分式检测题

合集下载

第十五章 分式 单元检测

第十五章    分式     单元检测

第十五章 分式一、选择题(每小题3分,共36分)1. 下列式子是分式的是 ( ) A.2xB. 1+x xC. y x+2 D. πx2. 函数21-=x y 中自变量的取值范围是 ( )A. 0≠xB. 2≠xC. 2-≠xD. 2≠x3. 若分式:112--x x 的值为0,则 ( )A. 1=xB. 1-=xC. 1±=xD. 1≠x4. 化简y x y x --22的结果是 ( )A. y x +B. y x -C. x y -D. y x --5. 下列计算正确的是 ( ) A. n n m 1∙÷ B. b a b a 22=⎪⎭⎫ ⎝⎛ C. 2222b c a b c a +=⎪⎭⎫ ⎝⎛+ D. ()()()()()()()y x y x y x y x y x y x y x x y x y x y x x y x y x x 81888888288828164222+=-+-=-+--=-++-=---6. 化简x x -÷-11122的结果是 ( ) A. 12-x B. 123-x C. 12+x D. ()12+x7. 化简x xx x -+-112的结果是 ( )A. 1+xB. 1-xC. x -D. x8. 若092=-x ,则3442-+-x x x 的值为 ( )A. 1B. 625- C. 6251-或 D. 09. 下列方程1613122-=-++x x x ;();02≠--=-ab b ax a b x 413221=+--y x ;3323-+=-x x x ;x x=+5π中,关于x 的分式方程有 ( )A. 1个B. 2个C. 3个D. 4个10. 关于x 的分式方程121-=--x m x x 无解,则的值是 ( ) A. 1 B. 0 C. 2 D. -211. 下面是四位同学解方程过程1112=-+-xx x 中去分母的一步,其中正确的是( ) A. 12-=+x x B. 12=-x C. x x -=+12 D. 12-=-x x 12. 甲乙两班进行植树活动,根据提供信息可知:①甲班共植树90棵,乙班共植树129棵;②乙班的人数比甲班的人数多3人;③甲班每人植树数是乙班每人植树数的43。

《分式》检测题

《分式》检测题

第十六章《分式》检测题(总分:100分,时间:100分钟)一、填空1. 化简:=÷⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--43222)(·ab a b ba __________; 2. 对于分式392+-x x ,当x__________时,分式无意义;当x__________时,分式的值为0; 3. 分式xy x 713-,)(322x y x y-,y x 221-的最简公分母为________________; 4. 计算=-++--b c c b cb c 11222_______________; 5. 若21111D D D +=,则D=___________; 6. 某种微粒的直径约为4980纳米,用科学记数法表示为______________________米;(1纳米=10-9米,保留两个有效数字)7. 若31=+-x x ,则=+-22x x 。

8. 若分式732-x x 的值为负数,则x 的取值范围为_______________;9. 若已知132112-+=-++x x x B x A (其中A 、B 为常数),则A=__________,B=__________; 二、选择题:10. 下面各分式:4416121222222+-+---++-x x x x x y x y x x x x ,,,,其中最简分式有( )个。

A. 4B. 3C. 2D. 111、如果把分式x yxy+中的x 、y 同时扩大2倍,那么该分式的值( ) A .扩大为原来的2倍; B .缩小为原来的12; C .不变; D .缩小为原来的1412计算)21(22x x x -÷-的结果为 ( )A .xB .x1- C .x 1 D .x x 2--13不改变分式y x yx +-32352的值,把分子、分母各项系数化为整数,结果为 ( ) A .yx yx +-4152B .yx yx 3256+-C .yx yx 2456--D .yx yx 641512+-14下面各式,正确的是( )A. 326x x x =B. b ac b c a =++C. 1=++b a baD. 0=--b a ba15已知1=ab ,则⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-b b a a 11的值为( ) A. 22aB. 22bC. 22a b -D. 22b a -16在正数范围内定义一种运算☆,其规则为a ☆b =ba 11+,根据这个规则x ☆23)1(=+x 的解为( ) A .32=x B .1=x C .32-=x 或1 D .32=x 或1-17、一件工作,甲单独做a 小时完成,乙单独做b 小时完成,则甲、乙两人合作完成需要( )小时。

数学八年级上册《分式》单元检测题带答案

数学八年级上册《分式》单元检测题带答案
10.当 __________时,分式 有意义.
[答案]≠
[解析]
[分析]
根据分母不等于0计算即可.
详解]∵2A+3≠0,
∴A≠-1.5
[点睛]本题考查了分式有意义 条件,是基础题.
11.当x=________时,分式 的值为1.
[答案]
[解析]
由题意得:4x+3=x-5,解得:x= ,
当x= 时,分母x-5≠0,原分式有意义,

故选D.
[点睛]没有工作总量的可以设出工作总量,由工作时间=工作总量÷工作效率列式即可.
二.填空题(每小题3分,共15分)
9.扫描隧道显微镜发明后,世界上便诞生了一门新学科,就是“纳米技术”已知52个纳米的长度为0.000000052米,用科学记数法表示这个数为米;
[答案]
[解析]
绝对值<1的正数也可以利用科学记数法表示,一般形式为A×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.0.000 000 052=5.2×10﹣8
解得x=3,将检验当x=3时最简公分母 ,所以x=3是分式方程的增根,方程无解
点睛:解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解,解分式方程一定注意要验根,去分母时不要漏乘不含未知数的项﹣1.
五.列方程解应用题(7分)
23.列方程或方程组解应用题:
京通公交快速通道开通后,为响应市政府“绿色出行”的号召,家住通州新城的小王上班由自驾车改为乘坐公交车.已知小王家距上班地点18千米.他用乘公交车的方式平均每小时行驶的路程比他自用驾车的方式平均每小时行驶的路程的2倍还多9千米,他从家出发到达上班地点,乘公交车方式所用时间是自驾车方式所用时间的 .小王用自驾车方式上班平均每小时行驶多少千米?

专题03 分式与二次根式综合过关检测(原卷版)

专题03 分式与二次根式综合过关检测(原卷版)

专题03 分式与二次根式综合过关检测(考试时间:90分钟,试卷满分:100分)一、单选题(每小题2分,共24分)A .32x -=-B .()3212x x --=-C .()3212x x --=D .632x x --=-8.《九章算术》中记录的一道题译为白话文是:把一封信件用慢马送到1000里外的城市,需要的时间比规定时间多2天;若用快马送,所需的时间比规定时间少3天,已知快马的速度是慢马的2倍.小明认为规定的时间为7天,小亮认为规定的时间为8天,关于两个人的观点,下列说法正确的是( ) A .小明的观点正确B .小亮的观点正确C .两人的观点都不正确D .无法确定9.某农场开挖一条长480米的渠道,开工后每天比原计划多挖20米,结果提前4天完成任务,若设原计10.马站四季柚名扬天下,2023年第一季度某农户生产红心柚质量是白心柚的2倍,其中红心柚销售收入18000元,白心柚销售收入7800元,白心柚比红心柚价格每斤少3元.设白心柚价格x元/斤,则下列方程正11.某中学为使初三学生在中考体育测试中取得优异的成绩,在4月初安排全校体育教师对初三全体学生进行了一次模拟检测,在这一次检测中,甲组教师完成300个学生检测,乙组教师完成270个学生检测;已知甲组教师比乙组教师平均每分钟多检测4个学生,所用时间比乙组教师少用30分钟,求本次检测中甲、12.《四元玉鉴》是一部成就辉煌的数学名著,是宋元数学集大成者,也是我国古代水平最高的一部数学著作.该著作记载了“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽” .大意是:现请人代买一批椽,这批椽的总售价为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设6210文购买椽的数量为x二、填空题(每小题3分,共36)三、解答题(每题9分,共27分)26.学校组织学生到距离为15千米的公园参加露营活动,一部分同学骑自行车先走,40分钟后,其余同学乘坐大巴前往,结果他们同时到达.如果大巴的平均速度是自行车平均速度的3倍,那么自行车的平均速度是多少?27.在国庆节期间,学校举行了诗歌朗诵等系列活动,嘉嘉和淇淇负责为班级参赛学生购置纪念品.他们发现,一个笔记本比一支钢笔贵3元,用225元购买的笔记本数量与用180元购买的钢笔数量相同.(1)笔记本和钢笔的单价各多少元?(2)若给参赛的30名学生每人发放一个笔记本或一支钢笔作为活动纪念品,要使购买纪念品的总费用不超过380元,最多可以购买多少个笔记本?++2018。

分式全章检测题

分式全章检测题

分式全章检测题一、选择题:(36分)1、在式子:23123510,,,,,94678xy a b c x y x a x yπ+++中,分式的个数是( )A 、2B 、3C 、4D 、52、如果把分式10xx y+中的x 、y 都扩大10倍,则分式的值是( ) A 、扩大100倍B 、扩大10倍C 、不变D 、缩小到原来的1103、下列等式成立的是( ) A 、2(3)9--=- B 、21(3)9--=C 、24212)(a a =-D 、-70.0000000618=6.1810⨯4、李刚同学在黑板上做了四个简单的分式题:①1)3(0=-;②a a a 22=÷;③264a a)(a)(-=-÷-;④22m 44m =-.其中做对的题的个数有( )A.1个B.2个C.3个D.4个5、无论x 取什么数时,总是有意义的分式是( ) A .122+x x B.12+x x C.133+x x D.25xx - 6、|1x -|3x -的值为负值,则x 取值为( ) A 、x<1 B 、x<3 且x ≠1 C 、x<3D 、 x=37、下列等式的变形一定成立的是( ) A 、b bc a a c +=+ B 、 ()()x y b b x y a a +=+ C 、 22b ba a = D 、()()b b x y a a x y -=- 8、下列约分正确的是( ) A 、224326ba ba b a =B 、ba 1b a ba 22+=++ C 、3-x 39-x 3x 2=+ D 、 b a -b)(a 2+-=b -a 9、若02y 3x =-,则1yx+等于( )A.32 B.23 C.35 D.-3510、甲班与乙班同学到离校15千米的公园秋游,两班同时出发,甲班的速度是乙班同学速度的1.2倍,结果比乙班同学早到半小时,求两个班同学的速度各是多少?若设乙班同学的速度是x 千米/时,依题列方程( ) A.21x 151.2x 15-= B. 21x 151.2x 15+= C. 30x 151.2x 15-= D. 30x151.2x 15+= 11、若方程342(2)a x x x x =+--有增根,则增根可能为( ) A 、0 B 、2 C 、0或2 D 、112、关于x 的分式方程21x 1m =--的解为正数,则m 的取值范围( ) A 、m>-1 B 、m ≠1 C 、m>1且m ≠-1 D 、m>-1且m ≠1二、填空题:(18分)13、计算:=-321)(b a ; 14、分式,21x xyy 51,212-的最简公分母为 ; 15、()=-+⎪⎭⎫⎝⎛--+-231200841.16、 化简3123)(bc )(a ---= . (结果只含有正整数指数形式)17、不改变分式0.50.20.31x y ++的值,使分式的分子分母各项系数都化为整数,结果是 .18、若2222b a b ab a 则,a 4b b a ++-== .三、解答题:(66分) 19、(24分)计算: (1)-8a 2b 2÷(-4ab ) (2)-2224-3b)(a )b (5a ⋅(3)(3-π)0+(22007×22009-)×(-21)2- (4)1a 11a a 2+-+(5)2()11a a aa a a +÷--- (6).12a a 11)1a a (2+-÷--20、(6分)化简求值:23331111x x x x x -÷-+--,其中x=2.21、(10分)解分式方程: (1)12x 33x 2-=- (2) 1x 41x 21x 12-=-++22、(6分)已知A 、B 两地相距18千米,甲工程队要在A 、B 两地间铺设一条输送天然气的通道,乙工程队要在A 、B 两地间铺设一条输油管道,已知甲工程队每周比乙工程队少铺设1千米,甲工程队提前3周开工,结果两队同时完成任务,求甲乙两工程对每周各铺设多少千米. 24、(6分)为了方便广大游客到昆明参加游览“世博会”,铁道部临时增开了一列南宁——昆明的直达快车,已知南宁——昆明两地相距828km ,一列普通列车与一列直达快车都由南宁开往昆明,直达快车的平均速度是普通快车平均速度的1.5倍,直达快车比普通快车晚出发2h ,比普通快车早4h 到达昆明,求两车的平均速度?25、(6分)若m cba b c a a c b =+=+=+,求m 的值.26、(8分)(1)两个小组同时开始攀登一座450米的山,第一组的攀登速度是第二组的1.2倍,他们比第二组早15分到达顶峰.两个小组的攀登速度各是多少?(2)如果山高为h 米,第一组的攀登速度是第二组的a 倍,并比第二组早t 分到达峰顶,则两组的攀登速度各是多少?附加题:(10分)先化简,再求值:22243411211x x x x x x x ---÷+-++-,其中231x =+。

人教版初中数学八年级数学上册第五单元《分式》检测(答案解析)

人教版初中数学八年级数学上册第五单元《分式》检测(答案解析)

一、选择题1.计算:2x y x y x y xy-⋅-=( ) A .x B .y x C .y D .1x2.下列说法:①解分式方程一定会产生增根;②方程4102x -=+的根为2;③方程11224=-x x 的最简公分母为2(24)-x x ;④1111x x x+=+-是分式方程.其中正确的个数是( )A .1B .2C .3D .43.已知2340x x --=,则代数式24x x x --的值是( ) A .3 B .2 C .13 D .124.要使分式()()221x x x ++-有意义,x 的取值应满足( )A .1x ≠B .2x ≠-C .1x ≠或2x ≠-D .1x ≠且2x ≠- 5.下列说法正确的是( )A .分式242x x --的值为零,则x 的值为2± B .根据分式的基本性质,m n 可以变形为22mx nxC .分式32xy x y-中的,x y 都扩大3倍,分式的值不变 D .分式211x x ++是最简分式 6.化简2111313x x x x +⎫⎛-÷ ⎪---⎝⎭的结果是( ) A .2 B .23x - C .41x x -- D .21x - 7.已知1x =是分式方程2334ax a x +=-的解,则a 的值为( ) A .1- B .1 C .3 D .3-8.若数a 使关于x 的分式方程2311a x x+=--的解为非负数,且使关于y 的不等式组213202y y y a +⎧->⎪⎪⎨-⎪≤⎪⎩的解集为2y <-,则符合条件的所有整数a 的个数为( ) A .5 B .6 C .7 D .89.下列计算正确的个数为( )①555•2a a a =;②5510b b b +=;③1644n n ÷=;④247••y y y y =;⑤()()23•x x x --=-;⑥()7214a a --=;⑦()()234214•a a a -=;⑧()242a a a ÷-=-;⑨()03.141π-=.A .2B .3C .4D .510.下列计算正确的是( )A .1112a a a += B .2211()()a b b a +--=0 C .m n a -﹣m n a+=0 D .11a b b a +--=0 11.下列各式中,无论x 取何值,分式都有意义的是( ). A .132x - B .213x + C .231x x + D .21x x + 12.若分式2132x x x --+的值为0,则x 的值为( ) A .1- B .0C .1D .±1 二、填空题13.我们可以将一些只含有一个字母且分子、分母的次数都为一次的分式变形,转化为整数与新的分式的和的形式,其中新的分式的分子中不含字母,如:3(1)441111a a a a a +-+==+---,212(1)332111a a a a a -+-==-+++.参考上面的方法,解决下列问题:(1)将1a a +变形为满足以上结果要求的形式:1a a =+_________; (2)①将321a a +-变形为满足以上结果要求的形式:321a a +=-_________;②若321a a +-为正整数,且a 也为正整数,则a 的值为__________. 14.若分式方程13322a x x x--=--有增根,则a 的值是________. 15.如图是一个数值转换器,每次输入3个不为零的数,经转换器转换后输出3个新数,规律如下:当输入数分别为x ,y ,z 时,对应输出的新数依次为11x y z ++,11y z x ++,11z x y++.例如,输入1,2,3,则输出65,34,23.那么当输出的新数为13,14,15时,输入的3个数依次为____.16.如果实数x、y满足方程组30233x yx y+=⎧⎨+=⎩,求代数式(xyx y++2)÷1x y=+_____.17.计算:22311x x x-=+-____________.18.已知方程3a1aa44a--=--,且关于x的不等式组x ax b>⎧⎪⎨⎪≤⎩只有4个整数解,那么b的取值范围是____________.19.分式2(1)(3)32m mm m---+的值为0,则m=______________.20.计算:()30120202-⎛⎫---=⎪⎝⎭______.三、解答题21.(1)先化简,再求值:22228424m mm m m m+-⎛⎫+÷⎪--⎝⎭,其中m满足2430m m++=.(2)如图,在等边ABC中,D.E分别在边BC、AC上,且//DE AB,过点E作EF DE⊥交BC的延长线于点F.若3cmCD=,求DF的长.22.武汉某道路工程项目,若由甲、乙两工程队合作20天可完工;若甲工程队先单独施工40天,再由乙工程队单独施工10天也可完工.(1)求甲、乙两工程队单独完成此项工程各需要多少天?(2)如果甲、乙工程队合作施工时对道路交通有影响,独施工时对交通无影响且要求整个工期不能超过24天,问如何安排两队施工,对道路交通的影响会最小?23.解方程:(1)3311xx x+=--(2)23425525x x x +=-+- 24.解答下列各题: (1)计算:()()()2233221x x x x x -⋅++--+(2)计算:()()()33323452232183a b cac a b a c -⋅÷-÷ (3)解分式方程:11222x x x++=-- 25.列方程解应用题为了提高学生的身体素质,落实教育部门“在校学生每天体育锻炼时间不少于1小时”的文件精神,某校开展了“阳光体育天天跑活动”,初中男生、女生分别进行1000米和800米的计时跑步.在一次计时跑步中,某班一名女生和一名男生的平均速度相同,且这名女生跑完800米所用时间比这名男生跑完1000米所用时间少56秒,求这名女生跑完800米所用时间是多少秒.26.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯. 将以上三个等式左、右两边分别相加得:1111111131122334223344++=-+-+-=⨯⨯⨯ (1)若n 为正整数,猜想并填空:1(1)n n =+______. (2)计算111111223344520202021+++++⨯⨯⨯⨯⨯的结果为______. (3)解分式方程:11122(2)(3)(3)(4)1x x x x x x ++=------.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据分式乘法计算法则解答.【详解】解:2x y x y x y xy-⋅-=x ,故选:A .【点睛】此题考查分式的乘法计算法则,熟记计算法则是解题的关键.2.B解析:B【分析】根据分式方程的定义、解分式方程、增根的概念及最简公分母的定义解答.【详解】解:分式方程不一定会产生增根,故①错误; 方程4102x -=+的根为x=2,故②正确; 方程11224=-x x 的最简公分母为2x(x-2),故③错误; 1111x x x+=+-是分式方程,故④正确; 故选:B .【点睛】 此题考查分式方程的定义、解分式方程、增根的概念及最简公分母的定义,熟记各定义及正确解方程是解题的关键.3.D解析:D【分析】利用等式的性质对2340x x --=变形可得43x x-=,利用分式的性质对24x x x --变形可得141x x--,从而代入求值即可. 【详解】由条件2340x x --=可知,0x ≠, ∴430x x --=,即:43x x-=, 根据分式的性质得:21144411x x x x x x x==------, 将43x x-=代入上式得:原式11312==-, 故选:D .【点睛】 本题主要考查分式的化简求值,熟练掌握分式的运算是解题的关键.4.D解析:D【分析】根据分式有意义的条件得出x +2≠0且x ﹣1≠0,计算即可.【详解】解:要使分式()()221x x x ++-有意义,必须满足x +2≠0且x ﹣1≠0,解得:x ≠﹣2且x ≠1,故选:D .【点睛】本题考查了分式有意义的条件,能根据分式有意义的条件得出x +2≠0且x ﹣1≠0是解此题的关键.5.D解析:D【分析】直接利用分式的值为零的条件以及分式的基本性质、最简分式的定义分别分析得出答案.【详解】A 、分式242x x --的值为零,则x 的值为−2,故此选项错误; B 、根据分式的基本性质,等式m n =22mx nx(x≠0),故此选项错误; C 、分式32xy x y-中的x ,y 都扩大3倍,分式的值扩大为3倍,故此选项错误; D 、分式211x x ++是最简分式,正确; 故选:D .【点睛】 此题主要考查了分式的值为零的条件以及分式的基本性质、最简分式的定义,正确掌握相关定义和性质是解题关键.6.D解析:D【分析】利用乘法分配律计算即可【详解】解:原式=11(3)(3)3(1)(1)x x x x x x +⋅--⋅--+-=1-31x x --=21x -, 故选D .【点睛】本题主要考查了分式的混合运算,解题的关键是熟练掌握分式的混合运算顺序和运算法则.7.D解析:D【分析】先将分式方程化为整式方程,再将1x =代入求解即可.【详解】解:原式化简为81233ax a x +=-,将1x =代入得81233a a +=-解得-3a =.当a =-3时a -x=-3-1=-4≠0∴a =-3故选则:D .【点睛】本题考查分式方程的解.会将分式方程化为整式方程,解题关键将方程的解代入转化为a 的方程.8.C解析:C【分析】 根据分式方程2311a x x+=--的解为非负数求得a>5,根据不等式组的解集为2y <-,求得2a ≥-,利用分式的分母不等于0得到x ≠1,即可得到a 的取值范围25a -≤≤,且x ≠1,根据整数的意义得到a 的整数值.【详解】 解分式方程2311a x x +=--,得53a x -=, ∵分式方程2311a x x +=--的解为非负数, ∴503a -≥, 解得a ≤5,∵关于y 的不等式组213202y y y a +⎧->⎪⎪⎨-⎪≤⎪⎩,得2y y a <-⎧⎨≤⎩, ∵不等式组的解集为2y <-,∴2a ≥-,∵x-1≠0,∴x ≠1,∴25a -≤≤,且x ≠1,∴整数a 为:-2、-1、0、1、3、4、5,共有7个,故选:C .【点睛】此题考查根据分式方程的解的情况求未知数的取值范围,根据不等式组的解集情况求未知数的取值范围,确定不等式的整数解,正确理解题意并计算是解题的关键.9.C解析:C【分析】根据同底数幂的乘法底数不变指数相加,同底数幂的除法底数不变指数相减,零指数幂及积的乘方可得答案.【详解】解:①5510•a a a =,故①错误;②5552b b b +=,故②错误;③2164444n n n n n ÷=÷=,故③错误;④247••y y y y =,故④正确;⑤()()23•x x x --=-,故⑤正确;⑥()7214a a --=,故⑥正确; ⑦()()23428614•a a a a a -=-⋅=-,故⑦错误; ⑧()242a a a ÷-=,故⑧错误;⑨()03.141π-=,故⑨正确,正确的有4个.故选:C .【点睛】本题考查了同底数幂的乘法,同底数幂的除法,零指数幂及积的乘方,解题的关键是灵活运用运算法则. 10.D解析:D【分析】直接根据分母不变,分子相加运算出结果即可.【详解】解:A 、112a a a+=,故错误; B 、原式=2211()()a b a b +--=22()a b -,故错误;C 、原式=m n m n a ---=﹣2n a ,故错误; D 、原式=11a b a b---=0,故正确. 故选D .【点睛】 本题主要考查了分式的加减法,解题的关键是掌握运算法则,此题基础题,比较简单. 11.B解析:B【分析】根据分式有意义的条件:分母不等于0确定答案.【详解】A 、若3x-2≠0,即23x ≠时分式有意义,故该选项不符合题意; B 、∵230x +>,∴无论x 取何值,分式都有意义,故该项符合题意; C 、∵20x ≥,∴x ≠0时分式有意义,故该选项不符合题意;D 、若210x +≠即12x ≠-时分式有意义,故该选项不符合题意; 故选:B .【点睛】此题考查分式有意义的的条件:分母不等于0. 12.A解析:A【分析】根据分式值为零的条件列出方程和不等式,解方程和不等式得到答案.【详解】由题意得:|x|−1=0,x 2−3x+2≠0,解得,x =-1,故选:A .【点睛】本题考查的是分式为零的条件,掌握分式值为零的条件是分子等于零且分母不等于零是解题的关键.二、填空题13.2或6【分析】(1)根据材料中分式转化变形的方法即可把变形为满足要求的形式;(2)①根据材料中分式转化变形的方法即可把变形为满足要求的形式;②令可先求出a 与x 是整数时的对应值再从所得结果中找出符合条 解析:111a -+ 531a +- 2或6【分析】(1)根据材料中分式转化变形的方法,即可把1a a +变形为满足要求的形式; (2)①根据材料中分式转化变形的方法,即可把321a a +-变形为满足要求的形式;②令325311a x a a +==+--,可先求出a 与x 是整数时的对应值,再从所得结果中找出符合条件的a ,x 的值,即可得出结论.【详解】 解:(1)1111111a a a a a +-==-+++; 故答案为:111a -+; (2)①323(1)553111a a a a a +-+==+---; 故答案为:531a +-; ②∵323(1)553111a a a a a +-+==+--- 令531x a =+-, 当x , a 都为整数时,11a -=±或15a -=±,解得a =2或a =0或a =6或a =-4,当a =2时,x =8;当a =0时,x =-2;当a =6时,x =4;当a =-4时,x =2;∵x , a 都为正整数,∴符合条件的a 的值为2或6.故答案为:2或6.【点睛】此题考查了分式的加减及求分式的值等知识,理解题意并熟练掌握分式的基本性质及运算法则是解本题的关键.14.【分析】分式方程去分母转化为整式方程由分式方程有增根求出x 的值代入整式方程计算即可求出a 的值【详解】去分母得:1-3x+6=-3a+x 由分式方程有增根得到x−2=0即x =2把x =2代入得:1-6+6 解析:13【分析】分式方程去分母转化为整式方程,由分式方程有增根求出x 的值,代入整式方程计算即可求出a 的值.【详解】去分母得:1-3x+6=-3a+x ,由分式方程有增根,得到x−2=0,即x =2,把x =2代入得:1-6+6=-3a+2,解得:a =13, 故答案为:13. 【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.15.11【分析】根据转换器转换后输出3个新数得到关于xyz 的方程组解之即可【详解】解:根据题意得:则3(x+y+z )=xy+zx①4(x+y+z )=xy+yz②5(x+y+z )=yz+zx③①+②+③得 解析:113,112,11 【分析】 根据转换器转换后输出3个新数得到关于x 、y 、z 的方程组,解之即可【详解】解:根据题意得:111=3++x y z ,111=4++y z x ,111=5++z x y , 则3(x+y+z )=xy+zx①,4(x+y+z )=xy+yz②,5(x+y+z )=yz+zx③,①+②+③,得6(x+y+z )=xy+yz+zx ,④④﹣①,得3(x+y+z )=yz⑤,④﹣②,得2(x+y+z )=zx⑥,④﹣③,得x+y+z=xy⑦, ∴23x y =,z=2y , 把23x y =,z=2y 代入⑦,得y (2y ﹣11)=0, ∴y=112(由题意知y≠0), ∴x=113,z=11, ∴x=113,y=112,z=11【点睛】本题考查了分式的混合运算、方程组的计算.解题关键是求出6(x+y+z )=xy+yz+zx ,进而用y 分别表示x 、z .16.1【分析】先进行分式计算再解方程组代入即可求解【详解】解:原式==xy+2x+2y 解方程组得:当x=3y=﹣1时原式=﹣3+6﹣2=1故答案为:1【点睛】此题考查了分式的化简求值熟练进行分式化简解出解析:1【分析】先进行分式计算,再解方程组,代入即可求解.【详解】解:原式=()22xy x y x y x y++⋅++=xy +2x +2y , 解方程组30233x y x y +=⎧⎨+=⎩得:31x y =⎧⎨=-⎩, 当x =3,y =﹣1时,原式=﹣3+6﹣2=1.故答案为:1.【点睛】此题考查了分式的化简求值,熟练进行分式化简,解出二元一次方程组是解本题的关键. 17.【分析】根据通分可化成同分母分式根据同分母分式的加减可得答案【详解】故答案为:【点睛】本题考查了分式加减运算的法则熟记法则是解题的关键 解析:323x x x-- 【分析】根据通分,可化成同分母分式,根据同分母分式的加减,可得答案.【详解】()()()()()()()3313323111111x x x x x x x x x x x x x x x x-----==+-+-+--. 故答案为:323x x x--. 【点睛】本题考查了分式加减运算的法则,熟记法则是解题的关键. 18.【分析】分式方程去分母转化为整式方程求出整式方程的解得到a 的值经检验确定出分式方程的解根据已知不等式组只有4个整数解即可确定出b 的范围【详解】解:分式方程去分母得:3﹣a ﹣a2+4a =﹣1整理得:a解析:34b ≤<【分析】分式方程去分母转化为整式方程,求出整式方程的解得到a 的值,经检验确定出分式方程的解,根据已知不等式组只有4个整数解,即可确定出b 的范围.【详解】解:分式方程去分母得:3﹣a ﹣a 2+4a =﹣1,整理,得:a 2﹣3a ﹣4=0,即(a ﹣4)(a +1)=0,解得:a =4或a =﹣1,经检验a =4是增根,故分式方程的解为a =﹣1,∴原不等式组的解集为﹣1<x ≤b ,∵不等式组只有4个整数解,∴3≤b <4,故答案为:3≤b <4.【点睛】此题考查了分式方程的解,以及一元一次不等式组的整数解,弄清题意是解本题的关键. 19.3【分析】要使分式的值为0必须分式分子的值为0并且分母的值不为0【详解】解:要使分式由分子解得:或3;而时分母;当时分母分式没有意义所以的值为3故答案为:3【点睛】本题主要考查了分式的值为零的条件要 解析:3【分析】要使分式的值为0,必须分式分子的值为0并且分母的值不为0.【详解】解:要使分式由分子(1)(3)0m m --=.解得:1m =或3;而3m =时,分母23220m m -+=≠;当1m =时分母2321320m m -+=-+=,分式没有意义.所以m 的值为3.故答案为:3.【点睛】本题主要考查了分式的值为零的条件,要注意分母的值一定不能为0,分母的值是0时分式没有意义.20.9【分析】根据零指数幂与负整数指数幂的运算法则进行求解【详解】故答案为:9【点睛】本题考查了零指数幂与负整数指数幂熟练掌握其运算法则是解题的关键解析:9【分析】根据零指数幂与负整数指数幂的运算法则进行求解.【详解】()30120201(8)1892-⎛⎫---=--=+= ⎪⎝⎭. 故答案为:9.【点睛】 本题考查了零指数幂与负整数指数幂,熟练掌握其运算法则是解题的关键.三、解答题21.(1)()212m +,1;(2)6cm 【分析】(1)原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,将已知方程变形后代入计算即可求出值(2) 先求得CD =DE ,然后由Rt △DEF 中30°所对的边等于斜边的一半进行求解即可.【详解】(1)解:原式()2(2)28(2)(2)(2)m m m m m m m m +-⎛⎫+=+÷⎪--+⎝⎭ ()()()()()()()()()()()2222822222222212m m m m m m m m m m m m m m m m +-=⨯-++--=⨯+-+-=+ 2430m m ++=∴22(2)44341m m m +=++=-+=∴原式1=;(2)∵ABC 是等边三角形,∴60B A ︒∠=∠=,∵//DE AB ,∴60EDC B ︒∠=∠=,60DEC A ︒∠=∠=,∴EDC △是等边三角形.∵EF DE ⊥,∴90DEF ︒∠=,∴9030F EDC ︒︒∠=-∠=;∴26cm DF DE ==.【点睛】本题有两个问题第(1)题考查了分式的化简求值,以及分式的乘除法,熟练掌握运算法则是解本题的关键. 第(2)题主要考查的是等边三角形的性质和30°所对的边等于斜边的一半,熟练掌握相关知识是解题的关键.22.(1)甲单独做需60天,乙单独做需30天;(2)应安排甲乙合作12天,然后再由乙队单独施工12天,对道路交通影响了会最小.【分析】(1)设甲单独做需x 天,则甲的工作效率为1x ,乙的工作效率为1120x-,根据“若甲工程队先单独施工40天,再由乙工程队单独施工10天也可完成”,即可得出关于x 的分式方程,解之并检验后即可得出结论;(2)分两种情况:①若剩下工程甲单独做还需(603m -)天,②若剩下工程乙单独做还需(30 1.5)m -天,列出不等式,即可求解.【详解】(1)设甲单独做需x 天,则甲的工作效率为1x ,乙的工作效率为1120x-, 401110120x x ⎛⎫∴+-= ⎪⎝⎭,解得:60x =, 经检验60x =为原方程的解,∴甲单独做需60天,乙单独做需30天;(2)设甲、乙合作了m 天①若剩下工程甲单独做还需1120603160m m -=- 60324m m ∴+-≤,解得:18m ≥;②若剩下工程乙单独做还需112030 1.5130m m -=- 30 1.524m m ∴+-≤,解得:12m ≥由①②可知m 的最小值为12,所以应安排甲乙合作12天,然后再由乙队单独施工12天,对道路交通影响了会最小.【点睛】本题主要考查分式的实际应用以及一元一次不等的实际应用,找到等量关系和不等量关系,列出方程和不等式,是解题的关键.23.(1)3x =;(2)1x =【分析】(1)先去分母,再解整式方程求解,检验解是否为原方程的解即可;(2)先去分母,再解整式方程求解,检验解是否为原方程的解即可.【详解】解:(1)方程两边同乘1x -,得33(1)x x +=-,解得3x =,检验:当3x =时10x -≠,∴原分式方程的解为3x =;(2)方程两边同乘(5)(5)x x -+,得3(5)4(5)2x x ++-=,解得1x =,检验:当1x =时,(5)(5)0x x -+≠,∴原分式方程的解为1x =.【点睛】此题考查解分式方程,掌握解方程的步骤:先去分母,再解整式方程求解,检验解是否为原方程的解.24.(1)5x -;(2)19b ;(3)23x =【分析】(1)首先利用同底数幂的乘法法则、平方差公式、完全平方公式计算,然后合并同类项求出答案;(2)先算积的乘方、幂的乘方,再从左到右计算同底数幂的乘法除法求出答案;(3)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:(1)()()()2233221x x x x x -⋅++--+=223421x x x x +----=5x -;(2)()()()33323452232183a b cac a b a c -⋅÷-÷ =()()963345662721827a b c ac a b a c -⋅÷-÷=()()10664566541827a b c a b a c -÷-÷=()6666327a bc a c ÷ =19b ; (3)解分式方程:11222x x x++=-- 去分母得:1+2(x-2)=-(1+x ),去括号合并得,2x-3=-1-x ,移项合并得,3x=2,解得:23x =, 经检验23x =是分式方程的解. 【点睛】 此题主要考查了整式的混合运算,正确掌握运算法则是解题关键.也考查了解分式方程,去分母转化为整式方程是关键.25.这名女生跑完800米所用时间是224秒【分析】设这名女生跑完800米所用时间x 秒,由题意可得关于x 的分式方程,解分式方程并经过检验即可得到问题答案.【详解】解:设这名女生跑完800米所用时间x 秒,则这名男生跑完1000米所用时间(56)x +秒, 根据题意,得800100056x x =+. 解得:224=x .经检验,224=x 是所列方程的解,并且符合实际问题的意义.答:这名女生跑完800米所用时间是224秒.【点睛】本题考查分式方程的应用,根据题目中的数量关系正确地列出分式方程并求解是解题关键.26.(1)111n n -+;(2)20202021;(3)7x =. 【分析】(1)观察已知等式可得:连续整数乘积的倒数等于较小数的倒数与较大数的倒数的差,据此可得111(1)1n n n n =-++; (2)利用所得规律列出算式1111111223320202021-+-+++-,再两两相消即可得112021-,计算后可得结果; (3)由所得规律对分式方程进行整理,可变形为111112232431x x x x x x +-+-=------,最终化简为1241x x =--,求解此方程即可. 【详解】 解:(1)∵111122=-⨯,1112323=-⨯,1113434=-⨯, ∴当n 为正整数时,111(1)1n n n n =-++.故答案为:111n n -+. (2)111111223344520202021+++++⨯⨯⨯⨯⨯ 111111112233420202021=-+-+-+- 112021=- 20202021=. 故答案为:20202021. (3)原方程变形为:111112232431x x x x x x +-+-=------, ∴1241x x =--, 去分母,得:12(4)x x -=-,解得7x =,经检验,7x =是原方程的解.【点睛】本题考查了数字的变化规律及解分式方程,解题的关键是理解题意,找出数字的变化规律,并准确运用所得规律求解分式方程.。

八年级数学上第1章分式检测题及答案解析

八年级数学上第1章分式检测题及答案解析

第1章 分式检测题(本检测题满分:100分;时间:90分钟)一、选择题(每小题3分;共24分)1.下列各式中;分式的个数为( )3x y -;21ax -;;3a b -;12x y +;12x y +;2123x x =-+. A.5 B.4 C.3 D.22. (2015·浙江丽水中考)分式x--11可变形为( ) A. 11--x B. x +11 C. x +-11 D.11-x3.下列分式是最简分式的是( ) A.11m m -- B.3xy y xy - C.22x y x y -+ D.6132mm- 4.将分式2x x y+中的x 、y 的值同时扩大为原来的2倍;则分式的值( )A.扩大为原来的2倍B.缩小到原来的21C.保持不变D.无法确定 5.若分式112+-x x 的值为零;那么的值为( )A.或B.C.D.6. (2015·江西中考)下列运算正确的是( ) A. B.--3C.+=-1D.=-1. 7.为了实现街巷硬化工程高质量“全覆盖”;我省今年1~4月公路建设累计投资92.7亿元; 该数据用科学记数法可表示为( )A. B. C. D. 8.运动会上;初二(3)班啦啦队买了两种价格的雪糕;其中甲种雪糕共花费40元;乙种雪糕共花费30元;甲种雪糕比乙种雪糕多20根.乙种雪糕价格是甲种雪糕价格的1.5倍;若设甲种雪糕的价格为元;根据题意可列方程为( )A.4030201.5x x -= B.4030201.5x x -= C.3040201.5x x -= D. 3040201.5x x -= 二、填空题(每小题3分;共24分)9. (2015·上海中考)如果分式23xx +有意义;那么x 的取值范围是__________.10. 某红外线遥控器发出的红外线波长为0.000 000 94 m ;用科学记数法表示这个数 是 .11.计算:2223362cab b c b a ÷= .12.分式2x y xy +;23y x;26x y xy -的最简公分母为 . 13.已知;则222n m m n m n n m m ---++________.14. 若解分式方程441+=+-x mx x 产生增根;则_______.15. (2015·湖北黄冈中考)计算÷的结果是 .16.某人上山的速度为;按原路下山的速度为;则此人上、下山的平均速度为_________.三、解答题(共52分)17.(12分)计算与化简: (1);(2)222x yy x⋅; (3)22211444a a a a a --÷-+-; 11. c b a 323 解析:.36262322223322233cb a abc b c b a c ab b c b a =⋅=÷ 12.13.79 解析:因为;所以n m 34=; 所以()()()()()()()()n m n m m n m n m n m n n m n m n m m n m m n m n n m m -+--+++-+-=---++2222()()()().799734342222222==⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+=-+=-+-++-=n n n n n n n n m n m n n m n m m n mn mn m14. 解析:方程两边都乘;得又由题意知分式方程的增根为 ;把增根代入方程;得.15. 解析:÷=÷=·=.16.b a ab +2 解析:设上山的路程为千米;则此人上山所用的时间为ax小时;此人下山所用的时间为bx小时;则此人上、下山的平均速度为b a abab b a x x bx a x x +=+=+2)(22.17.解:(1)原式(2)原式4y. (3)原式()()()()()2221112a a a a a a +--⋅+--()()212a a a +=+-.(4)原式()()()12222xy x y x y y x y x x y +-⋅⋅=-+--.18.解:()().3336932222b a ab a b a a b ab a ab a -=--=+--当;时;原式.49162498212483==---=-b a a 19. 解:(1)方程两边都乘;得.解这个一元一次方程;得. 检验:把代入原方程;左边右边. 所以;是原方程的根. (2)方程两边都乘;得.整理;得.解这个一元一次方程;得. 检验可知;当时;. 所以;是原方程的增根.20.解:原式()222112222x x x xx ⎡⎤-÷⎢⎥---⎢⎥⎣⎦ ()()22221212222x x x x x x x --⋅-⋅-- 1224x x --224x --1122x x=-=--. 当时;原式1123=-- 21.解:(1) A =.(2)不等式组的解集为:1≤x <3. ∵ x 为整数;∴ x =1或2. ∵ A =∴ x ≠1.当x =2时;A ==1. X|k | B| 1 . c |O |22.解:设第一批盒装花每盒的进价是x 元;则2×=;解得x=30.经检验;x=30是原方程的根.答:第一批盒装花每盒的进价是30元.23.解:设甲工厂每天加工件产品;则乙工厂每天加工件产品;根据题意;得12001200101.5x x-=,解得.经检验;是原方程的根;所以.答:甲工厂每天加工40件产品;乙工厂每天加工60件产品.24.分析:(1)设李明步行的速度为米/分;则骑自行车的速度为3米/分;利用等量关系:李明步行回家时间=李明骑自行车到校时间20列方程求解.(2)先求李明往返学校的总用时;再与42分钟相比较进行判断.解:(1)设李明步行的速度为米/分;则骑自行车的速度为3米/分.根据题意;得21002100203x x=+.解得=70.经检验=70是原方程的解.答:李明步行的速度是70米/分.(2)根据题意;得2100210014142 70370++=<⨯;∴李明能在联欢会开始前赶到学校.点拨:列方程解应用题的关键是根据题意确定等量关系;注意解分式方程一定要检验.。

分式有关练习题

分式有关练习题

分式有关练习题一、选择题1.下列分数中,质数是:A. 1/4B. 2/3C. 5/6D. 9/82. 下列分式的值最大的是:A. 1/2B. 2/3C. 3/4D. 4/53. 下列各分式中,正确的是:A. 3/5 < 4/7B. 1/4 > 2/7C. 5/6 = 4/7D. 3/8 = 5/64. 分数5/8的倒数是:A. 5/8B. 8/5C. 3/8D. 8/35. 分数9/16的约分结果是:A. 3/4B. 2/3C. 6/9D. 9/16二、填空题1. 将3/4化成分数的百分比形式,填写分数部分和百分号部分分别为____和____。

答:3/4 和 752. 将0.6化成分数形式,填写分子和分母分别为____和____。

答:3 和 53. 2/5除以1/3的结果为____。

答:6/5 或 1 1/54. 将3 1/4化成假分数形式,填写分子和分母分别为____和____。

答:13 和 45. 2/3乘以2/5的结果为____。

答:4/15三、计算题1. 计算:2/3 + 1/4 = ____。

答:11/122. 计算:3/4 - 1/3 = ____。

答:5/123. 计算:3/5 × 2/3 = ____。

答:2/54. 计算:1/2 ÷ 2/3 = ____。

答:3/45. 计算:5/8 + 3/4 - 1/2 = ____。

答:13/8 或 1 5/8四、应用题1. 爸爸煮了8只鸡蛋,妈妈说要给每个孩子分三分之一个鸡蛋,家里一共有4个孩子。

问每个孩子可以分到几个鸡蛋?答:每个孩子可以分到2个鸡蛋。

2. 小明学习了1/2小时,又学习了3/4小时,他一共学习了多长时间?答:小明学习了1 1/4小时。

3. 一桶果汁有5/6升,小明喝了2/3升后,还剩下多少升?答:还剩下1/6升。

4. 小华家种了9/12亩的水稻,小明家种了5/6亩的水稻,他们家一共种了多少亩的水稻?答:他们家一共种了11/12亩的水稻。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1章 分式检测题
(本检测题满分:100分,时间:90分钟)
一、选择题(每小题3分,共24分)
1.下列各式中,分式的个数为( ) 3x y -,21a x -,,3a b -,12x y +,12x y +,2123
x x =-+. A.5 B.4 C.3 D.2
2.下列各式正确的是( )
A.c c a b a b =----
B.c c a b a b
=---+ C.c c a b a b =--++ D.c c a b a b -=----
3.下列分式是最简分式的是( )
A.11m m --
B.3xy y xy -
C.22x y x y -+
D.6132m m
- 4.将分式2
x x y
+中的x 、y 的值同时扩大2倍,则分式的值( ) A.扩大为原来的2倍 B.缩小到原来的2
1 C.保持不变 D.无法确定
5.若分式112+-x x 的值为零,那么的值为( ) A.
或 B. C. D.
6. 下列计算,正确的是( )
A .1221-=÷-
B .x x x 214243=
÷-- C.6326)2(x x =--- D.222743x
x x =+-- 7.为了实现街巷硬化工程高质量“全覆盖”,我省今年1~4月公路建设累计投资92.7亿元,
该数据用科学记数法可表示为( )
A. B. C. D.
8.运动会上,初二(3)班啦啦队买了两种价格的雪糕,其中甲种雪糕共花费40元,乙种雪糕共花费30元,甲种雪糕比乙种雪糕多20根.乙种雪糕价格是甲种雪糕价格的1.5倍,若设甲种雪糕的价格为元,根据题意可列方程为( ) A.4030201.5x x -= B.4030201.5x x -= C.3040201.5x x -= D. 3040201.5x x
-= 二、填空题(每小题3分,共24分)
9.若分式
33x x --的值为零,则x = . 10. 某红外线遥控器发出的红外线波长为0.000 000 94 m ,用科学记数法表示这个数 是 .
11.计算:22
23362c
ab b c b a ÷= . 12.分式
2x y xy +,23y x ,26x y xy -的最简公分母为 . 13.已知,则222
n m m n m n n m m ---++________.
14. 若解分式方程441+=+-x m x x 产生增根,则_______.
15.当________时,分式1
3-x 无意义;当______时,分式392--x x 的值为. 16.某人上山的速度为
,按原路下山的速度为,则此人上、下山的平均速度为_________
. 三、解答题(共52分)
17.(12分)计算与化简:
(1)

(2)222x y y x ⋅; (3)22211444
a a a a a --÷-+-; (4)()()
222142y x x y xy x y x +-÷⋅-. 18.(4分)先化简,再求值:222693b
ab a ab a +--,其中,. 19.(6分)解下列分式方程:
(1)730100+=x x ;(2)21212339
x x x -=+--. 20.(4分)当
时,求2221122442x x x x x x ⎛⎫-÷ ⎪--+-⎝⎭的值. 21.(5分)已知2321302a b a b ⎛⎫-+++= ⎪⎝⎭,求代数式221b a a a a b a b a b ⎛⎫⎛⎫÷-⋅- ⎪ ⎪+--⎝⎭⎝⎭
的值.
22.(6分)甲、乙两地相距,骑自行车从甲地到乙地,出发3小时20分钟后,骑摩托车也从甲地去乙地.已知的速度是的速度的3倍,结果两人同时到达乙地.求两人的速度.
23.(7分)为了提高产品的附加值,某公司计划将研发生产的件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两个工厂了解情况,获得如下信息:
信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用天;
信息二:乙工厂每天加工的数量是甲工厂每天加工数量的倍.
根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品.
24.(8分)李明到离家2.1千米的学校参加初三联欢会,到学校时发现演出道
具还放在家中,此时距联欢会开始还有42分钟,于是他立即步行(匀速)回家,在家拿道具用了1分钟,然后立即骑自行车(匀速)返回学校.已知李明骑自行车到学校比他从学校步行到家用时少20分钟,且骑自行车的速度是步行速度的3倍.
(1)李明步行的速度(单位:米/分)是多少?
(2)李明能否在联欢会开始前赶到学校?。

相关文档
最新文档