第4章《图形的初步认识》易错题集(01):4.1+生活中的立体图形

合集下载

4.1生活中的立体图形分析

4.1生活中的立体图形分析

第4章图形的初步认识4.1生活中的立体图形【基本目标】1.能从现实背景中抽象出立体图形;2.认识现实背景中的圆柱、圆锥、正方体、长方体、棱柱、球;3.认识立体图形中的圆柱、圆锥、正方体、长方体、棱柱、球,并能用自己的语言描述它们得到某种特征.【教学重点】1.感受图形世界的丰富多彩;2.认识现实背景中的圆柱、圆锥、正方体、长方体、棱柱、球.【教学难点】认识立体图形中的圆柱、圆锥、正方体、长方体、棱柱、球,并能用自己的语言描述它们得到某种特征.一、创设情境,导入新课1.一幅幅精美的图片带领同学们一起神游大地,去领略祖国的美景.出示图片:北京天坛、故宫、鸟巢、水立方.千姿百态的建筑物美化了我们的生活.展示了建筑师的聪明才智,在这些实物中有没有大家熟悉的立体图形?2.学生观察图片回答.【教学说明】通过欣赏图片导入本节课的学习,创设愉悦、宽松的氛围,让学生在完全放松的情绪下感知我们生活中处处存在着数学知识,产生学习立体图形的兴趣.二、合作探究,探索新知1.我们生活中的很多物体都是立体的,而这些物体中有一部分是较有规则的,如:【教学说明】让学生识别常见的具体图形,从中抽象出立体图形,经历从具体到抽象的思维过程,培养学生抽象思维的能力,使学生研究问题的意识由具体到抽象转变.2.常见的立体图形如下图:在上面的图形中:(1)图1所表示的立体图形是柱体(圆柱体);(2)图2所表示的立体图形是柱体(棱柱体);(3)图3所表示的立体图形是锥体(圆锥体);(4)图4所表示的立体图形是球体;(5)图5所表示的立体图形是锥体(棱锥体).【教学说明】教师及时对常见的立体图形进行归纳总结,并让学生叙述它们的特征,找到它们的相同点和不同点,为后面的分类奠定基础.3.多面体的概念观察上图2、5与图1、3、4,它们有什么区别?小结:如上图2、5,围成立体图形的每一个面都是平的,像这样的立体图形又称为多面体.【教学说明】让学生对比找到不同点,教师归纳总结多面体的概念.4.归纳总结:你能将这些立体图形进行分类吗?简单立体图形分类:柱体圆柱棱柱立体图形球体圆锥锥体棱锥【教学说明】根据上面图形的不同特征,进行分类,使学生掌握各种立体图形的特征,形成一定的知识体系.5.另外,棱柱有三棱柱、四棱柱、五棱柱、六棱柱……棱锥有三棱锥、四棱锥、五棱锥、六棱锥……【教学说明】让学生观察后总结棱柱和棱锥的特征,按照特征找出规律.三、练习反馈,巩固提高1.在下面四个物体中,最接近圆柱的是()2.下面图形中上面是一些具体的物体,下面是一些立体图形,试找出与上面立体图形对应的实物.3.说出下列立体图形的名称:【教学说明】学生独立完成,在解答时,要结合具体的图形进行,注意图形的特征.对于叙述不准确的地方,教师要及时予以纠正和强调. 【答案】1.C3.四棱锥、圆柱体、三棱柱、三棱锥、圆锥四、师生互动,课堂小结1.简单立体图形分类:柱体圆柱棱柱立体图形球体圆锥锥体棱锥2.多面体的概念:围成立体图形的每一个面都是平的,像这样的立体图形又称为多面体.【教学说明】教师引导学生对本节课知识进行总结,加深印象,对出现的疑惑及时予以解答,使学生更好的掌握本节课知识.完成本课时对应的练习.本节课的教学应从具体的图像入手,引导学生从中抽象出立体图形,使学生经历从具体到抽象的思维过程,初步培养学生的抽象思维能力.通过对简单立体图形的分类,渗透分类思想.提高学生的识图能力,通过比较掌握图形的特征.4.2立体图形的视图【基本目标】1.经历“从不同方向观察物体”的活动过程,发展空间观念;2.在观察的过程中,初步体会从不同方向观察同一个物体可能看到不一样的结果;3.能画出简单立体图形的三视图;4.使学生能利用三视图来描述出实际的立体图形.【教学重点】如何确定物体的三视图和如何根据三视图画出正确的立体图.【教学难点】如何根据三视图描述具体的立体图形.一、情境导入,激发兴趣1.工人在建造房子之前,首先要看房子的图纸.但在平面上画空间的物体不是一件简单的事,因为必须把它画得从各个方面看都很清楚.为了解决这个问题,创造了三视图法.建筑工程师和工人为了描绘和制造各种物体常常使用这种方法.【教学说明】视图法在生活中有着较广泛的应用,特别对于要涉及到立体图形的工作.通过教师介绍,使学生对于视图的应用有一个大致的了解.2.视图来自于投影.下面请同学们利用手型的变化做一个手影游戏,比一比谁的手影最具有创意.【教学说明】通过手影游戏,引起学生探究的兴趣,使学生自觉投入到探究中.3.灯光的光线可以看作是从一点发出的,我们称这种投影为中心投影;太阳的光线可以看作是平行的,我们称这种投影为平行投影.视图是一种特殊的平行投影.【教学说明】教师将手影游戏及时与相关的数学知识联系起来,自然过渡到新课的教学.二、合作探究,探索新知1.由立体图形到视图(1)观察下列物体,你从正面、上面和左面(或右面)看到的图形是一样的吗?你能将看到的图形画出来吗?【教学说明】教师准备一个实物,以便于学生观察,从不同的角度让学生观察,叙述所看到的图形.(2)学生尝试完成.【教学说明】教师引导学生从不同方向看,然后让学生叙述所看到的图形,然后尝试画出所看到的图形,使学生经历一个完整的思维过程.(3)小结:从不同的方向看同一个物体,所看到的结果可能是不同的.从正面看到的图形,称为正视图;从上面看到的图形,称为俯视图;从侧面看到的图形,称为侧视图,依观看方向不同,有左视图、右视图.【教学说明】教师及时总结正视图、俯视图和侧视图,形成规范的知识点,使学生明确三视图是从哪些方向看.2.由视图到立体图形(1)观察思考:如图中所示的是一些立体图形的三视图,请根据视图说出立体图形的名称,并画出相应的实际立体图形.(1)(2)教师根据学生的回答小结:(1)该立体图形是长方体,如图所示:(2)该立体图形是圆锥, 如图所示:【教学说明】由三视图到立体图形更需要学生具有空间想象能力,或者说如何使学生对一些基本图形更加熟悉,所以培养学生的图感仍是重中之重.图中只是从一个方向所见得到的平面图形,所以在此必须引导学生从多个方面去思考,逐渐培养学生的发散性思维.三、示例讲解,掌握新知例1画出如图所示的正方体和圆柱体的三视图.解:如图,正方体的三视图都是正方形圆柱体的主视图和左视图都是长方形,俯视图是圆形.【教学说明】画三视图,应抓住的关键是从哪一个角度来观察,另外很重要的是一个把立体图形转化为平面图形的过程,应观察出所得的有关线条与轮廓.教师可以先让学生叙述所看到的图形,再画出相应的图形.例2画出如图所示的圆锥的三视图.解:圆锥的三视图如图所示:【教学说明】圆锥的俯视图要注意中心有一个点,教师可以让学生先画出图形,教师再予以纠正和强调.例3如图是一个物体的三视图,试说出物体的形状.解:此物体如图所示:【教学说明】抽象思维及平面图形如何相互组合成立体图形,这一过程是一个充分思维的过程.学生完成此例有一定的困难,教师可适当让学生以小组为单位,准备一些长方体的实物,按照观察思考的图形进行摆放,逐步由具体过渡到抽象.四、练习反馈,巩固提高1.画出下列物体的三视图.2.如图是几个小立方体所搭成的立体图形的俯视图,小正方形中的数字表示在该位置上小立方体的个数,请画出这个立体图形的主视图和左视图.【教学说明】第1题是画立体图形的三视图,学生能够比较容易画出来,第2题是由三视图想象立体图形,对于学生来讲有一定的困难.可以让学生先叙述它的形状,或者用实物摆放试试,再画出主视图和左视图.【答案】1.2.五、师生互动,课堂小结1.从不同的方向看同一个物体,所看到的结果可能是不同的.从正面看到的图形,称为主视图;从上面看到的图形,称为俯视图;从侧面看到的图形,称为侧视图,依观看方向不同,有左视图、右视图.2.我们可以通过一个物体的三视图,描述这个物体的形状.【教学说明】教师引导学生对所学内容进行总结,对出现的问题及时予以纠正和强调,对相关的方法进行总结,加强学生对本节课知识的理解.完成本课时对应的练习.本节课对学生的抽象思维能力的发展很重要,是学生由具体到抽象的过渡.由两个内容构成,一是由立体图形到视图,要使学生明确从不同的方向看,可能会看到不同的图形,通过观察与归纳,能画出从不同方向看到的图形,发展观察思考能力;二是由视图到立体图形,这是本节课的难点,开始可以由简单的、学生熟悉的图形入手,让学生通过观察和想象,描述具体的立体图形,对于比较复杂的图形,可以适当让学生用实物演示,得出结论,然后总结方法和规律,逐步过渡到直接抽象出相应的立体图形.4.3 立体图形的表面展开图【基本目标】1.让学生通过直观感知、操作等实践活动,丰富立体图形的认知和感受,进一步认识立体图形与平面图形的关系;2.会判断所给定的平面图形能否折成立体图形;3.给出一些立体图形的展开图,能说出相应立体图形的名称;4.会判断给定的平面图形是否为某立体图形的展开图,并会把一个简单的立体图形展开成平面图形;5.培养学生的观察、实践操作能力和空间想象能力.【教学重点】根据立体图形研究其展开图和根据展开图判别立体图形.【教学难点】研究一个简单立体图形的展开图.一、情境导入,激发兴趣1.观察生活的周围,就会发现物体的形状千姿百态……,这其中蕴含着许多图形的知识.2.当我们进行包装时,它们的展开图是怎样的呢?下面让我们一起来探究.【教学说明】教师可展示实物,方便探究.通过实物展示,引起学生探究的兴趣.二、合作探究,探索新知1.圆柱体是我们所熟悉的图形,那么圆柱体的侧面展开图是什么图形呢?请你画出来.【教学说明】可以让学生动手操作,再画图,有一个直观的认识.2.“折一折”:如下图是多面体的展开图,你能说出这些多面体的名称吗?【教学说明】先让学生想象、猜测,再动手做,然后请学生来回答,在折起时,应掌握一定的规律性东西,即,如何折,从何折起.3.学生以小组为单位展开探究,将结果画在黑板上,教师及时予以总结.正方体展开图如下图:根据图形做出归纳小结:第一行是1-4-1组合;第二行第1-3个是2-3-1组合;第二行最后两个分别是2-2-2和3-3组合.【教学说明】注意:(1)立体图形有几个面,它的平面展开图就由几个面构成;(2)同一个立体图形,按不同方式展开得到的平面展开图是不一样的.三、示例讲解,掌握新知把如右的正方体纸盒展开成平面图形:思考:(1)沿着一个正方体的一些棱将它剪开得到一个平面图形,需要剪开几条棱?(2)对上述正方体的展开图尝试分类.【教学说明】可以汇集学生所剪得的不同的展开图,张贴在黑板上,必要时教师提供几种新的展开图让学生作参考.四、练习反馈,巩固提高1.画出圆柱、长方体、三棱柱、圆锥的表面展开图,看它的平面展开图是什么,把相应的图形连起来.2.在下面的图形中,不可能是圆锥体的展开图的是()3.如图,在这些图形中,是四棱柱的侧面展开图的是(填序号).4.如图,()不是正方体的展开图5.如图,下列图形是某些立体图形的平面展开图,说出这些立体图形的名称.6.在图中添加一个小正方形,使该图形经过折叠后能围成一个四棱柱,不同的添法共有()A.7种B.4种C.3种D.2种【教学说明】让学生充分发挥想象,将结果与其他同学进行交流.对于第6题,要注意总结规律,便于学生掌握.【答案】1.略2.A3.①4.D5.长方体、三棱锥、三棱柱、五棱锥6.B五、师生互动,课堂小结通过本节课的学习,你有哪些收获?还有哪些疑问?【教学说明】让学生自我总结收获和疑问,在小组内进行交流,教师再根据交流的情况,对典型问题进行强调.尤其是对正方体的展开图规律再次进行强化.完成本课时对应的练习.本节课主要内容是立体图形的平面展开图,学习本节课内容需要学生有一定的空间想象能力,所以在实际教学中,应多从具体的实物入手,让学生通过动手操作来发现规律并及时进行总结,然后再通过抽象的想象来解决问题,给学生一个适应的过程.。

人教版七年级上《第四章几何图形初步》期末复习知识点+易错题

人教版七年级上《第四章几何图形初步》期末复习知识点+易错题

2019年七年级数学上册期末复习几何图形初步知识点+易错题几何图形初步知识点、本章的知识结构图「从不同方向看立体图形 展开立体图形、 *几何图形'等甫的补角相等 等甫的余角相等 £ 一、立体图形与平面图形立体图形:棱柱、棱锥、圆柱、圆锥、球等。

1、 几何图形平面图形:三角形、四边形、圆等。

主(正)视图 ------- 从正面看2、 几何体的三视图 侧(左、右)视图-----从左(右)边看俯视图 ---------- ■从上面看(1) 会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图。

(2) 能根据三视图描述基本几何体或实物原型。

3、 立体图形的平面展开图(1) 同一个立体图形按不同的方式展开,得到的平现图形不一样的。

(2) 了解直棱柱、圆柱、圆锥、的平面展开图,能根据展开图判断和制作立体模型 4、 点、线、面、体(1) 几何图形的组成点:线和线相交的地方是点,它是几何图形最基本的图形。

线:面和面相交的地方是线,分为直线和曲线。

面:包围着体的是面,分为平面和曲面。

体:几何体也简称体。

(2) 点动成线,线动成面,面动成体。

二、直线、射线、线段(一)直线、射线、线段的区别与联系:基本概念直线、射线、线段"两点确迄一条直线 .两点之间线段最短平面图瑕亀角的度量角的大小比較一一肃侨分线 立体图形 平面图形余角和补角(二)直线、线段性质:经过两点有一条直线,并且只有一条直线;或者说两点确定一条直线;1、 线段的性质:两点的所有连线中,线段最短。

简单地:两点之间,线段最短2、 画线段的方法:(1)度量法;(2)用尺规作图法3、 线段的大小比较方法:(1)度量法;(2)叠合法4、 点与直线的位置关系:(1)点在直线上;(2)点在直线外。

5、 过三个已知点不一定能画出直线。

当三个已知点在一条直线上时,可以画出一条直线; 当三个已知点不在一条直线上时,不能画出直线。

(三)两点距离的定义:连接两点间的线段的长度,叫做这两点的距离 (四) 线段中点:把一条线段分成两条相等的线段的点叫线段中点;(五) 延长线和反向延长线:延长线段AB 是指按从端点A 到B 的方向延长;延长线段BA 是指 按从端点B 到A 的反方向延长,这时也可以说反向延长线段 AB 直线、射线没有延长线,射 线可以有反向延长线。

第4章图形的初步认识第1节生活中的立体图形练习册详细答案

第4章图形的初步认识第1节生活中的立体图形练习册详细答案

第4章图形的初步认识
基本训练
1.多面体有:(a)(c)(d)(e)(h)(i)(j)——P由多个平面围成
球体有:(f)
柱体有:(a)(d)(g)(h)(i)(j)
圆柱有:(g)
棱柱有:(a)(d)(i)(j)——(h)是锥体切去顶部的小锥体后剩下的部分,是台体
锥体有:(b)(c)(e)
圆锥有:(b)
棱锥有:(c)(e)
2.(1)√
(2)√
(3)×——棱柱的侧面才是四边形
(4)√
(5)×——棱柱的侧面都是四边形
(6)×——圆柱的侧面是曲面不是平面,因此不是长方形(7)√——球体不是由平面围成
(8)×——圆锥的侧面是曲面不是平面
(9)√
(10)×——柱体包括圆柱和棱柱,其中圆柱不是多面体
3.选(D)
圆锥的侧面不是平面。

4.选(D)
圆柱、圆锥的侧面是曲面不是平面,球体更不是由平面围成的。

5.选(C)
不可能像三角形和扇形,有的西瓜,从头到尾剖开,有点像四边形,但因为无角,实为椭圆,更像圆形。

二、探索天地
6.可以从任意一角下刀,从与这角不共面的角出刀,分成两个相同的四棱锥。

还可以与任意一条棱平行着下刀,从对面的棱出刀,分成两个相同的三棱柱。

加上题中所述的三棱锥,共三种准确规范的切法,其他不准确的切法还有无数种。

7.(1)按是不是由平面围成,分成多面体与其他立体图形,多面体有长方体、棱柱、正方体;
(2)按有无上底面,可分为柱体、锥体和球体,柱体有长方体、棱柱、圆柱和正方体,圆锥是锥体,球是球体。

4.1 生活中的立体图形

4.1 生活中的立体图形

第四章 图形的初步认识 §4.1 生活中的立体图形【学习目标】1.能从现实生活中抽象出立体图形。

2.能正确识别柱体、椎体、球体等几何体,并能描述出他们的特征和区别. 【课前导习】1.请正确填写以下图形的名称2.请综合书上信息,完成下列填空:_________ __________ 柱体 锥体_________ __________3._______________________________________________叫做多面体、【主动探究】 1. 请你总结:(1) 柱体与椎体有什么区别? (2) 圆柱与圆锥有什么区别? (3) 圆柱和棱柱有什么区别? (4) 圆与球体有什么区别?【当堂训练】1. 举5个生活中的规则物体,并说出和它相类似的立体图形.2. 请将与下列实物相似的立体图形连线。

3. 找出下面图形中的圆柱.4. 下面的图形表示四棱柱吗?你能说明理由吗?5.下面几种几何图形中,属于平面图形的是()(1)三角形(2)长方形(3)正方体(4)圆(5)四梭锥(6)圆柱(A)(1)、(2)、(4)(B)(1)、(2)、(3)(C)(1)、(2)、(6)(D)(4)、(5)、(6).【回学反馈】1.写出下列立体图形的名称2. 下列图形中为圆柱体的是()3,试一试新年晚会,是我们最欢乐的时候.会场上,悬挂着五彩缤纷的小装饰,其中有各种各样的立体图形.数一下每一个多面体具有的顶点数(V)、棱数(E)和面数(F),并且把结果记入表中.在最后一栏,令人惊奇的是完全一样.你若有兴趣的话,可以随意做一个多面体,看看是否还是那个结果.伟大的数学家欧拉(Euler 1707—1783)证明了这一令人惊叹的关系式,即欧拉公式:顶点数+面数-棱数=2.。

七年级数学第4章图形的初步认识4.1生活中的立体图形教案华东师大版

七年级数学第4章图形的初步认识4.1生活中的立体图形教案华东师大版

第4章图形的初步认识4.1 生活中的立体图形【基本目标】1。

能从现实背景中抽象出立体图形;2。

认识现实背景中的圆柱、圆锥、正方体、长方体、棱柱、球;3。

认识立体图形中的圆柱、圆锥、正方体、长方体、棱柱、球,并能用自己的语言描述它们得到某种特征.【教学重点】1。

感受图形世界的丰富多彩;2。

认识现实背景中的圆柱、圆锥、正方体、长方体、棱柱、球。

【教学难点】认识立体图形中的圆柱、圆锥、正方体、长方体、棱柱、球,并能用自己的语言描述它们得到某种特征。

一、创设情境,导入新课1.一幅幅精美的图片带领同学们一起神游大地,去领略祖国的美景.出示图片:北京天坛、故宫、鸟巢、水立方.千姿百态的建筑物美化了我们的生活.展示了建筑师的聪明才智,在这些实物中有没有大家熟悉的立体图形?2.学生观察图片回答。

【教学说明】通过欣赏图片导入本节课的学习,创设愉悦、宽松的氛围,让学生在完全放松的情绪下感知我们生活中处处存在着数学知识,产生学习立体图形的兴趣。

二、合作探究,探索新知1.我们生活中的很多物体都是立体的,而这些物体中有一部分是较有规则的,如:【教学说明】让学生识别常见的具体图形,从中抽象出立体图形,经历从具体到抽象的思维过程,培养学生抽象思维的能力,使学生研究问题的意识由具体到抽象转变.2。

常见的立体图形如下图:在上面的图形中:(1)图1所表示的立体图形是柱体(圆柱体);(2)图2所表示的立体图形是柱体(棱柱体);(3)图3所表示的立体图形是锥体(圆锥体);(4)图4所表示的立体图形是球体;(5)图5所表示的立体图形是锥体(棱锥体).【教学说明】教师及时对常见的立体图形进行归纳总结,并让学生叙述它们的特征,找到它们的相同点和不同点,为后面的分类奠定基础。

3。

多面体的概念观察上图2、5与图1、3、4,它们有什么区别?小结:如上图2、5,围成立体图形的每一个面都是平的,像这样的立体图形又称为多面体.【教学说明】让学生对比找到不同点,教师归纳总结多面体的概念。

图形的初步认识知识点很全 配习题和答案

图形的初步认识知识点很全 配习题和答案

第四章 图形的初步认识4.1生活中的立体图形球体点:点动成线 线:线动成面 面:面动成体直线:两点确定一条直 平面图形 线段:两点之间线段最 射线:线段向一方无限 2. 立体图形的面是平的面,像这样的立体图形,又称为多面体。

欧拉公式:顶点 +面数-棱数 =2(V+F-E )4.2 画立体图形 三视图:从正面、上面、侧面(左面或右面)三个不同的方向看一个物体,然后描绘所看 到的图即 视图 这样就把一个物体转化为平面图形。

从正面看到的图形称为正视图 从上面看到的图形称为俯视图 从侧面看到的图形称为侧视图4.3 立体图形的表面展开图多面体是由平面图形围成的立体图形,设想沿着多面体的一些棱将他剪开,可以把多面体 的表面展开成一个平面图形。

圆柱的侧面展开 ----- 长方形 圆锥的侧面展开 ----- 扇形4.4 平面图形 在多边形中,三角形是最基本的图形。

每一个多边形都可以分割成 N-2 个三角形( N 是 多边形的边数)4.5 最基本的图形 --- 点和线一1 过两点有且只有一条直线 2 两点之间线段最短1. 基本几何图形立方体的展开图柱体棱柱 圆柱 立体图形 锥体圆锥 棱锥线短延伸就得到一条射3. 把线段向一方无限延伸所形成的图形叫做射线4. 把线段向两方无限延伸所形成的图形叫做直线5. 把一条线段分成两条相等线段的点,叫做这条线段的中点。

4.6 角1. 角是由两条有公共端点的射线组成的图形。

角平分线:从一个角顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线2 定义:角也可以看成是由一条射线绕着它的端点旋转而成的图形。

射线的端点叫做角的顶点。

起始位置的射线叫做角的始边,终止位置的射线叫做角的终边。

一周角=二平角=四直角一周角=360° —平角=180°1° =60' 1' =60〃3 同角或等角的补角相等4 同角或等角的余角相等5 定理三角形两边的和大于第三边6 推论三角形两边的差小于第三边7 三角形内角和定理三角形三个内角的和等于180°8 推论1 直角三角形的两个锐角互余9 推论2 三角形的一个外角等于和它不相邻的两个内角的和10 推论3 三角形的一个外角大于任何一个和它不相邻的内角11.角的大小比较:度量法和叠合法二.两直线相交所成的四个角中,有一条公共边,它们的另一边互为反向延长线,有这种关系的两个角,互为邻补角1. 两直线相交所成的四个角中,有一个公共顶点,并且一个角的两边分别是另一个角两边的反向延长线,具有这种关系的两个角,互为对顶角对顶角的性质:对顶角相等4.7 相交线1. 两直线相交所成的四个角中,如果有一个角是直角,那么就称这两条直线相互垂直.它们的交点叫做垂足垂线的性质:⑴过一点有且只有一条直线与已知直线垂直•⑵连接直线外一点与直线上各点的所在线段中,垂线段最短.2. 直线外一点到这条直线的垂线段的长度,叫做—点至U直线的距离线段AB叫做点A到直线BC的垂线段它的长度就是点A到直线BC的距离3. 两条直线被第三条直线所截,构成八个角,在那些没有公共顶点的角中,⑴如果两个角分别在两条直线的同一方,并且都在第三条直线的同侧,具有这种关系的一对角叫做同位角:⑵如果两个角都在两直线之间,并且分别在第三条直线的两侧,具有这种关系的一对角叫做内错角:⑶如果两个角都在两直线之间,但它们在第三条直线的同一旁,具有这种关系的一对角叫做_同旁内角4.8 平行线1. 在同一平面内,不相交的两条直线互相平行.同一平面内的两条直线的位置关系只有相交与平行两种.2. 平行公理:经过直线外一点,有且只有一条直线与这条直线平行推论:如果两条直线都与第三条直线平行,那么这两直线互相平行平行线的判定:⑴两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行简单说成:同位角相等两直线平行;⑵两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:内错角相等两直线平行;⑶两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:同旁内角互补两直线平行.3. 在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线_ 平行.4. 平行线的性质:⑴两条平行直线被第三条直线所截,同位角相等.简单说成:两直线平行同位角相等•⑵两条平行直线被第三条直线所截,内错角相等•简单说成:两直线平行•内错角相等⑶两条平行直线被第三条直线所截,同旁内角互补•简单说成:两直线平行. 同旁内角互补5. 判断一件事情的语句,叫做命题.命题由题设和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项命题常可以写成“如果……那么……”的形式,这时“如果”后接的部分是题设,“那么”后接的部分是结论.如果题设成立,那么结论一定成立.像这样的命题叫做真命题如果题设成立时,不能保证结论一定成立,像这样的命题叫做假命题.定理都是真命题.6. 把一个图形整体沿某一方向移动,会得到一个新图形,图形的这种移动,叫做平移变换,简称平移.图形平移的方向不一定是水平的.平移的性质:⑴把一个图形整体平移得到的新图形与原图形的形状与大小完全相同.⑵新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点•连接各组对应点的线段平行且相等熟悉以下各题:如图,BC AC,CB 8cm, AC 6cm, AB 10cm,那么点A到BC的距离是_13.6cm,点B到AC的距离是8cm,点A、B两点的距离是10cm,点C到AB的距离是4.8cm..设a、b、c为平面上三条不同直线,a)若a//b,b//c,则a与c的位置关系是_平行;b)若a b,b c,则a与c的位置关系是平行;c)若a//b,b c,则a与c的位置关系是_垂直.如图,已知AB、CD、EF相交于点O , AB 丄CD , OG 平分/ AOE,/ FOD = 28 °,求/ COE、/ AOE、/ AOG 的度数.OD、OE分别是如图, AOC与BOC是邻补角,OD与OE的位置关系,并说明理由. ODLOE如图,AB// DE,试问/ B、/ E、/ BCE有什么关系.解:/ B+/ E =/ BCE过点C作CF // AB,贝U B __1__ (两直线平行,内错角相等又••• AB / DE , AB // CF,••• DE// CF (平行于同一直线的两条直线平行•••/ E =/ 2 (两直线平行,内错角相等))B+/E=/1+/2即/ B +/ E = / BCE .⑴如图,已知/ 1 = / 2 求证:a / b.⑵直线a//b,求证: 1 2 .⑴•.•/ 1 = / 2 ,又•.•/ 2 = / 3 (对顶角相等),•/ 1 = / 3「. a/ b (同位角相等两直又•••/ 2 = Z 3 (对顶角相等) 1 = Z 2.阅读理解并在括号内填注理由:如图,已知 AB // CD ,/ 1 = Z 2,试说明 EP // FQ . 证明:••• AB // CD ,•••/MEB =Z MFD (两直线平行,同位角相等又•••/ 1 = Z 2,•/ MEB -Z 1 = Z MFD -Z 2,/ MEP = Z MFQ. EP // FQ (同位角相等两直线平行 ) 已知 DB // FG // EC , A 是 FG 上一点,Z ABD = 60°, ⑴Z BAC 的大小;⑵Z PAG 的大小.第五章 相交线与平行线线平行) ⑵t a // b •••/ 1 = Z 3(两直线平行,同位角相等) Q AD BC, FE BCEF //AD 2 3 1 2.如图,已知 ABC , ADEFB ADB 90oQ DG // BA, 3 1BC 于D , E 为AB 上一点,EF BC 于F , DG // BA 交CA 于G.求证 12.Q AD BC, FE BCEFB ADB 90oEF // AD1 2.Q DG // BA, 3已知:如图Z 1 = Z 2,Z C=Z D ,问Z A 与Z F 相等吗?试说明理 由.Z A =Z F. tZ 1 = Z DGF (对顶角相等)又Z 1 = Z 2 DGF=Z 2「.DB/ EC (同位角相等,两直线平行) •••/ DBA=Z C(两直线平行,同位角相等)又tZ C =Z D •••/ DBA=Z D•DF// AC (内错角相等,两直线平行).「Z A =Z F (两直线平行,,求:D E FAE C1. 两直线相交所成的四个角中,有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为 ______________ .2. 两直线相交所成的四个角中,有一个公共顶点,并且一个角的两边分别是另一个角两边的反向延长线,具有这种关系的两个角,互为 _______________ . 对顶角的性质:______3. 两直线相交所成的四个角中,如果有一个角是直角,那么就称这两条直线相互___________垂线的性质:⑴过一点 _____________ 一条直线与已知直线垂直.⑵连接直线外一点与直线上各点的所在线段中, _________________ .4. 直线外一点到这条直线的垂线段的长度,叫做______________________________ .5. 两条直线被第三条直线所截,构成八个角,在那些没有公共顶点的角中,⑴如果两个角分别在两条直线的同一方,并且都在第三条直线的同侧,具有这种关系的一对角叫做:⑵如果两个角都在两直线之间,并且分别在第三条直线的两侧,具有这种关系的一对角叫做 ______________ :⑶如果两个角都在两直线之间,但它们在第三条直线的同一旁,具有这种关系的一对角叫做 ____________________ .6. 在同一平面内,不相交的两条直线互相_______________ .同一平面内的两条直线的位置关系只有_______ 与 ________ 两种.7. 平行公理:经过直线外一点,有且只有一条直线与这条直线____________ .推论:如果两条直线都与第三条直线平行,那么 ___________________________ .8. 平行线的判定:⑴两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:________________________________________ . ⑵两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:____________________________ .⑶两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行•简单说成:9. 在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线 ______ .10. 平行线的性质:⑴两条平行直线被第三条直线所截,同位角相等•简单说成: _________.⑵两条平行直线被第三条直线所截,内错角相等.简单说成:•⑶两条平行直线被第三条直线所截,同旁内角互补•简单说成:11. _______________________________ 判断一件事情的语句,叫做 ___ •命题由 和 两部分组成•题设是已知事项,结论是 ________________________ •命题常可以写成 “如果……那么……” 的 形式,这时“如果”后接的部分是 _________ ,“那么”后接的部分是 _________ •如果题设成立,那么结论一定成立 •像这样的命题叫做 ______________ •如果题设成立时,不能 保证结论一定成立,像这样的命题叫做 _______________ •定理都是真命题• 12・把一个图形整体沿某一方向移动,会得到一个新图形,图形的这种移动,叫做平移变换,简称 ______ •图形平移的方向不一定是水平的•平移的性质:⑴把一个图形整体平移得到的新图形与原图形的形状与大小完全 _____ ,⑵新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点 •连接各组对应点的线段 ___________________ • 熟悉以下各题:求/ COE 、/ AOE 、/ AOG 的度数.如图, AOC 与 BOC 是邻补角,OD 、OE 分别是 AOC 与 BOC 的平分线,试判断OD 与OE 的位置关系,并说明理由.13. 如图,BC AC, CB 8cm, AC 6cm, AB 10cm,那么点A 到BC 的距离是 ,点B 到AC 的距离是 14. 15. B 两点的距离是,点C 至U AB 的距离是设a 、b 、c 为平面上三条不同直线,a) b) c)若a//b,b//c ,则a 与c 的位置关系是 若a b,b c ,则a 与c 的位置关系是 若a//b , b c ,贝U a 与c 的位置关系是如图,已知 AB 、CD 、EF 相交于点 O , AB 丄CD , OG 平分/AOE ,/ FOD = 28°,16. A、BB17. 如图,AB // DE,试问/ B、/ E、/ BCE有什么关系.解:/ B+Z E =Z BCE过点C作CF // AB,则B _______ (又••• AB// DE,AB // CF,二____________ (「•Z E =Z ____ (•••Z B +Z E = Z 1 + Z 2 即Z B +Z E = Z BCE .18. ⑴如图,已知Z 1 = Z 2 求证:a // b.⑵直线a//b,求证:12 .19•阅读理解并在括号内填注理由:如图,已知AB// CD , Z 1 = Z 2,试说明EP // FQ. 证明:••• AB // CD ,•Z MEB =Z MFD ( )又T Z 1 = Z 2,•Z MEB -Z 1 = Z MFD -Z 2,即Z MEP =Z ________• EP// ____ .(MA------ Ba/20.已知DB // FG // EC, A 是FG 上一点, Z ABD = 60°, Z ACE = 36 ,AP 平分Z BAC ,求:⑴Z BAC的大小;⑵Z FAG的大小.交CA于G.求证1 2.22.已知:如图/ 仁/2,/ C=Z D,问/ A与/ F相等吗?试说明理由.21.如图,已知ABC, AD BC于D, E为AB上一点,EF BC 于F, DG // BA11。

《生活中的立体图形》易错易混辨析

生活中的立体图形
易错易混辨析
易错点1不能正确判断几何体的类型
【易错典例1】如图1—1—8各几何体中,柱体是第_____个.
易错总结:柱体包括棱柱和圆柱,他们的上下两个底面完全相同,部分同学因忽略柱体的这一共同特征二误认为(1)(3)是柱体而出错,正确答案是(2)(4).
易错点2判断由平面图形旋转而成的立体图形时,出现漏解或错解
【易错典例2】 以如图1—1—9所示的三角形的边为轴旋转一周后所得到的几何体可以是右图中的_________(填序号).
易错总结:本题是一个直角三角形围绕任意一条直角边旋转一周,部分同学可能因习惯于只绕竖直的AB 旋转只选(2)或分绕直角边旋转和斜边旋转两种情况而不考虑两直角边的长短漏选(3),还可能因为绕斜边AC 形成图形不熟悉而漏选(4),正确为答案应是(2)(3)(4).
1—1—
8
1—1—9。

第4章《图形的初步认识》易错题集(04):4.2画立体图形(可编辑修改word版)

第4 章《图形的初步认识》易错题集(04):4.2 画立体图形选择题61.用大小和形状完全相同的小正方体木块搭成一个几何体,使得它的正视图和俯视图如图所示,则搭成这样的一个几何体至少需要小正方体木块的个数为()A.22 个B.19 个C.16 个D.13 个62.一个空间几何体的主视图和左视图都是边长为2 的正方形,俯视图是一个圆,那么这个几何体的表面积是()A.6πB.4πC.8πD.463.某超市货架上摆放着“康师傅”红烧肉面,如图是它们的三视图,则货架上的“康师傅”红烧肉面至少有()A.8 桶B.9 桶C.10 桶D.11 桶64.已知某物体的三视图(如图),则组成该物体的小立方体的个数为()A.7 或8 B.8 或9 C.9 或10 D.10 或1165.一个由若干个相同的正方体搭成的物体的主视图与左视图都是右边的图形,这个物体有()种不同的搭建办法.A.2 B.3 C.4 D.5填空题66.如图,是一个四棱锥及它的三视图,其中,图是它的主视图,图是它的左视图,图是它的俯视图.67.课桌上按照下图的位置放着一个暖水瓶、一只水杯和一个乒乓球.小明从课桌前走过(图中虚线箭头的方向),下图描绘的是他在不同时刻看到的情况,请对这些图片按照看到的先后顺序进行排序,正确的顺序是:,,,.68.如图所示,是一个由若干个相同的小正方体组成的几何体的主视图和俯视图,则能组成这个几何体的小正方体的个数最少是个.69.如图是一个几何体的三视图,根据图中标注的数据可求出这个几何体的体积为.70.用小立方块搭一个几何体,使它的正视图和俯视图如图所示,这样的几何体最少需要个小立方块,最多需要个小立方块.71.一个几何体从正面、左面、上面看到的平面图形完全相同(如图所示),则搭这个几何体最少用个小正方体,最多用个小正方体.72.下列两个图是由几个相同的小长方体堆成的物体视图,那么堆成这个物体的小长方体最多有个.73.一个由同一种正方体木块构成的几何体的三个视图如图所示,则该几何体中共有块小正方体.74.一个几何体是由若干个相同的正方体组成的,其主视图和左视图如图所示,则这个几何体最多可由个这样的正方体组成.75.如图,用小木块搭一个几何体,它的主视图和俯视图如图所示.问:最少需要个小正方体木块,最多需要个小正方体木块.76.用小正方体搭一个几何体,其主视图和左视图如图所示,那么搭成这样的几何体至少需要个小正方体,最多需要个小正方体.77.如图是由几个小立方块所搭成的几何体的左视图和主视图,这个几何体至少需个立方块.78.n 个单位小立方体叠放在桌面上,所得几何体的主视图和俯视图均如图所示.那么n 的最大值与最小值的和是.第4 章《图形的初步认识》易错题集(04):4.2 画立体图形参考答案选择题61.D;62.A;63.B;64.C;65.D;填空题66.C;A;B;67.乙;甲;丙;丁;68.9;69.24π;70.8;12;71.6;8;72.5;73.5;74.11;75.10;16;76.5;13;77.4;78.23;。

七年级数学上册第四章几何图形初步重点易错题

(名师选题)七年级数学上册第四章几何图形初步重点易错题单选题1、在下面的几何体中:①长方体;②圆柱;③球;④五棱柱;⑤圆锥;⑥正方体,可以看成有两个底面的几何体是( )A .①②④⑥B .②③④C .②④⑤⑥D .①②③⑥答案:A分析:根据每一个几何体的特征判断即可.解:在下面的几何体中:①长方体;②圆柱;③球;④五棱柱;⑤圆锥;⑥正方体,可以看成有两个底面的几何体是:长方体,圆柱,五棱柱,正方体,故选:A .小提示:本题考查了认识立体图形,解题的关键是熟练掌握每一个几何体的特征.2、如图,在数轴上,若点A,B 表示的数分别是-2和10,点M 到A,B 距离相等,则M 表示的数为( )A .10B .8C .6D .4答案:D分析:根据两点之间的距离求出AB 的长度,根据点M 到A 、B 距离相等,求出BM 的长度,从而得到点M 表示的数.解:AB =10-(-2)=10+2=12,∵点M 到A 、B 距离相等,即M 是线段AB 的中点,∴BM =12AB =12×12=6, ∴点M 表示的数为10-6=4,故选:D .小提示:本题考查了两点之间的距离,数轴,有理数的减法,线段的中点,根据两点之间的距离求出AB 的长度是解题的关键.3、如图是正方体的表面展开图,则与“话”字相对的字是()A.跟B.党C.走D.听答案:C分析:根据正方体表面展开图的特征进行判断即可.解:由正方体表面展开图的“相间、Z端是对面”可知,“话”与“走”是对面,所以答案是:C.小提示:本题考查正方体相对两个面上的文字,掌握正方体表面展开图的特征是正确判断的前提.4、下列图形是正方体展开图的个数为()A.1个B.2个C.3个D.4个答案:C分析:根据正方体的展开图的特征,11种不同情况进行判断即可.解:根据正方体的展开图的特征,只有第2个图不是正方体的展开图,故四个图中有3个图是正方体的展开图.故选:C.小提示:考查正方体的展开图的特征,“一线不过四,田凹应弃之”应用比较广泛简洁.5、如图,一个三棱柱共有侧棱()A.3条B.5条C.6条D.9条答案:A分析:结合图形即可得到答案.解:一个三棱柱,这个三棱柱共有3条侧棱.故选:A.小提示:本题考查的是立体图形—三棱柱.三棱柱有两个面是三角形且互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行.棱柱中两个侧面的公共边叫做棱柱的侧棱.掌握三棱柱的结构特征是解答的关键.6、下列几何体都是由4个相同的小正方体搭成的,其中从正面和左面看到的形状图相同的是()A.B.C.D.答案:A分析:分别画出四个选项从正面看和从左面看的形状,即可得到答案.解:A、从正面看的形状,从左面看的形状,故A符合题意;B、从正面看的形状,从左面看的形状,故B不符合题意;C、从正面看的形状,从左面看的形状,故C 不符合题意;D、从正面看的形状,从左面看的形状,故D 不符合题意;故选A.小提示:本题主要考查了小正方块组成的几何体的三视图,熟知三视图的定义是解题的关键.7、如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“负”字一面的相对面上的字是()A.强B.提C.课D.质答案:C分析:根据正方体表面展开图的特点,选择“负”这一面作为底面将正方体还原,即可找出相对面上的字.解:选择“负”这一面作为底面将正方体还原可得:“减”与“质”是相对面,“强”与“提”是相对面,“负”与“课”是相对面,故选:C.小提示:本题考查了根据正方体表面展开图判断相对面的字,熟练掌握正方体表面展开图的特点是解题的关键,需要一定空间想象能力.8、将如图所示的直棱柱展开,下列各示意图中不可能...是它的表面展开图的是()A.B.C.D.答案:D分析:由直棱柱展开图的特征判断即可.解:图中棱柱展开后,两个三角形的面不可能位于同一侧,因此D选项中的图不是它的表面展开图;故选D.小提示:本题考查了常见几何体的展开图,解决本题的关键是牢记三棱柱展开图的特点,即其两个三角形的面不可能位于展开图中侧面长方形的同一侧即可.9、如图是一个正方体的展开图,把展开图折叠成小正方体后,和“建”字所在面相对的面上的字是()A.跟B.百C.走D.年答案:B分析:正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此作答.∵正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,∴在此正方体上与“建”字相对的面上的汉字是“百”.故选B.小提示:本题考查了正方体的展开图形,解题关键是从相对面入手进行分析及解答问题.10、如图,某正方体三组相对的两个面的颜色相同,分别为红,黄,蓝三色,其展开图不可能是()A.B.C.D.答案:C分析:利用正方体的展开图中,间隔是对面判断即可.解:根据正方体的展开图中,间隔是对面可知,选项A、B、D中都符合正方体三组相对的两个面的颜色相同,只有选项C中,蓝与蓝是相邻的面,故选:C.小提示:本题考查了正方体的展开图中间隔是对面的规律,理解掌握该规律是解题的关键.填空题11、将图中的角用不同的方法表示出来,并填写下表:分析:根据角的表示方法分析即可,角的两个基本元素中,边是两条射线,顶点是这两条射线的公共端点.是同一个角必须满足顶点相同,角的两边必须分别是指同一条射线.∠ADC可以表示为∠2,∠ABC可以表示为∠B,∠1可以表示为∠DAC,∠3可以表示为∠ECF,∠4可以表示为∠E,所以答案是:∠2,∠B,∠DAC,∠ECF,∠E.小提示:本题考查了角的表示方法,理解角的表示方法是解题的关键.12、如图,OC是∠AOB的平分线,∠BOD=1∠COD,∠BOD=15°,则∠COD=_____,∠BOC=______,3∠AOB=______.答案:45°30°60°∠COD,∠BOD=15°可求出∠COD的度数,∠COD−∠BOD即可求∠BOC的度数,然后根分析:根据∠BOD=13据OC是∠AOB的平分线即可求出∠AOB的度数.∵∠BOD=1∠COD,∠BOD=15°,3∴∠COD=3∠BOD=45°;∴∠BOC=∠COD−∠BOD=45°−15°=30°;∵OC是∠AOB的平分线,∴∠AOB=2∠BOC=60°.所以答案是:45°;30°;60°.小提示:此题考查了角平分线的概念,角度之间的数量关系,解题的关键是熟练掌握角平分线的概念,角度之间的数量关系.13、由n个相同的小正方体堆成的几何体,其主视图、俯视图如图所示,则n的最大值是________.答案:13分析:根据主视图和俯视图得出几何体的可能堆放,从而即可得出答案.综合主视图和俯视图,从上往下数,底面最多有 2+2+3=7 个,第二层最多有1+1+2=4 个,第三层最多有1+0+1=2 个,则n的最大值是 7+4+2=13所以答案是:13.小提示:本题考查了三视图中的主视图和俯视图,掌握三视图的相关概念是解题关键.14、有一个正六面体骰子,放在桌面上,将骰子沿如图所示的方式滚动,每滚动90°算一次,则滚动第2021次后,骰子朝下一面的点数是_______.答案:2分析:观察图形知道第一次点数五和点二数相对,第二次点数四和点数三相对,第三次点数二和点数五相对,第四次点数三和点数四相对,第五次点数五和点二数相对,且四次一循环,从而确定答案.观察图形知道:第一次点数五和点二数相对,第二次点数四和点数三相对,第三次点数二和点数五相对,第四次点数三和点数四相对,第五次点数五和点二数相对,且四次一循环,∵2021÷4=505…1,∴滚动第2021次后与第一次相同,∴朝下的数字是5的对面2,所以答案是:2.小提示:本题考查了正方体相对两个面上的文字及图形类的变化规律问题,解题的关键是发现规律.15、如图,直线AB,CD相交于O,OE平分∠AOC,OF⊥OE,若∠BOD=46°,则∠DOF的度数为______°.答案:67分析:根据角平分线与角度的运算即可求解.∵∠BOD=46°,∴∠AOC=∠BOD=46°,∵OE平分∠AOC,∴∠COE=1∠AOC=23°,2又∵OF⊥OE,∴∠FOE=90°,∵∠COE+∠EOF+∠FOD=180°,∴∠FOD=180°−∠COE−∠EOF=180°−23°−90°=67°.所以答案是:67.小提示:此题主要考查角平分线的性质,解题的关键是熟知角度计算.解答题16、一个几何体是由若干个小正方体堆积而成的,从不同方向看到的几何体的形状图如图所示,在从上面看得到的形状图中标出相应位置小正方体的个数.答案:见解析分析:由俯视图可得该组合几何体最底层的小木块的个数,由主视图和左视图可得第二层和第三层小木块的个数,据此解答即可.小提示:本题考查对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.17、已知点A、B、C是数轴上的三点,点C表示数C,且点A、B表示的数a、b满足:(a+3)2+|5−b|=0.(1)当AC的长度为6个单位长度时,则a=,b=,.(2)在(1)条件下,点P、Q分别是AB、AC的中点,求PQ的长度是多少?(3)点M从点A出发以每秒4个单位长度的速度向点B运动,到达点B停留3秒钟后加快速度(仍保持匀速运动)返回到点A;点N从点O出发以每秒2个单位长度的速度向点B运动,到达点B后立即以相同速度返回到点O后停止;结果点M到点A比点N到点O晚1秒钟,设点M从出发到运动结束的整个过程时间记为t秒,求在整个运动过程中,当MN=1时t的值.答案:(1)−3,5,3或-9(2)7或1(3)1或2或3或5.5或5.75分析:(1)根据非负数的性质和两点间的距离公式即可求解;(2)根据中点坐标公式和两点间的距离公式即可求解;(3)根据题意先求出点N从出发到返回原点O并停止运动的时间,点M返回到点A时的速度,根据题意分情况讨论,即可求解.(1)解:∵(a+3)2+|5−b|=0,∴(a+3)2=0,|5−b|=0∴a=−3,b=5,又∵AC=6,∴c=3或−9所以答案是:−3,5,3或-9.(2)∵点P是AB的中点,∴点P表示的数是1,当点c=−9时,AC=6,∵点Q是AC的中点,∴点Q表示的数是-6∴PQ的长度是7同理可得:PQ的长度是1.(3)点N从出发到返回原点O并停止运动的时间为:5×2÷2=5(秒)点M从出发到运动结束的时间为:5+1=6(秒)点M从点A出发到达点B用时:8÷4=2(秒)点M从点B加快速度(仍保持匀速运动)返回到点A用时:6-2-3=1(秒)点M从点B加快速度(仍保持匀速运动)为:8÷1=8点M从点B开始加快速度返回点A时,点N到达点O并已停止①当M和N都向点B运动时:MN=2t-(4t-3)=1或4t-3-2t=1,t=1或t=2②当点M到达点B停留3秒时,点N正返回原点O,2t=5+1,t=3③当点M从点B加快速度(仍保持匀速运动)返回到点A时,此时点N已到原点O并停止距离点B为5,设点M从点B出发运动x秒时MN=1,则5−8x=1或8x-5=1x=0.5或x=0.75所以t=5+0.5=5.5或t=5+0.75=5.75∴当MN=1时t的值为1或2或3或5.5或5.75.小提示:本题考查了一元一次方程的应用、数轴以及绝对值,解题的关键是的熟练掌握非负数的性质和两点间的距离公式,找准等量关系,正确列出一元一次方程求解.18、如图1,货轮停靠在O点,发现灯塔A在它的东北(东偏北45°或北偏东45°)方向上.货轮B在码头O 的西北方向上.(1)仿照表示灯塔方位的方法,画出表示货轮B方向的射线;(保留作图痕迹,不写做法)(2)如图2,两艘货轮从码头O出发,货轮C向东偏北15°的OC的方向行驶,货轮D向北偏西15°的OD方向航行,求∠COD的度数;(3)令有两艘货轮从码头O出发,货轮E向东偏北x°的OE的方向行驶,货轮F向北偏西x°的OF方向航行,请直接用等式表示∠MOE与∠FOQ之间所具有的数量是.答案:(1)画图见解析;(2)∠COD=90°;(3)∠MOE+∠FOQ=180°.分析:(1)根据方向角西北方向上的度数,可得图;(2)根据余角的关系,可得∠COD的度数;(3)根据角的和差,∠MOE+∠FOQ=180°;(1)射线OB的方向就是西北方向,即货轮B所在的方向.(2)解:由已知可知,∠MOQ=90°,∠COQ=15°.所以,∠MOC=∠MOQ-∠COQ =75°.又因为∠DOM=15°,所以,∠COD=∠MOC+∠DOM =90°.(3)因为∠FOQ=∠FOM+∠MOQ=90°+x°,∠MOE=∠MOQ-∠QOE =90°-x°所以∠MOE+∠FOQ=180°.小提示:本题考查了作图-应用与设计作图,方向角,利用余角与角的和差的关系得出角的度数是解题关键.。

第四章图形认识的初步——知识总结+考点分析+典型例题(含答案)

第四章 图形认识初步【知识要点】4.1多姿多彩的图形1.⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧平面图形球体椎体(棱锥、圆锥)柱体(棱柱、圆柱)立体图形几何图形 2.研究立体图形的方法(1)平面展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形。

这样的平面图形称为相应立体图形的展开图。

(2)从不同的方向看(“三视图”)3.几何图形的形成:点动成线,线动成面,面动成体。

4.几何图形的结构:点、线、面、体组成几何图形。

点是构成图形的基本元素。

4.2直线、射线、线段1.点:表示一个物体的位置,通常用一个大写字母表示,如点A 、点B 。

2.直线(1)直线的表示方法:①可以用这条直线上任意两点的字母(大写)来表示;②用一个小写字母来表示。

(2)直线的基本性质:经过两点有一条直线,并且只有一条直线。

简述为,两点确定一条直线。

(3)直线的特征:①直线没有端点,不可量度,向两方无限延伸; ②直线没有粗细; ③两点确定一条直线;④两条直线相交有唯一一个交点。

(4)点与直线的位置关系:①点在直线上(也可以说这条直线经过这个点); ②点在直线外(也可以说直线不经过这个点)。

(5)两条直线的位置关系有两种——相交、平行 3.射线:直线上一点和它一旁的部分叫做射线。

(1)射线的表示方法:①用两个大写字母表示,表示端点的字母写在前面,在两个字母前加上“射线”; ②用一个小写字母表示。

(2)射线的性质:①射线是直线的一部分;②射线只向一方无限延伸,有一个端点,不能度量、不能比较长短; ③射线上有无穷多个点;④两条射线的公共点可能没有,可能只有一个,可能有无穷多个。

4.线段:直线上两点和它们之间的部分叫做线段。

(1)线段的特点:线段是直的,它有两个端点,它的长度是有限的,可以度量,可以比较长短。

(2)线段的表示方法:①用两个端点的大写字母表示; ②用一个小写字母表示。

(3)线段的基本性质:两点的所有连线中,线段最短。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第4章《图形的初步认识》易错题集(01):4.1生活中的立体图形
选择题
1、将一个小立方块作为基本单元,将10个基本单元排成“长条”,再用10个“长条”叠加起来组成一个长方体,最后用10个长方体构成一个“正方体”,则10个这样的“正方体”共有小正方块()
A、102个
B、103个
C、104个
D、105个
2、观察下图,把左边的图形绕着给定的直线旋转一周后可能形成的立体图形是()
A、B、
C、D、
3、(2009•孝感)如图,把一个棱长为3的正方体的每个面等分成9个小正方形,然后沿每个面正中心的一个正方形向里挖空(相当于挖去7个小正方体),所得到的几何体的表面积是()
A、78
B、72
C、54
D、48
4、某同学用牙膏纸盒制作一个如图所示的笔筒,笔筒的筒底为长4.5厘米,宽3.4厘米的矩形.则该笔筒最多能放半径为0.4厘米的圆柱形铅笔()
A、20支
B、21支
C、22支
D、25支
填空题
5、有一个正方体,将它的各个面上分别标上字母a,b,c,d,e,f.有甲,乙,丙三个同学站在不同的角度观察,结果如图.问这个正方体各个面上的字母各是什么字母?即:
a对面是_________;
b对面是_________;
c对面是_________;
d对面是_________;
e对面是_________;
f对面是_________.
6、现要用铁丝做一个长、宽、高为别为3cm、4cm、5cm的长方体的框架,那么总共需要铁丝_________cm,再用纸在外面糊上(不计接缝),那么需要纸_________cm2.
答案与评分标准
选择题
1、将一个小立方块作为基本单元,将10个基本单元排成“长条”,再用10个“长条”叠加起来组成一个长方体,最后用10个长方体构成一个“正方体”,则10个这样的“正方体”共有小正方块()
A、102个
B、103个
C、104个
D、105个
考点:认识立体图形。

分析:根据题意,知每一个“长条”有10个小正方块,则10个“长条”叠加起来组成一个长方体时,有10×10个小正方块,用10个长方体构成一个“正方体”时,有10×10×10个小正方块,10个这样的“正方体”共有小正方块10×10×10×10个.
解答:解:根据题意,得
10个这样的“正方体”共有小正方块10×10×10×10=104个.
故选C.
点评:此题要逐步求出每个立体图形所需要的小正方块的个数.
2、观察下图,把左边的图形绕着给定的直线旋转一周后可能形成的立体图形是()
A、B、
C、D、
考点:点、线、面、体。

分析:根据面动成体的原理以及空间想象力即可解.
解答:解:由图形可以看出,左边的长方形的竖直的两个边与已知的直线平行,因而这两条边旋转形成两个柱形表面,因而旋转一周后可能形成的立体图形是一个管状的物体.
故选D.
点评:命题立意:考查学生立体图形的空间想象能力及分析问题,解决问题的能力.
3、(2009•孝感)如图,把一个棱长为3的正方体的每个面等分成9个小正方形,然后沿每个面正中心的一个正方形向里挖空(相当于挖去7个小正方体),所得到的几何体的表面积是()
A、78
B、72
C、54
D、48
考点:几何体的表面积。

专题:应用题。

分析:如图所示,一、棱长为3的正方体的每个面等分成9个小正方形,那么每个小正方形的边长是1,所以每个小正方面的面积是1;二、正方体的一个面有9个小正方形,挖空后,这个面的表面积增加了4个小正方形,即:每个面有12个小正方形,6个面就是6×12=72个,那么几何体的表面积为72×1=72.
解答:解:如图所示,周边的六个挖空的正方体每个面增加4个正方形,则每个面的正方形个数为12个,则表面积为12×6×1=72.
故选B.
点评:本题关键要能够想象出物体表面积的变化情况,主要考查空间想象能力.
4、某同学用牙膏纸盒制作一个如图所示的笔筒,笔筒的筒底为长4.5厘米,宽3.4厘米的矩形.则该笔筒最多能放半径为0.4厘米的圆柱形铅笔()
A、20支
B、21支
C、22支
D、25支
考点:几何体的表面积。

专题:应用题。

分析:此题不能用面积去除面积,而应该用底面长除以直径,再用宽除以直径,用两个商相乘,得出结果.
解答:解:若按如图方法摆放,
则△ABC为等腰三角形,其高为AD,
则AB=0.8=,BD=0.4+=,
由勾股定理,得AD=≈0.65276,
∵0.8+4×0.65276=3.411>3.4,这种情况不可能,
故选C.
点评:此处应注意不足0.8厘米放不下一支.
填空题
5、有一个正方体,将它的各个面上分别标上字母a,b,c,d,e,f.有甲,乙,丙三个同学站在不同的角度观察,结果如图.问这个正方体各个面上的字母各是什么字母?即:
a对面是e;
b对面是d;
c对面是f;
d对面是b;
e对面是a;
f对面是c.
考点:认识立体图形。

分析:从前2个图形看,和a相邻的有f,d,b,c,那么和它相对的就是e,按照相邻和所给图形得到其他即可.
解答:解:根据三个图形的数字,可推断出来,a对面是e;b对面是d;c对面是f;d对面是b;e对面是a;f对面是c.
点评:本题主要考查学生的空间想象能力和推理能力,也可动手操作得到.
6、现要用铁丝做一个长、宽、高为别为3cm、4cm、5cm的长方体的框架,那么总共需要铁丝48cm,再用纸在外面糊上(不计接缝),那么需要纸94cm2.
考点:几何体的表面积。

专题:应用题。

分析:求长方体的框架总共需要多少铁丝,就是求长方体的棱长总和,求用纸在外面糊上(不计接缝)需要多少纸实际上就是求长方体的表面积.利用求棱长总和、表面积的计算方法直接计算即可.
解答:解:共需铁丝(3+4+5)×4=12×4=48cm;
需要纸(3×4+3×5+4×5)×2
=47×2
=94cm2.
故答案为48、94.
点评:此题用到的知识点有:长方体的棱长总和=(长+宽+高)×4;
长方体的表面积=(长×宽+长×高+宽×高)×2.
参与本试卷答题和审题的老师有:
lanchong;lf2-9;HJJ;zhjh;bjf;lbz;feng;kuaile。

(排名不分先后)菁优网
2011年10月8日。

相关文档
最新文档