则三角形ABC全等于三角形DEF。
2024/1/30
14
2024/1/30
04
判定方法的证明与推导
15
SSS判定法的证明
01
02
03
已知条件
三边分别相等的两个三角 形。
2024/1/30
证明过程
通过平移或旋转其中一个 三角形,使得两个三角形 的三边分别重合,从而证 明两个三角形全等。
2024/1/30
在计算三角形面积时,如果知道两个三角形全等,那么可以直接得出它们的面积相 等。
9
2024/1/30
03
全等三角形的判定方法
10
边边边判定法(SSS)
定义
三边分别相等的两个三角形全等 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

.
10
通过本节课的学习,你获 得了哪些知识?还有哪些问题 没有解决?
.
11
小结:
1.三角形全等的判定方法,我们 学习了几种? 全等三角形判定方法1、2、3 分别是SAS、ASA、SSS
.
12
作业:
.
13
全等三角形判定3
.
1
复习: 1.全等三角形的性质:
全等三角形的对应边相等。 全等三角形的对应角相等。 2.全等三角形判定方法1、2:
(定方法1:
两条边及其夹角对应相等的两个 三角形全等。 (简记为“边角边”或“SAS”)
.
3
全等三角形判定方法2:
两角及其夹边对应相等的两个三 角形全等。 (简记为“角边角”或“ASA”)
求证:△ABD△CDB
.
7
思考: 如图,OA=OC,OB=OD。
那么AB与CD有什么关系?AD与BC
呢?图中有几对全等三角形?
O
.
8
例题2.如图,点A、B、C、D在一 条线上。已知AC=DB,AE=CF, BE=DF,求证:△ABE ≌△CDF
.
9
拓展:如图,添加哪些条件可以说明 △ABC与△DCB全等。有几种添加的 方法?
.
4
如图,△ABC与△DEF中,已知 BC=EF,AB=DE, AC=DF。 那么△ABC≌△DEF吗?
三边对应相等的两个三角形全等。
简记为“边边边”或“SSS”。
.
5
如果三角形的三条边长固定, 那么这个三角形的形状和大小就完 全确定了。三角形的这个性质叫做 三角形的稳定性。
.
6
例题1.如图,已知AB=CD, AD=BC,
相关文档
最新文档