人教版七年级数学下册《5.2.2平行线的判定》同步练习(含答案)

合集下载

人教版七年级数学下册平行线的判定同步练习题(含解析)

人教版七年级数学下册平行线的判定同步练习题(含解析)

人教版七年级数学下册平行线的判定同步练习题(含解析)学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图所示,点E在线段AC的延长线上,下列条件中能判断AB CD的是()A.∠3=∠A B.∠1=∠2C.∠D=∠DCE D.∠D+∠ACD=180°2.为增强学生体质,感受中国的传统文化,学校将国家级非物质文化遗产“抖空竹”引入阳光特色大课间,小聪把它抽象成图2的数学问题:已知AB∠CD,∠EAB=80°,ECD∠=︒,则∠E的度数是()110A.30°B.40°C.60°D.70°3.如图,直线a,b被直线c所截,下列条件不能判定直线a与b平行的是()A .∠1=∠3B .∠2+∠3=180°C .∠1=∠4D .∠1+∠4=180° 4.如图,点E 在AC 的延长线上,下列条件能判断AB ∥CD 的是( )A .∠3=∠4B .∠D =∠DCEC .∠D +∠ACD =180° D .∠1=∠25.如图,下面条件不能判断EF AC ∥的是( )A .12∠=∠B .13180∠+∠=︒C .4C ∠=∠D .3180C ∠+∠=︒ 6.如图,要使AD BC ∥,则需要添加的条件是( )A .A CBE ∠=∠B .AC ∠=∠ C .C CBE∠=∠ D .180A D ︒∠+∠=二、填空题7.如图,请你添加一个条件________,使AB ∠CD .8.两条平行直线被第三条直线所截,内错角相等.简称:两直线平行,内错角_________.如图,因为a ∠b (已知) ,所以∠1=_____(两直线平行,内错角相等) .9.如图所示,在下列条件中,不能判断12l l //的有___________.∠.13∠=∠ ∠.23∠∠= ∠.45180∠+∠=︒ ∠.24180∠+∠=︒10.a 、b 、c 是直线,且a ∠b ,b ∠c ,则a 与c 的位置关系是________.11.如图,已知∠1=30°,∠2或∠3满足条件_________,则a ∠b .三、解答题12.如图,在∠ABC 中,AD 是BC 边上的中线,F ,E 分别是AD 及其延长线上的点.(1)如果CF //BE ,说明:∠BDE ∠∠CDF ;(2)若CF ,BE 是∠ABC 的BC 边上的中线AD 及其延长线的垂线,垂足分别为E 、F ,请猜想BF 与CE 的位置关系?并说明理由.13.如图,点A ,D ,C ,F 在同一条直线上,AB =DE ,BC =EF .有下列三个条件:∠AC =DF ,∠∠ABC =∠DEF ,∠∠ACB =∠DFE .(1)请在上述三个条件中选取一个条件,使得∠ABC ∠∠DEF .你选取的条件为(填写序号)______(只需选一个条件,多选不得分),你判定∠ABC ∠∠DEF 的依据是______(填“SSS ”或“SAS ”或“ASA ”或“AAS ”);(2)利用(1)的结论∠ABC ∠∠DEF .求证:AB∥DE .14.下列推理是否正确?为什么?(1)如图,∠12∠=∠,∠12l l ;(2)如图,∠45180∠+∠=︒,∠34l l ∥;(3)如图,∠24∠∠=,∠34l l ∥;(4)如图,∠36180∠+∠=︒,∠12l l .15.如图,将ABC 绕点B 顺时针旋转60度得到DBE ∆,点C 的对应点E 恰好落在AB 的延长线上,连接AD .(1)求证://BC AD ;(2)若AB=4,BC=1,求A ,C 两点旋转所经过的路径长之和.16.如图,已知∠ABC ∠∠DEF ,∠A =85°,∠B =60°,AB =8,EH =2(1)求角F 的度数与DH 的长;(2)求证:AB DE ∥.17.如图,在四边形ABCD 中,,,A C B D AB ∠=∠∠=∠与CD 有怎样的位置关系?为什么?BC 与AD 呢?18.已知:如图,BE 平分∠ABC ,∠1=∠2.求证:BC //DE .19.请补全证明过程及推理依据.已知:如图,BC //ED ,BD 平分∠ABC ,EF 平分∥AED .求证:BD ∠EF .证明:∠BD平分∥ABC,EF平分∥AED,∠∠1=12∥AED,∠2=12∥ABC(______________)∠BC∠ED(________)∠∥AED=________(________________)∠12∥AED=12∥ABC∠∠1=________∠BD∠EF(________________).参考答案:1.B【分析】根据平行线的判定条件逐一判断即可.【详解】A.由∠3=∠A 无法判断AB CD ,故A 不符合题意;B.由∠1=∠2能判断AB CD ∥,故B 符合题意;C.由∠D =∠DCE 可以判断AC BD ∥,不能判断AB CD ∥,故C 不符合题意;D.∠D +∠ACD =180°可以判断AC BD ∥,不能判断AB CD ∥,故D 不符合题意. 故选:B .【点睛】本题主要考查平行线的判定,熟知平行线的判定条件,是解题的关键. 2.A【分析】过点E 作//EF AB ,先根据平行线的性质可得100AEF ∠=︒,再根据平行公理推论、平行线的性质可得70CEF ∠=︒,然后根据角的和差即可得.【详解】解:如图,过点E 作//EF AB ,80EAB ∠=︒,180100A E B E A F ∠=︒-=∴∠︒,//AB CD ,//CD EF ∴,180CEF ECD ∴∠+∠=︒,110ECD ∠=︒,18070CEF ECD ∴∠=︒-∠=︒,1007030AEC AEF CEF ∴∠=∠-∠=︒-︒=︒,故选:A .【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的性质是解题关键. 3.D【分析】同位角相等,两直线平行,同旁内角互补,两直线平行,根据平行线的判定方法逐一分析即可.【详解】解:13,a b ∥(同位角相等,两直线平行),故A 不符合题意; ∠2+∠3=180°,a b ∥(同旁内角互补,两直线平行)故B 不符合题意;4=3,1=4,13,a b ∥(同位角相等,两直线平行)故C 不符合题意;∠1+∠4=180°,1,4∠∠不是同旁内角,也不能利用等量代换转换成同旁内角,所以不能判定,a b ∥ 故D 符合题意;故选D【点睛】本题考查的是平行线的判定,对顶角相等,掌握“平行线的判定方法”是解本题的关键.4.D【分析】根据平行线的判定条件逐一判断即可.【详解】解:A 、由∠3=∠4,可以利用内错角相等,两直线平行得到BD AC ∥,不能得到AB CD ∥,不符合题意;B 、由∠D =∠DCE ,可以利用内错角相等,两直线平行得到BD AC ∥,不能得到AB CD ∥,不符合题意;C 、由∠D +∠ACD =180°,可以利用内错角相等,两直线平行得到BD AC ∥,不能得到AB CD ∥,不符合题意;D 、由∠1=∠2,可以利用内错角相等,两直线平行得到得到AB CD ∥,符合题意; 故选D .【点睛】本题主要考查了平行线的判定,熟知内错角相等,两直线平行,同位角相等,两直线平行,同旁内角互补,两直线平行是解题的关键.5.B【分析】根据平行线的判定条件逐一判断即可.【详解】解:A 、由∠1=∠2,可以判断EF AC ∥(内错角相等,两直线平行),故此选项不符合题意;B 、由∠1+∠3=180°,可以判断∥DE BC (同旁内角互补,两直线平行),不能判断EF AC ∥,故此选项符合题意;C 、由4C ∠=∠,可以判断EF AC ∥(同位角相等,两直线平行),故此选项不符合题意;D 、由3180C ∠+∠=︒,可以判断EF AC ∥(同旁内角互补,两直线平行),故此选项不符合题意;故选B .【点睛】本题主要考查了平行线的判定,熟知平行线的判定条件是解题的关键. 6.A【分析】依据同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行,即可得到添加的条件.【详解】解:A .∠∠A =∠CBE ,∠AD ∠BC ,符合题意;B .由∠A =∠C 无法得到AD ∠BC ,不符合题意;C .由∠C =∠CBE ,只能得到AB ∠CD ,无法得到AD ∠BC ,不符合题意;D .由∠A +∠D =180°,只能得到AB ∠CD ,无法得到AD ∠BC ,不符合题意;故选:A .【点睛】本题主要考查了平行线的判定,解题时注意:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.7.∠1=∠5.【分析】根据平行线的判定进行解答,可以考虑同位角相等,或内错角相等,或同旁内角互补.【详解】添加∠1=∠5∠∠1=∠5,∠AB∠CD .故答案为∠1=∠5【点睛】本题属于开放题,主要考查了平行线的判定,解决问题的关键是掌握平行线的判定方法.8. 相等 ∠2【解析】略9.∠∠##∠∠【分析】根据平行线的判定进行解答即可得.【详解】解:∠∠13∠=∠,∠12//l l (内错角相等,两直线平行),说法正确,不符合题意;∠∠2∠和3∠既不是同位角,也不是内错角,∠不能根据23∠∠=判定12//l l ,说法错误,符合题意;∠∠45∠∠,为同位角,45180∠+∠=︒∠12l l ,不一定平行,符合题意;∠∠24180∠+∠=︒,∠12//l l (同旁内角互补,两直线平行),说法正确,不符合题意;故答案为:∠∠.【点睛】本题考查了平行线的判定,解题的关键是熟记并理解平行线的判定. 10.互相垂直【详解】且a ∠b ,b ∠c ,a ∠c.故答案为互相垂直.11.∠2=150°或∠3=30°【解析】略12.(1)见解析(2)BF //CE ,证明见解析【分析】(1)根据已知条件,通过两角及其夹边对应相等即可证明∠BDE ∠∠CDF ; (2)先证CF //BE ,利用(1)中结论得△BDE ∠△CDF ,推出DF=DE ,利用SAS 证明△BDF ∠△CDE ,推出FBD ECD ﹦,利用内错角相等,两直线平行,可得BF //CE . (1)证明:∠CF //BE ,∠∠FCD ﹦∠EBD .∠AD 是BC 边上的中线,∠CD BD =.在△BDE 和△CDF 中,EBD FCD BD CDEDB FDC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∠△BDE ∠△CDF ()ASA .(2)解:BF //CE .理由如下:如图,连接BF ,CE .∠ CF ∠AD 于F ,BE ∠AD 于E ,∠CF //BE .由(1)的结论可知△BDE ∠△CDF ,∠DF DE =.∠AD 是BC 边上的中线,∠BD =CD .在△BDF 和△CDE 中,DF DE BDF CDE BD CD =⎧⎪∠=∠⎨⎪=⎩,∠△BDF ∠△CDE ()SAS .∠FBD ECD ∠=∠,∠BF //CE .【点睛】本题考查全等三角形的判定与性质,平行线的性质与判定,三角形中线的定义等,熟练掌握全等三角形的判定方法、平行线的性质定理和判定定理是解题的关键. 13.(1)∠,SSS(2)见解析【分析】(1)根据SSS 即可证明∠ABC ∠∆DEF ,即可解决问题;(2)根据全等三角形的性质可得可得∠A =∠EDF ,再根据平行线的判定即可解决问题. (1)解:在∠ABC 和∠DEF 中,AC DF AB DE BC EF =⎧⎪=⎨⎪=⎩,∠∠ABC ∠∠DEF (SSS ),∠在上述三个条件中选取一个条件,使得∠ABC ∠∠DEF ,选取的条件为∠,判定∠ABC ∠∠DEF 的依据是SSS .(注意:只需选一个条件,多选不得分) 故答案为:∠,SSS ;(2)证明:∠∠ABC ∠∠DEF .∠∠A =∠EDF ,∠AB∥DE .【点睛】本题考查了平行线的性质和全等三角形的性质,和判定定理,能熟记全等三角形的判定定理是解此题的关键.14.(1)正确;理由见解析;(2)不正确;理由见解析;(3)正确;理由见解析;(4)正确;理由见解析.【分析】(1)1,2∠∠是12,l l 被4l 所截形成的同位角,再利用同位角相等,两直线平行可判断; (2)4,5∠∠是12,l l 被3l 所截形成的同旁内角,再利用同旁内角互补,两直线平行可判断; (3)2,4∠∠是34,l l 被2l 所截形成的内错角,再利用内错角相等,两直线平行可判断; (4)3,6∠∠是12,l l 被4l 所截形成的同旁内角,再利用同旁内角互补,两直线平行可判断;【详解】解:(1)正确,理由:同位角相等,两直线平行;(2)不正确,因为由“45180∠+∠=︒”只能推出“12//l l ”,推不出“34//l l ”;(3)正确,理由:内错角相等,两直线平行;(4)正确,理由:同旁内角互补,两直线平行.【点睛】本题考查的是平行线的判定,掌握“平行线的判定方法”是解题的关键.15.(1)见解析;(2)53π 【分析】(1)先利用旋转的性质证明∠ABD 为等边三角形,则可证60DAB ︒∠=,即,CBE DAB ∠=∠再根据平行线的判定证明即可.(2)利用弧长公式分别计算路径,相加即可求解.【详解】(1)证明:由旋转性质得:,60ABC DBE ABD CBE ︒∆≅∆∠=∠=,AB BD ABD ∴=∴∆是等边三角形所以60DAB ︒∠=,CBE DAB ∴∠=∠∠//BC AD ;(2)依题意得:AB=BD=4,BC=BE=1,所以A ,C 两点经过的路径长之和为60460151801803πππ⨯⨯+=. 【点睛】本题考查了旋转的性质、等边三角形的判定与性质、平行线的判定、弧长公式等知识,熟练掌握这些知识点之间的联系及弧长公式是解答的关键.16.(1)35°;6(2)见解析【分析】(1)根据三角形内角和定理求出∠ACB ,根据全等三角形的性质得出AB =DE ,∠F =∠ACB ,即可得出答案;(2)根据全等三角形的性质得出∠B =∠DEF ,再根据平行线的判定即可证得结论. (1)解:∠∠A =85°,∠B =60°,∠∠ACB =180°-∠A -∠B =180°-85°-60°=35°,∠∠ABC ∠∠DEF ,AB =8,∠∠F =∠ACB =35°,DE =AB =8,∠EH =2,∠DH =DE -EH =8-2=6;(2)证明:∠∠ABC ∠∠DEF ,∠∠B =∠DEF ,∠AB DE ∥.【点睛】本题考查了全等三角形的性质,三角形的内角和定理,平行线的判定的应用,解此题的关键是能根据全等三角形的性质得出AB =DE ,∠B =∠DEF ,∠ACB =∠F ,注意:全等三角形的对应边相等,对应角相等.17.//,//AB CD BC AD ,见解析【分析】四边形ABCD 内角和360°,即360A B C D ︒∠+∠+∠+∠=,因为C A B D ∠=∠∠=∠、,所以180A D ︒∠+∠=,所以//AB CD ,同理//BC AD . 【详解】四边形ABCD 内角和360°∴360A B C D ︒∠+∠+∠+∠=C A BD ∠=∠∠=∠、∴180A D ︒∠+∠=∴//AB CD同理可得://BC AD∴////AB CD BC AD ,【点睛】本题主要考查了四边形内角和以及平行线的判定,掌握该性质判定是解题的关键.18.见解析【分析】由BE 平分∠ABC ,可得∠1=∠3,再利用等量代换可得到一对内错角相等,即∠2=∠3,即可证明结论.【详解】证明:∠BE 平分∠ABC ,∠∠1=∠3,∠∠1=∠2,∠∠2=∠3,∠BC //DE .【点睛】本题主要利用了角平分线的性质以及内错角相等、两直线平行等知识点,灵活运用平行线的判定定理成为解答本题的关键.19.角平分线的定义;已知;∠ABC ;两直线平行,同位角相等;∠2;同位角相等,两直线平行【分析】根据角平分线的定义得出∠1=12∥AED ,∠2=12∠ABC ,根据平行线的性质定理得出∠AED =∠ABC ,求出∠1=∠2,再根据平行线的判定定理推出即可.【详解】证明:∠BD 平分∠ABC ,EF 平分∠AED , ∠∠1=12∥AED ,∠2=12∠ABC (角平分线的定义)∠BC ∠ED (已知)∠∠AED =∠ABC (两直线平行,同位角相等)∠12∠AED=12∠ABC∠∠1=∠2∠BD∠EF(同位角相等,两直线平行).故答案为:角平分线的定义;已知;∠ABC;两直线平行,同位角相等;∠2;同位角相等,两直线平行.【点睛】本题考查了角平分线的定义,平行线的性质定理和判定定理等知识点,能熟记平行线的性质定理和判定定理是解此题的关键.。

人教版七年级数学下册 5.2.2平行线的判定 同步练习题含答案

人教版七年级数学下册 5.2.2平行线的判定 同步练习题含答案

平行线的判定一、单选题1.如图,能判定EB∥AC的条件是( )A.∠C=∠ABE B.∠A=∠EBDC.∠A=∠ABE D.∠C=∠ABC2.如图,可以判定AB∥CD的条件是()A.∠1=∠2B.∠3=∠4C.∠D=∠5D.∠BAD+∠B=180° 3.下列说法中,正确的个数是()①两点之间,直线最短.②三条直线两两相交,最少有三个交点.③射线CD 和射线DC 是同一条射线.④同角(或等角)的补角相等.⑤在同一平面内,垂直于同一条直线的两条直线互相平行.⑥绝对值等于它本身的数是非负数.A.3 个B.4 个C.5 个D.6 个4.如图,下列条件中不能使a∥b的是()A.∠1=∠3B.∠2=∠3C.∠4=∠5D.∠2+∠4=180°5.如图,能判断AB∥CD 的条件是()A.∠1=∠4B.∠3=∠2C.∠3=∠1D.∠3=∠4 6.如图,下列能判定AB∥CD的条件有( )个.(1) ∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.A.1 B.2 C.3 D.47.如图所示,AE 平分∠BAC ,CE 平分∠ACD ,不能判定AB / /CD 的条件是()A.∠1 =∠2 B.∠1+∠2 = 90︒C.∠3 +∠4 = 90︒ D.∠2 +∠3 = 90︒8.如图,点D ,E,F 分别在AB,BC,AC 上,且EF∥AB,要使DF∥BC,只需添加条件( )A.∠1=∠2B.∠1=∠DFE C.∠1=∠AFD D.∠2=∠AFD二、填空题9.如图,当∠1=∠时,AB∥CD;当∠D+∠=180°时,AB∥CD;当∠B=∠时,AB∥CD.10.如图:请你添加一个条件可以得到DE / / AB11.如图,若满足条件,则有AB / /CD .(要求:不再添加辅助线,只需填一个答案即可)12.如图,∠1=∠2,∠2=∠C,则图中互相平行的直线有.13.如图,若∠1=∠2,则∥,依据是.三、解答题14.如图,∠CDA=∠CBA,DE 平分∠CDA,BF 平分∠CBA,且∠ADE=∠AED.试说明:DE∥FB.15.如图,已知∠1 =∠2 ,∠3 = 100 ,∠B = 80 ,判断CD 与EF 之间的位置关系,并说明理由.16.请将下列证明过程补充完整:已知:如图,AE平分∠B A C,C E平分∠A C D,且∠α+∠β=90°. 求证:A B∥C D.证明:∵C E平分∠A C D(已知),∴∠AC D=2∠α()∵A E平分∠B A C(已知),∴∠B A C=( )∵∠α+∠β=90°(已知),∴2∠α+2∠β=180°(等式的性质)∴∠A C D+∠B A C==( )∴AB∥C D.答案1.C2.B3.A4.C5.B6.C7.A8.B9.4 DAB 510.答案不唯一,当添加条件∠EDC=∠C或∠E=∠EBC或∠E+∠EBA=180°或∠A+∠ADE=180°时,都可以得到DE∥AB.11.∠A=∠3(答案不唯一).12.EF∥CG,AB∥CD13.AD BC 内错角相等,两直线平行14.∵D E 平分∠CDA,BF 平分∠CBA,1∴∠ADE=21∠CDA,∠ABF=2∠CBA,∵∠CDA =∠CBA,∴∠ADE=∠ABF,∵∠ADE=∠AED,∴∠AED=∠ABF,∴DE∥FB.15.解:EF / /CD ,理由如下:因为∠1 =∠2 ,所以AB / /CD ,又因为∠3 = 100 ,∠B = 80 ,所以∠3 +∠B = 180 ,所以AB / / EF ,所以EF / /CD .16.证明:∵CE平分∠ACD(已知),∴∠ACD=2∠α(角平分线的定义).∵AE平分∠BAC(已知),∴∠BAC=2∠β(角的平分线的定义).∴∠ACD+∠BAC=2∠α+2∠β(等式性质).即∠ACD+∠BAC=2(∠α+∠β).∵∠α+∠β=90°(已知),∴∠ACD+∠BAC=180°(等量代换).∴AB∥CD(同旁内角互补,两直线平行).故答案为:角平分线的定义,2∠β,等式性质,180°,等量代换,同旁内角互补,两直线平行。

人教版初中数学七年级下册第五章《平行线的性质与判定》同步练习(含答案)

人教版初中数学七年级下册第五章《平行线的性质与判定》同步练习(含答案)

《平行线的判定与性质》同步练习一、选择题(每小题只有一个正确答案)1.在同一平面内,两条直线可能的位置关系是 ( )A. 平行B. 相交C. 相交或平行D. 垂直2.一学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是()A. 第一次向左拐30°,第二次向右拐30°B. 第一次向右拐50°,第二次向左拐130°C. 第一次向左拐50°,第二次向右拐130°D. 第一次向左拐50°,第二次向左拐1303.已知如图直线a,b被直线c所截,下列条件能判断a∥b的是()A. ∠1=∠2B. ∠2=∠3C. ∠1=∠4D. ∠2+∠5=180°4.如图,点F,E分别在线段AB和CD上,下列条件能判定AB∥CD的是( )A. ∠1=∠2B. ∠1=∠4C. ∠4=∠2D. ∠3=∠45.如图,图中给出了过直线外一点作已知直线的平行线的方法,其依据的是()A. 同位角相等,两直线平行B. 同旁内角互补,两直线平行C. 内错角相等,两直线平行D. 同平行于一条直线的两直线平行6.若∠α与∠β的两边分别平行,且∠α=(2x+10)°,∠β=(3x﹣20)°,则∠α的度数为()A. 70°B. 86°C. 70°或86°D. 30°或38°7.如图,C岛在A岛的北偏东50°方向,C岛在B岛的北偏西40°方向,则从C岛看A,B 两岛的视角∠ACB等于( )A. 90°B. 80°C. 70°D. 60°8.如图,直线EF 分别与直线AB ,CD 相交于点G ,H ,已知∠1=∠2=50°,GM 平分∠HGB 交直线CD 于点M .则∠3等于( )A. 60°B. 65°C. 70°D. 130°9.给出下列说法:(1)两条直线被第三条直线所截,同位角相等;(2)平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交; (3)相等的角是对顶角;(4)从直线外一点到这条直线的垂线段,叫做这点到直线的距离. 其中,正确的个数有() A. 1 B. 2 C. 3 D. 410.如图,AB EF ,90C ∠=︒,则α、β、γ的关系为().A. βαγ=+B. 180αβγ++=︒C. 90βγα+-=︒D. 90αβγ+-=︒不存在二、填空题11.如图,要使AD∥BF,则需要添加的条件是_______________(写一个即可)12.同一平面内有四条直线,,,a b c d ,若a ∥b ,a ⊥c ,b ⊥d ,则直线,c d 的位置关系_________.13.如图,AB∥CD,∠1=50°,∠2=110°,则∠3=____________.14.如图,ABCD 为一长条形纸带,//AB CD ,将ABCD 沿EF 折叠,A 、D 两点分别与'A 、'D 对应.若150∠=︒,则2∠=_____.15.如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=23°,那么∠2=__°.三、解答题16.如图,已知∠ABC=∠ADC,BF,DE分别平分∠ABC与∠ADC,∠1=∠3,试说明:AB∥DC.17.如图,在四边形ABCD中,延长AD至E,已知AC平分∠DAB,∠DAB=70°,∠1=35°.(1)求证:AB∥CD;(2)求∠2的度数.18.如图,已知AD∥BC,∠1=∠2,要说明∠3+∠4=180°,请完善说明过程,并在括号内填上相应依据.解:∵AD∥BC ( ) ,∴∠1=∠3 ( ),∵∠1=∠2(已知),∴∠2=∠3 ( ),∴____∥____ ( ),∴∠3+∠4=180°( ) .19.如图,在四边形ABCD中,∠D=100°,CA平分∠BCD,∠ACB=40°,∠BAC=70°,延长BA至点E.(1)AD与BC平行吗?试写出推理过程;(2)求∠DAC和∠EAD的度数.参考答案1.C2.A3.A4.B5.A6.D7.A8.B9.A10.D 11.∠ADC=∠DCF12.c∥d13.60°14.65°16.证明:∵BF平分∠ABC,∴∠1=∠FBC.∵DE平分∠ADC,∴∠2=∠ADE.∵∠ABC=∠ADC,∴∠1+∠FBC=∠2+∠ADE,∴2∠1=2∠2,即∠1=∠2.又∵∠1=∠3,∴∠2=∠3,∴AB∥DC.17.(1)证明:∵AC平分∠DAB,∴∠BAC=∠DAC=12∠DAB=12×70°=35°,又∵∠1=35°,∴∠1=∠BAC,∴AB∥CD;(2)∵AB∥CD,∴∠2=∠DAB=70°.18.解:∵AD∥BC(已知),∴∠1=∠3(两直线平行,内错角相等),∵∠1=∠2,∴∠2=∠3(等量代换),∴BE∥DF(同位角相等,两直线平行),∴∠3+∠4=180°(两直线平行,同旁内角互补).19.解:(1)AD与BC平行.∵CA平分∠BCD,∠ACB=40°,∴∠BCD=2∠ACB=80°,又∵∠D=100°,∴∠BCD+∠D=80°+100°=180°,∴AD∥BC.(2)由(1)知,AD∥BC,∴∠DAC=∠ACB=40°,∴∠EAD=∠180°-∠BAC-∠DAC=180°-70°-40°=70°.。

部编人教版初中数学七下--同步练习--5.2.2 平行线的判定--(附答案)

部编人教版初中数学七下--同步练习--5.2.2  平行线的判定--(附答案)

5.2.2 平行线的判定要点感知平行线的判定方法有:(1)定义:在同一平面内,两条__________的直线互相平行;(2)两条直线都与第三条直线__________,那么这两条直线也互相平行;(3)同位角相等,两直线__________;(4)内错角__________,两直线平行;(5)__________互补,两直线平行;(6)同一平面内,垂直于同一直线的两条直线互相__________.预习练习1-1 如图,∠1=60°,∠2=60°,则直线a与b的位置关系是__________.1-2如图所示,直线AB,CD被直线EF所截,若∠1=_____,则AB∥CD;若∠3=_____,则AB ∥CD;若∠2+_____=180°,则AB∥CD.1-3(2014·汕尾)已知a,b,c为平面内三条不同直线,若a⊥b,c⊥b,则a与c的位置关系是__________.知识点1 同位角相等,两直线平行1.(2014·滨州)如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是( )A.同位角相等,两直线平行B.内错角相等,两直线平行C.两直线平行,同位角相等D.两直线平行,内错角相等2.如图所示,直线a,b被直线c所截,现给出下列四个条件:①∠1=∠5;②∠1=∠7;③∠2+∠3=180°;④∠4=∠7.其中能说明a∥b的条件序号为( )A.①②B.①③C.①④D.③④知识点2 内错角相等,两直线平行3.(2014·汕尾)如图,能判定EB∥AC的条件是( )A.∠C=∠ABEB.∠A=∠EBDC.∠C=∠ABCD.∠A=∠ABE4.如图,请在括号内填上正确的理由:因为∠DAC=∠C(已知),所以AD∥BC(____________________________).5.如图,∠1=∠2,∠2=∠3,你能判断图中哪些直线平行,并说出理由.知识点3 同旁内角互补,两直线平行6.如图,已知∠1=70°,要使AB∥CD,则须具备的另一个条件是( )A.∠2=70°B.∠2=100°C.∠2=110°D.∠3=110°7.如图,装修工人向墙上钉木条.若∠2=100°,要使木条b与a平行,则∠1的度数等于__________.8.如图,一个零件ABCD需要AB边与CD边平行,现只有一个量角器,测得拐角∠ABC=120°,∠BCD=60°,这个零件合格吗?__________(填“合格”或“不合格”).9.(2013·永州)如图,下列条件中能判断直线l1∥l2的是( )A.∠1=∠2B.∠1=∠5C.∠1+∠3=180°D.∠3=∠510.(2013·铜仁)如图,在下列条件中,能判断AD∥BC的是( )A.∠DAC=∠BCAB.∠DCB+∠ABC=180°C.∠ABD=∠BDCD.∠BAC=∠ACD11.对于图中标记的各角,下列条件能够推理得到a∥b的是( )A.∠1=∠2B.∠2=∠4C.∠3=∠4D.∠1+∠4=180°12.如图,直线a、b被直线c所截,若满足____________________,则a、b平行.13.如图,用式子表示下列句子.(1)因为∠1和∠B相等,根据“同位角相等,两直线平行”,所以DE和BC平行;(2)因为∠1和∠2相等,根据“内错角相等,两直线平行”,所以AB和EF平行;(3)因为∠BDE和∠B互补,根据“同旁内角互补,两直线平行”,所以DE和BC平行.14.如图所示,推理填空:(1)∵∠1=__________(已知),∴AC∥ED(同位角相等,两直线平行).(2)∵∠2=__________(已知),∴AB∥FD(内错角相等,两直线平行).(3)∵∠2+__________=180°(已知),∴AC∥ED(同旁内角互补,两直线平行).15.(2013·厦门)如图,已知∠ACD=70°,∠ACB=60°,∠ABC=50°.试说明:AB∥CD.16.如图,直线EF分别与直线AB,CD相交于点P和点Q,PG平分∠APQ,QH平分∠DQP,并且∠1=∠2,说出图中哪些直线平行,并说明理由.挑战自我17.如图所示,AB⊥BD于点B,CD⊥BD于点D,∠1+∠2=180°,试问CD与EF平行吗?为什么?参考答案课前预习要点感知(1)不相交(2)平行(3)平行(4)相等(5)同旁内角(6)平行预习练习1-1 平行1-2 ∠2 ∠2 ∠41-3平行当堂训练1.A2.A3.D4.内错角相等,两直线平行5.DE∥BF,AB∥CD.理由如下:∵∠1=∠2,∴DE∥BF(同位角相等,两直线平行).∵∠2=∠3,∴∠1=∠3(等量代换).∴AB∥CD(内错角相等,两直线平行).6.C7.80°8.合格课后作业9.C 10.A 11.D12.答案不唯一,如:∠1=∠2或∠2=∠3或∠3+∠4=180°13.(1)∵∠1=∠B(已知),∴DE∥BC(同位角相等,两直线平行).(2)∵∠1=∠2(已知),∴EF∥AB(内错角相等,两直线平行). (3)∵∠BDE+∠B=180°(已知),∴DE∥BC(同旁内角互补,两直线平行).14.(1)∠C(2)∠BED(3)∠AFD15.∵∠ACD=70°,∠ACB=60°,∴∠BCD=130°.∵∠ABC=50°,∴∠BCD+∠ABC=180°.∴AB∥CD.16.PG∥QH,AB∥CD.∵PG平分∠APQ,QH平分∠DQP,∴∠1=∠GPQ=12∠APQ,∠PQH=∠2=12∠PQD.又∵∠1=∠2,∴∠GPQ=∠PQH,∠APQ=∠PQD. ∴PG∥QH,AB∥CD.17.CD∥EF.理由如下:∵AB⊥BD,CD⊥BD,∴AB∥CD.∵∠1+∠2=180°,∴AB∥EF.∴CD∥EF.。

人教版七年级数学 下册 5.2.2平行线的判定 同步测试题 有答案

人教版七年级数学 下册 5.2.2平行线的判定 同步测试题 有答案

5.2.2平行线的判定一选择题1、如下图,∠5=∠6,则可得出().A.AD//BC B.AB//DC C.AD//BC,D.都不对2 、如图,给出了过直线外一点作已知直线的平行线的方法,其依据是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.两直线平行,同位角相等3、下列说法正确的有〔〕①不相交的两条直线是平行线; ②在同一平面内,不相交的两条线段平行③过一点有且只有一条直线与已知直线平行; ④若a∥b,b∥c,则a与c不相交.A.1个B.2个C.3个D.4个4、在同一平面内,两条不重合直线的位置关系可能是〔〕A.平行或相交B.垂直或相交C.垂直或平行D.平行、垂直或相交5.如图所示,下列条件中,能判断AB∥CD的是( )A.∠BAD=∠BCDB.∠1=∠2;C.∠3=∠4D.∠BAC=∠ACD二填空题1.在同一平面内,直线a,b相交于P,若a∥c,则b与c的位置关系是______.2.在同一平面内,若直线a,b,c满足a⊥b,a⊥c,则b与c的位置关系是______.3、如图,光线AB、CD被一个平面镜反射,此时∠1=∠3,∠2=∠4,那么AB和CD的位置关系是______,BE和DF的位置关系是________ .4、如图,AB∥EF,∠ECD=∠E,则CD∥AB.说理如下:5.在同一平面内,直线a,b相交于P,若a∥c,则b与c的位置关系是______.6.在同一平面内,若直线a,b,c满足a⊥b,a⊥c,则b与c的位置关系是______.7.如图所示,BE是AB的延长线,量得∠CBE=∠A=∠C.(1)由∠CBE=∠A可以判断______∥______,根据是_________.(2)由∠CBE=∠C可以判断______∥______,根据是_________.三解答题1.如图,,. 证明:AB∥CD.2.如图,AD是一条直线,. .证明:BE∥CF.3. ①如图,哪两个角相等能判定直线AB∥CD?②如果∠1=∠2,能判定哪两条直线平行?③如果∠3=∠4,能判定哪两条直线平行?参考答案一选择题BABAD二填空题1.相交2.平等3.平行平行4.已知内错角相等,两直线平行已知平行于同一条直线的两直线平行5.相交6.互相平行7.(1)AD BC 同位角相等,两直线平行(2)DC AB •内错角相等,两直线平行三解答题1、∵∠1=70°∴∠3=∠1=70°∴∠1=∠2=70°∴ AB ∥CD2、∵∠2=115°∴∠BCF=65°∴∠1=∠BCF∴BE ∥CF3、①∠2=∠3 或∠4=∠5或∠1=∠2②AB ∥CD③EF∥ GD。

(新人教版)数学七年级下册:5.2.2《平行线的判定》例题及练习(含答案)

(新人教版)数学七年级下册:5.2.2《平行线的判定》例题及练习(含答案)

平行线的判定一、学习目标会用平行线的判定定理判定两直线平行。

1、会用同位角相等,或内错角相等,或同旁内角互补判定两条直线平行。

2、能利用平行线判定的三个方法,进行较简单的综合运用和推理。

二、要点指津我们已经学习了四种证明两条直线平行的方法。

同位角相等,两直线平行,内错角相等,两直线平行,同旁内角互补,两直线平行,如果两条直线都和第三条直线平行,那么这两条直线也平行。

这四种方法是解题中常用的,要根据题目的不同条件,灵活选择方法。

三、例题分析[例1]如图,直线a、b被直线c所截,∠1=∠2,判断a、b的位置关系,如何证明?解题思路:∠1和∠2不是同位角、不是内错角、不是同旁内角。

应借助对顶角,转化成如上两种角的关系,来证明a∥b。

解:∵∠1=∠2(已知),∠1=∠3(对顶角相等)∴∠2=∠3∴a∥b(同位角相等,两直线平行)[例2]我们不能直接利用定义来判断两直线是否平行,因此,我们寻找另外一些判断方法。

看模型,将木条a,c固定在一起,转动b木条,可以看到当b转动到不同的位置时,∠2的大小也随之变化,换句话说,当∠2从小变大时,直线b使从原来在右边与直线a相交,变到在左边与a相交,在这个过程中,存在一个与a不相交,即与a平行的位置,那么∠2多大时,a//b呢?如图所示提示:从上节画平行线的过程可以看出,画平行线的过程,实际上是过P点画∠DHG=∠BGF 的过程,而∠DHG和∠BGF正是直线AB,CD被EF截得的同位角,这就是说,如果同位角相等,那么两直线平行。

参考答案:公理:两条直线被第三条直线所截,如果同位角相等,那么两直线平行。

简单说成:同位角相等,两直线平行。

说明:上述情境中的∠2的大小应与a与c所夹的角相等时,a//b。

即同位角相等,两直线平行。

[例3]两条直线被第三条直线所截,同时得到同位角,内错角,同旁内角。

我们已经知道,由同位角相等,可以判定两条直线平行,那么能不能利用内错角或同旁内角判定两条直线平行呢?提示:直线a,b被C所截,∠1与∠2是同位角,∠2与∠3是内错角,∠1与∠3是对顶角,如果∠3=∠2,由∠3=∠1可得到∠1=∠2,于是a//b。

5.2.2 平行线的判定 人教版七年级数学下册分层作业(含答案)

5.2.2 平行线的判定 人教版七年级数学下册分层作业(含答案)

第五章相交线与平行线5.2.2 平行线的判定1.(2023秋·山西晋中·八年级统考期末)如图,将两个完全相同的三角板的斜边重合放在同一平面内,可以画出两条互相平行的直线.这样画的依据是()A.内错角相等,两直线平行B.两直线平行,内错角相等C.同位角相等,两直线平行D.两直线平行,同位角相等【答案】A【分析】如图,利用三角形板的特征可确定,然后根据内错角相等,两直线平行可判断.【详解】解:如图,由题意得,根据内错角相等,两直线平行可得.故选:A.【点睛】此题考查了平行线的判定,熟练掌握内错角相等,两直线平行是解题的关键.2.(2022秋·河南新乡·七年级校考期末)如图,下列推理中,正确的是()A.如果,那么B.如果,那么C.如果,那么D.如果,那么【答案】B【分析】根据平行线的判定条件逐一判断即可.【详解】解:A、由内错角相等,两直线平行可知如果,那么,不能得到,故此选项不符合题意;B、由内错角相等,两直线平行可知如果,那么,故此选项符合题意;C、由同旁内角互补,两直线平行可知,如果,那么,故此选项不符合题意;D、由同旁内角互补,两直线平行可知,如果,那么,故此选项不符合题意;故选B.【点睛】本题主要考查了平行线的判定,熟知同位角相等,两直线平行,内错角相等,两直线平行,同旁内角互补,两直线平行是解题的关键.3.(2022春·辽宁沈阳·七年级校考期中)如图,现有条件:①;②;③;④.能判断的条件有()A.①②B.②③C.①③D.②④【答案】C【分析】根据平行线的判定定理即可求解.【详解】①∵∴②∵∴③∵∴④∵∴∴能得到的条件是①③.故选C.【点睛】此题主要考查了平行线的判定,解题的关键是合理利用平行线的判定,确定同位角、内错角、同旁内角,平行线的判定:同旁内角互补,两直线平行;内错角相等,两直线平行;同位角相等,两直线平行.4.(2022春·四川成都·七年级校考阶段练习)如图,点在的延长线上,在下列四个条件中,不能判断的是()A.B.C.D.【答案】C【分析】直接利用平行线的判定方法分析选择符号题意的选项即可.【详解】解:A、,,故此选项不合题意;B、,,故此选项不合题意;C、,,故此选项符合题意;D、,,故此选项不合题意.故选:C.【点睛】此题主要考查了平行线的判定,正确掌握平行线的判定方法是解题关键.5.(2022秋·山东枣庄·八年级校考期末)如图,在下列给出的条件中,不能判定的是( )A.B.C.D.【答案】C【分析】根据平行线的判定定理,逐项判断即可求解.【详解】解:若,则,故本选项不符合题意;B、若,则,故本选项不符合题意;C、若,则,故本选项符合题意;D,若,则,故本选项不符合题意;故选:C【点睛】本题主要考查了平行线的判定,熟练掌握平行线的判定定理是解题的关键.6.(2023春·江苏·七年级专题练习)如图,点,,分别在的边,,上,连接,,在下列给出的条件中,不能判定的是( )A.B.C.D.【答案】C【分析】根据同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.依据平行线的判定方法进行判断即可.【详解】解:A.若,则(同旁内角互补,两直线平行);B.若,则(内错角相等,两直线平行);C.若,则(同位角相等,两直线平行);D.,则(同位角相等,两直线平行);故选:C.【点睛】本题主要考查了平行线的判定,掌握:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行是解决问题的关键.7.(2023春·七年级课时练习)如图,下列条件中不能判定的是( )A.B.C.D.【答案】D【分析】根据平行线的判定定理逐项分析判断即可求解.【详解】解:A. ,内错角相等两直线平行,能判定;B. ,同位角相等两直线平行,能判定;C. ,,可知,内错角相等两直线平行,能判定;D. 是同旁内角相等,但不一定互补,所以不能判定.故选:D.【点睛】本题考查了平行线的判定定理,掌握平行线的判定定理是解题的关键.8.(2022秋·内蒙古乌兰察布·七年级校考期末)如图是两条直线平行的证明过程,证明步骤被打乱,则下列排序正确的是( )如图,已知,,求证:与平行.证明:①:;②:,;③:;④:;⑤:.A.①②③④⑤B.②③⑤④①C.②④⑤③①D.③②④⑤①【答案】B【分析】先证明,结合,证明,从而可得结论.【详解】根据平行线的判定解答即可.证明:∵(已知),(邻补角的定义),∴(同角的补角相等).∵(已知),∴(等量代换),∴(同位角相等,两直线平行).所以排序正确的是②③⑤④①,故选:B.【点睛】本题考查的是补角的性质,平行线的判定,证明是解本题的关键.9.(2021春·浙江宁波·七年级校考期中)如图把三角板的直角顶点放在直线上,若,则当______度时,.【答案】【分析】由直角三角板的性质可知,当时,,得出即可.【详解】当当时,,理由如下:∵,∴,当时,,∴故答案为:【点睛】本题主要考查了平行线的判定方法、平角的定义;熟记同位角相等,两直线平行是解题的关键.10.(2021春·江苏南京·七年级南京钟英中学校考期中)如图,直线、被直线所截,,当______时,.【答案】115【分析】若,则,由可得的度数,从而求得的度数.【详解】解:如图,若要,则,∵,∴,∴.故答案为:115.【点睛】本题考查平行线的判定方法,熟记平行线判定方法是解题的关键.11.(2021春·浙江绍兴·七年级校考期中)如图,,,若使,则可将直线b绕点A 逆时针旋转___________度.【答案】42【分析】先根据邻补角进行计算得到,根据平行线的判定当b与a的夹角为时,,由此得到直线b绕点A逆时针旋转.【详解】解:如图:∵,∴,∵,∴当时,,∴直线b绕点A逆时针旋转.故答案为:42.【点睛】本题考查的是平行线的判定定理,熟知同位角相等,两直线平行是解答此题的关键.12.(2022春·江苏宿迁·七年级校考阶段练习)如图,条件______填写所有正确的序号一定能判定.①;②;③;④;【答案】①③④【分析】根据平行线的判定解答即可.【详解】解:∵,∴;①一定能判定,符合题意.∵,∴;③一定能判定,不合题意.∵,∴;③一定能判定,符合题意.∵,∴;④一定能判定,符合题意.故答案为:【点睛】此题主要考查了平行线的判定,关键是掌握平行线的判定定理.13.(2022春·山东泰安·七年级统考期中)如图,点在的延长线上,下列条件:①;②;③;④.其中能判定的是________.(将所有正确的序号都填入)【答案】①②③【分析】根据平行线的判定条件逐一判断即可.【详解】解:由∠C=∠5,可以判断(同位角相等,两直线平行),故①正确;由∠C+∠BDC=180°,可以判断(同旁内角互补,两直线平行),故②正确;由,可以判断(内错角,两直线平行),故③正确;由可以判断(内错角,两直线平行),不能判定,故④不正确;故答案为:①②③.【点睛】本题主要考查了平行线的判定,熟知平行线的判定条件是解题的关键.14.(2022春·山东枣庄·七年级统考期中)平行线在生活中应用很广泛,人们为了准确地画出平行线,往往利用三角尺和直尺按照下面的方法去做:第一步:作直线AB,并用三角尺的一条边贴住直线AB;第二步:用直尺紧靠三角尺的另一条边;第三步:沿直尺下移三角尺;第四步:沿三角尺的边作出直线CD.这样,就得到.请写出其中的道理:______.【答案】同位角相等,两直线平行【分析】根据作图过程可得∠1=∠2,根据平行线的判定可得答案.【详解】解:如下图所示,∵∠1=∠2,∴(同位角相等,两直线平行),故答案为:同位角相等,两直线平行【点睛】本题主要考查了复杂作图,关键是掌握同位角相等,两直线平行.15.(2022秋·山西临汾·七年级统考期末)阅读下面的解答过程,并填空.如图,,平分,平分,.求证:.证明:∵平分,平分,(已知)∴__________,_________.(角平分线的定义)又∵,(已知)∴∠____________=∠____________.(等量代换)又∵,(已知)∴∠____________=∠____________.(等量代换)∴.(____________)【答案】;;;;;;同位角相等,两直线平行【分析】根据角平分线的定义,等量代换,同位角相等两直线平行,联系证明过程,可推理出答案.【详解】证明:∵平分,平分,(已知)∴,.(角平分线的定义)又∵,(已知)∴.(等量代换)又∵,(已知)∴.(等量代换)∴.(同位角相等,两直线平行).【点睛】本题考查了平行线的判定,角平分线的定义,解决本题的关键是熟悉相关的几何定理,联系证明过程进行推导.16.(2022春·福建厦门·七年级统考期末)如图,,,.与平行吗?为什么?解:,理由如下:∵,(已知)∴,即.(垂直的定义)又∵,且,(已知)∴.(等量代换)∴.(____________)∴.(____________)【答案】,,同角的余角相等,同位角相等,两直线平行;【分析】先证明,,结合同角的余角相等可得,从而可得答案.【详解】解:,理由如下:∵,(已知)∴,即.(垂直的定义)又∵,且,(已知)∴.(等量代换)∴.(同角的余角相等)∴.(同位角相等,两直线平行)【点睛】本题考查的是垂直的定义,余角的性质,平行线的判定,熟练的证明是解本题的关键.17.(2023春·全国·七年级专题练习)已知:如图,于点C,于点D,.求证:.【答案】见详解【分析】根据垂直的定义得到,等量代换可得,再根据平行线的判定定理即可得到结论.【详解】解:∵,,∴,∴,∵,∴,∴.【点睛】本题考查了平行线的判定,余角的性质,熟练掌握平行线的判定定理是解题的关键.18.(2022秋·全国·八年级专题练习)如图,直线a,b直线c所截.(1)当∠1=∠3时,直线a,b平行吗?请说明理由.(2)当∠2+∠3=180°时,直线a,b平行吗?请说明理由.【答案】(1),理由见解析(2),理由见解析【分析】(1)根据等角的补角相等可得∠2=∠4,再根据同位角相等,两直线平行即可得a b;(2)根据同角的补角相等可得∠2=∠4,再根据同位角相等,两直线平行即可得a b;【详解】(1)解:如图,当∠1=∠3时,a b,理由如下:∵∠1+∠2=180°,∠3+∠4=180°,∠1=∠3,∴∠2=∠4,∴a b;(2)当∠2+∠3=180°时,a b,理由如下:∵∠2+∠3=180°,∠3+∠4=180°,∴∠2=∠4,∴a b;【点睛】本题考查了平行线的判定,解决本题的关键是熟练运用平行线的判定定理.1.(2023春·七年级单元测试)如图,下列说法中,正确的是()A.若,则B.若,则C.若,则D.若,则【答案】D【分析】根据平行线的判定条件逐一判断即可得到答案.【详解】解:A、,不能判断,选项错误;B、,可以判断,不能判断,选项错误;C、,可以判断,不能判断,选项错误;D、,可以判断,选项正确,故选D.【点睛】本题考查了平行线的判定,解题关键是掌握平行线的判定条件:①内错角相等,两直线平行;②同位角相等,两直线平行;③同旁内角互补,两直线平行.2.(2023春·全国·七年级专题练习)如图,点在的延长线上,下列条件不能判定的是()A.B.C.D.【答案】C【分析】根据平行线的判定定理对各选项进行逐一分析即可.【详解】解:A.根据内错角相等,两直线平行可判定,故此选项不合题意;B.根据同位角相等,两直线平行可判定,故此选项不合题意;C.根据内错角相等,两直线平行可判定,无法判定,故此选项符合题意;D.根据同旁内角互补,两直线平行可判定,故此选项不合题意;故选:C.【点睛】本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.3.(2023春·七年级课时练习)如图,,下列结论正确的是( )①若,则;②若,则;③若,则;④若,则.A.①②B.②④C.②③④D.②【答案】B【分析】根据平行线的判定定理,即可一一判定.【详解】解:由,不能判定,故①不符合题意;,,,,故②符合题意;由,,不能判定,故③不符合题意;,,,,故④符合题意;故选:B.【点睛】本题考查了平行线的判定定理,熟练掌握和运用平行线的判定定理是解决本题的关键.4.(2022春·河北邯郸·七年级校考期中)将一副三角板按如图所示方式放置.结论Ⅰ:若∠1=45°,则有;结论Ⅱ:若∠1=30°,则有;下列判断正确的是()A.I和Ⅱ都对B.I和Ⅱ都不对C.Ⅰ不对Ⅱ对D.Ⅰ对Ⅱ不对【答案】D【分析】根据三角板中角的和差关系,当结论Ⅰ时得到∠B+∠BAE=180°,根据平行线的判定即可得到结论;当结论Ⅱ时,无法得出结论,结合选项逐个判断即可.【详解】解:如图所示:结论Ⅰ:∵∠1=45°,∴∠2=90°−∠1=45°,∴∠BAE=90°+45°=135°,∴∠B+∠BAE=45°+135°=180°,∴BC AE,故结论Ⅰ正确;结论Ⅱ:∵∠1=30°,∴∠2=90°−∠1=60°,∴∠BAE=90°+60°=150°,∴∠E+∠BAE=60°+150°=210°,∴无法得到DE AB,故结论Ⅱ错误,故选:D.【点睛】本题考查平行线的判定,等腰直角三角形等知识点,能灵活运用定理进行推理是解题的关键.5.(2022春·新疆乌鲁木齐·七年级乌鲁木齐市第九中学校考期中)如图,下列判断中错误的是()A.因为∠1=∠2,所以B.因为∠5=∠BAE,所以C.因为∠3=∠4,所以D.因为∠5=∠BDC,所以【答案】B【分析】根据平行线的判定定理求解判断即可.【详解】因为∠1=∠2,所以AE∥BD,故A正确,不符合题意;因为∠5=∠BAE,所以AB∥CD,故B错误,符合题意;因为∠3=∠4,所以AB∥CD,故C正确,不符合题意;因为∠5=∠BDC,所以AE∥BD,故D正确,不符合题意;故选:B.【点睛】此题考查了平行线的判定,熟记平行线的判定定理是解题的关键.6.(2022春·江苏扬州·七年级校联考期中)如图,下列条件中:①;②;③;④;能判定的条件个数有()A.1B.2C.3D.4【答案】B【分析】利用平行线的判定定理对条件依次验证即可知正确条件个数.【详解】解:当①;利用同位角互补,两直线平行可知①能判定;当②;可以判定,故②不能判定;③;可以判定,故②不能判定;④;利用内错角相等,两直线平行可知①能判定;故选:B【点睛】本题考查平行线的判定定理,解题的关键是熟练掌握平行线的判定定理.7.(2022·全国·七年级假期作业)如图,直线a,b被直线c所截,现给出下列四个条件:①∠1=∠5;②∠4=∠6;③∠4+∠5=180°;④∠2+∠3=180°.其中能判定a∥b的条件的个数有()A.1个B.2个C.3个D.4个【答案】C【分析】根据平行线的判定定理“同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行”逐项排查即可.【详解】解:①∠1=∠5可根据同位角相等,两直线平行得到a∥b;②∠4=∠6可根据内错角相等,两直线平行得到a∥b;③∠4+∠5=180°可根据同旁内角互补,两直线平行得到a∥b;④∠2、∠3是邻补角,则∠3+∠2=180°不能得到a∥b;故选:C.【点睛】此题主要考查了平行线的判定,平行线的判定定理有同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.8.(2023春·七年级课时练习)如图(1),在中,,边绕点按逆时针方向旋转一周回到原来的位置.在旋转的过程中(图(2)),当()时,.A.42°B.138°C.42°或138°D.42°或128°【答案】C【分析】结合旋转的过程可知,因为位置的改变,与∠A可能构成内错角,也有可能构成同旁内角,所以需分两种情况加以计算即可.【详解】解:如图(2),当∠ACB'=42°时,∵,∴∠ACB'=∠A.∴CB'∥AB.如图(2),当∠ACB'=138°时,∵∠A=42°,∴∴CB'∥AB.综上可得,当或时,CB'∥AB.故选:C【点睛】本题考查了平行线的判定、分类讨论的数学思想等知识点,根据CB'在旋转过程中的不同位置,进行分类讨论是解题的关键.9.(2023春·七年级课时练习)如图,不添加辅助线,请写出一个能判定AB CD的条件__【答案】∠1=∠4##∠B=∠5##∠B+∠BCD=180°【分析】根据平行线的判定定理即可解答.【详解】解:由“内错角相等,两直线平行”可以添加条件∠1=∠4.由“同位角相等,两直线平行”可以添加条件∠B=∠5.由“同旁内角互补,两直线平行”可以添加条件∠B+∠BCD=180°.综上所述,满足条件的有:∠1=∠4或∠B=∠5或∠B+∠BCD=180°.故答案是:∠1=∠4或∠B=∠5或∠B+∠BCD=180°.【点睛】本题主要考查了平行线的判定.解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.本题是一道探索性条件开放性题目,能有效地培养学生“执果索因”的思维方式与能力.10.(2023春·七年级课时练习)如图,a、b、c三根木棒钉在一起,,现将木棒a、b同时顺时针旋转一周,速度分别为18度/秒和3度/秒,两根木棒都停止时运动结束,则___________秒后木棒a,b平行.【答案】2或14或50或110【分析】设t秒后木棒a,b平行,分四种情况讨论:当秒时,当时,当时,当时,即可求解.【详解】解:设t秒后木棒a,b平行,根据题意得:当秒时,,解得:t=2;当时,,解得:t=14;当时,木棒a停止运动,当时,,解得:t=-10;(不合题意,舍去)当时,或,解得:t=50或t=110;综上所述,2或14或50或110秒后木棒a,b平行.故答案为:2或14或50或110【点睛】本题主要考查了平行线的判定,一元一次方程的应用,明确题意,利用分类讨论思想解答是解题的关键.11.(2023春·七年级课时练习)在同一平面内有2022条直线,如果,,,……那么与的位置关系是_____________.【答案】垂直【分析】根据垂直的定义和平行线的性质可得依次是垂直,垂直,平行,平行,4个一循环,依此可得,的位置关系.【详解】解:∵在同平面内有2022条直线,若,,,……∴与依次是垂直,垂直,平行,平行,…,∵…1,∴与的位置关系是垂直.故答案为:垂直.【点睛】本题考查垂线、平行线的规律问题,解题的关键是找出规律.12.(2023春·七年级课时练习)将一块三角板ABC(∠BAC=90°,∠ABC=30°)按如图方式放置,使A,B两点分别落在直线m,n上,对于给出的五个条件:①∠1=25.5°,∠2=55°;②∠1+∠2=90°;③∠2=2∠1;④∠ACB=∠1+∠3;⑤∠ABC=∠2-∠1.能判断直线m n的有__.(填序号)【答案】①④⑤【分析】根据平行线的判定方法和题目中各个小题中的条件,逐一判断是否可以得到m∥n,从而可以解答本题.【详解】解:∵∠1=25.5°,∠2=55°,∠ABC=30°,∴∠ABC+∠1=55.5°=55°=∠2,∴m n,故①符合题意;∵∠1+∠2=90°,∠ABC=30°,∴∠1+∠ABC不一定等于∠2,∴m和n不一定平行,故②不符合题意;∵∠2=2∠1,∠ABC=30°,∴∠1+∠ABC不一定等于∠2,∴m和n不一定平行,故③不符合题意;过点C作CE m,∴∠3=∠4,∵∠ACB=∠1+∠3,∠ACB=∠4+∠5,∴∠1=∠5,∴EC n,∴m n,故④符合题意;∵∠ABC=∠2-∠1,∴∠2=∠ABC+∠1,∴m n,故⑤符合题意;故答案为:①④⑤.【点睛】本题考查平行线的判定,解答本题的关键是明确题意,利用数形结合的思想解答.13.(2021春·全国·七年级专题练习)如图,点是延长线上一点,在下列条件中:①;②;③且平分;④,能判定的有__.(填序号)【答案】③④【分析】根据平行线的判定方法分别判定得出答案.【详解】①中,,(内错角相等,两直线平行),不合题意;②中,,(同位角相等,两直线平行),不合题意;③中,且平分,,,故此选项符合题意;④中,,(同旁内角互补,两直线平行),故此选项符合题意;答案:③④.【点睛】此题主要考查了平行线的判定,正确掌握平行线的判定方法是解题关键.14.(2021春·湖南岳阳·七年级统考期末)如图,将一副三角板按如图所示放置,,,,且,则下列结论中:①;②若平分,则有;③将三角形绕点旋转,使得点落在线段上,则此时;④若,则.其中结论正确的选项有______.(写出所有正确结论的序号)【答案】②③④【分析】①根据同角的余角相等得∠1=∠3,但不一定得45°;②都是根据角平分线的定义、内错角相等,两条直线平行,可得结论;③根据对顶角相等和三角形的外角等于不相邻的两个内角得和,可得结论;④根据三角形内角和定理及同角的余角相等,可得结论.【详解】解:①如图,∵∠CAB=∠DAE=90°,即∠1+∠2=∠3+∠2+90°,∴∠1=∠3≠45°,故①不正确;②∵AD平分∠CAB,∴∠1=∠2=45°,∵∠1=∠3,∴∠3=45°,又∵∠C=∠B=45°,∴∠3=∠B,∴BC∥AE,故②正确;③将三角形ADE绕点A旋转,使得点D落在线段AC上,则∠4=∠ADE-∠ACB=60°-45°=15°,故③正确;④∵∠3=2∠2,∠1=∠3,∴∠1=2∠2,∠1+∠2=90°,∴3∠2=90°,∴∠2=30°,∴∠3=60°,又∠E=30°,设DE与AB交于点F,则∠AFE=90°,∵∠B=45°,∴∠4=45°,∴∠C=∠4,故④正确,故答案为:②③④.【点睛】本题主要考查了同角的余角相等、角平分线定义、平行线的判定的运用,解题关键是熟练掌握同角的余角相等及平行线的判定.15.(2021春·山东济南·七年级校考期中)如图,直线,相交于点,平分,平分,,垂足为,那么,请说明理由.【答案】见解析【分析】根据角平分线的定义得到,,根据垂直的定义得到,根据平行线的判定定理即可得到结论.【详解】证明:∵平分,∴,∵平分,∴,∴,∵,∴,∴,∴.【点睛】本题考查了角平分线的定义,平行线的判定,熟练掌握平行线的判定是解题的关键.16.(2023春·全国·七年级专题练习)如图,直线、交于点O,,分别平分和,已知,且.(1)求的度数;(2)试说明的理由.【答案】(1)的度数为(2)见解析【分析】(1)根据角平分线的定义推出,再根据对顶角性质求解即可;(2)结合等量代换得出,根据“内错角相等,两直线平行”即可得解.【详解】(1)解:∵,分别平分和,∴,,∵,∴,∵,∴,∴,∵,∴,∴,∴,∴,∴;(2)解:,,∴,∴.【点睛】本题主要考查了平行线的判定与性质,角平分线的定义,余角的性质,熟记平行线的判定与性质是解题的关键.17.(2023春·七年级课时练习)如图,已知点O在直线AB上,射线OE平分∠AOC,过点O作OD⊥OE,G是射线OB上一点,连接DG,使∠ODG+∠DOG=90°.(1)求证:∠AOE=∠ODG;(2)若∠ODG=∠C,试判断CD与OE的位置关系,并说明理由.【答案】(1)证明见解析(2)CD OE,理由见解析【分析】(1)由OD⊥OE得到∠EOC+∠COD=∠AOE+∠DOG=90°,再利用等角的余角相等即可证明∠AOE=∠ODG;(2)证明∠EOC=∠C,利用内错角相等两直线平行,即可证明CD OE.【详解】(1)证明:∵OD⊥OE,∴∠EOC+∠COD=∠AOE+∠DOG=90°,∵∠ODG+∠DOG=90°,∴∠AOE=∠ODG;(2)解:CD OE.理由如下:由(1)得∠AOE=∠ODG,∵射线OE平分∠AOC,∴∠AOE=∠EOC,∵∠ODG=∠C,∴∠EOC=∠C,∴CD OE.【点睛】本题考查了角平分线定义,垂直的定义,平行线的判定,等角的余角相等,正确识图是解题的关求证:.证明:∵∠1=∠2(已知)∠ABF=∠1(对顶角相等)∴______FC平分∠BFG∴______∴∠EBF=______∴(【答案】对顶角相等;∠∴∠FC平分∠BFG∴∠∴∠EBF=∠∴(内错角相等,两直线平行)故答案为:对顶角相等;∠统考中考真题)如图,直线,且直线定直线的是(A.B...【答案】C、当时,;故、当时,;故B不符合题意;、当时,;故C、∵,则,∵,则,∴;故D不符合题意;故选:C【点睛】本题主要考查平行线的判定,解答的关键是熟记平行线的判定条件并灵活运用.2.(2022·吉林·统考中考真题)如图,如果,那么,其依据可以简单说成()A.两直线平行,内错角相等B.内错角相等,两直线平行C.两直线平行,同位角相等D.同位角相等,两直线平行【答案】D【分析】根据“同位角相等,两直线平行”即可得.【详解】解:因为与是一对相等的同位角,得出结论是,所以其依据可以简单说成同位角相等,两直线平行,故选:D.【点睛】本题考查了平行线的判定,熟练掌握平行线的判定方法是解题关键.3.(2022·浙江台州·统考中考真题)如图,已知,为保证两条铁轨平行,添加的下列条件中,正确的是()A.B.C.D.【答案】C【分析】根据平行线的判定方法进行判断即可.【详解】解:A.∠1与∠2是邻补角,无法判断两条铁轨平行,故此选项不符合题意;B. ∠1与∠3与两条铁轨平行没有关系,故此选项不符合题意;C. ∠1与∠4是同位角,且∠1=∠4=90°,故两条铁轨平行,所以该选项正确;D. ∠1与∠5与两条铁轨平行没有关系,故此选项不符合题意;故选:C.【点睛】本题主要考查了平行线的判定,熟练掌握平行线的判定是解答本题的关键.4.(2020·浙江金华·统考中考真题)如图,工人师傅用角尺画出工件边缘的垂线和,得到,理由是()A.在同一平面内,垂直于同一条直线的两条直线平行B.在同一平面内,过一点有且仅有一条直线垂直于已知直线C.连接直线外一点与直线各点的所有直线中,垂线段最短D.经过直线外一点,有且只有一条直线与这条直线平行【答案】A【分析】根据在同一平面内,垂直于同一条直线的两条直线平行判断即可.【详解】解:由题意得:∴a∥b(在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行),故选:A.【点睛】本题考查平行线的判定,平行公理,解题关键是理解题意,灵活运用所学直线解决问题.5.(2020·湖南郴州·统考中考真题)如图,直线被直线所截,下列条件能判定的是()A.B.C.D.【答案】D【分析】直接利用平行线的判定方法进而分析得出答案.【详解】A、当∠1=∠3时,c∥d,不能判定a∥b,故此选项不合题意;B、当∠2+∠4=180°时,c∥d,不能判定a∥b,故此选项不合题意;C、当∠4=∠5时,c∥d,不能判定a∥b,故此选项不合题意;D、当∠1=∠2时,a∥b,故此选项符合题意;故选:D【点睛】本题主要考查了平行线的判定,正确掌握判定方法是解题关键.6.(2020·浙江衢州·统考中考真题)过直线l外一点P作直线l的平行线,下列尺规作图中错误的是( )A.B.C.D.【答案】D【分析】根据平行线的判定方法一一判断即可.【详解】A、由作图可知,内错角相等两直线平行,本选项不符合题意.B、由作图可知,同位角相等两直线平行,本选项不符合题意.C、与作图可知,垂直于同一条直线的两条直线平行,本选项不符合题意,D、无法判断两直线平行,故选:D.【点睛】本题考查作图-复杂作图,平行线的判定等知识,解题的关键是读懂图象信息,属于中考常考题型.7.(2021·甘肃兰州·统考中考真题)将一副三角板如图摆放,则______∥______,理由是______.【答案】内错角相等,两直线平行【分析】根据三角板的角度可知,根据内错角相等,两直线平行判断即可.【详解】解:一副三角板如图摆放,∴,∴(内错角相等,两直线平行),故答案为:;;内错角相等,两直线平行.【点睛】本题考查了平行线的判定,熟知平行线的判定定理是解本题的关键.8.(2021·广西桂林·统考中考真题)如图,直线a,b被直线c所截,当∠1 ___∠2时,a//b.(用“>”,“<”或“=”填空)【答案】=.【分析】由图形可知∠1 与∠2是同位角,利用直线平行判定定理可以确定∠1 =∠2,可判断a//b.【详解】解:∵直线a,b被直线c所截,∠1与∠2是同位角,∴当∠1 =∠2,a//b.故答案为=.【点睛】本题考查平行线判定,掌握平行线判定判定定理是解题关键.9.(2020·湖北咸宁·中考真题)如图,请填写一个条件,使结论成立:∵__________,∴.【答案】∠1=∠4(答案不唯一)【分析】根据平行线的判定添加条件即可.【详解】解:如图,若∠1=∠4,则a∥b,故答案为:∠1=∠4(答案不唯一)【点睛】本题考查了平行线的判定,可围绕截线找同位角、内错角和同旁内角解答.。

人教版七年级数学下册《5.2.2平行线的判定》同步练习(含答案)

人教版七年级数学下册《5.2.2平行线的判定》同步练习(含答案)

5.2.2平行线的判定关键问答①由平行线的定义来判定平行线,在什么地方不便操作?②平行线的判定方法有哪些?1.①图5-2-10是我们学过的用直尺和三角尺画平行线的方法示意图,画图原理是()图5-2-10A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.如果两条直线都和第三条直线平行,那么这两条直线平行2.②用两块相同的三角尺按如图5-2-11所示的方式作平行线AB和CD,能解释其中道理的依据是()图5-2-11A.内错角相等,两直线平行B.同位角相等,两直线平行C.同旁内角互补,两直线平行D.平行于同一直线的两直线平行3.如图5-2-12,工人师傅在工程施工中,需在同一平面内弯制一个变形管道ABCD,使其拐角∠ABC=150°,∠BCD=30°,则()图5-2-12A.AB∥BC B.BC∥CD C.AB∥CD D.AB与CD相交命题点1同位角相等,两直线平行[热度:94%]4.如图5-2-13,直线a与直线b相交于点A,与直线c相交于点B,∠1=120°,∠2=45°.若使直线b与直线c平行,则可将直线b绕点A逆时针旋转()图5-2-13A.15°B.30°C.45°D.60°5.③已知∠1=∠2,下列能判定AB∥CD的是()图5-2-14方法点拨③先判断∠1,∠2是由哪两条直线被哪条直线所截得到的,再确定两角位于被截直线之间还是同旁,在截线同侧还是异侧.6.一学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是()A.第一次向左拐30°,第二次向右拐30°B.第一次向右拐50°,第二次向左拐130°C.第一次向右拐50°,第二次向右拐130°D.第一次向左拐50°,第二次向左拐130°7.如图5-2-15,PE⊥MN,QF⊥MN,∠1=∠2,直线AB与CD平行吗?为什么?图5-2-15命题点2内错角相等,两直线平行[热度:94%]8.④如图5-2-16,已知∠1=∠2,那么()图5-2-16A.AB∥CD,根据内错角相等,两直线平行B.AD∥BC,根据内错角相等,两直线平行C.AB∥CD,根据同位角相等,两直线平行D.AD∥BC,根据同位角相等,两直线平行解题突破④分析∠1,∠2是由哪两条直线被哪条直线所截得到的,是一对什么位置关系的角.9.⑤如图5-2-17,点A在直线DE上,当∠BAC=________°时,DE∥BC.图5-2-17方法点拨⑤求角时,先看能否将其转化成已知角的和与差,这时的标志是其与已知角有公共顶点和公共边;再看所求角与已知角是不是同位角、内错角或同旁内角.10.如图5-2-18,已知AB⊥BC,DC⊥BC,∠1=∠2,直线BE,CF平行吗?为什么?图5-2-1811.如图5-2-19,∠1=60°,∠2=60°,∠3=100°.要使AB∥EF,∠4应为多少度?说明理由.图5-2-19命题点3同旁内角互补,两直线平行[热度:94%]12.⑥如图5-2-20,AE平分∠BAC,CE平分∠ACD,不能判定AB∥CD的条件是()图5-2-20A.∠1=∠2 B.∠1+∠2=90°C.∠3+∠4=90°D.∠2+∠3=90°方法点拨⑥对于复杂图形,可以采用去掉与条件无关的直线的方法,使图形变得简单,从而使问题难度减小.13.⑦如图5-2-21,∠ABD=90°,∠BDC=90°,∠1+∠2=180°,CD与EF平行吗?为什么?图5-2-21方法点拨⑦准确识别同位角、内错角、同旁内角是判断哪两条直线平行的关键.一般地,“F”形中有同位角,“Z”形中有内错角,“U”形中有同旁内角.每一对角的公共边所在的直线是截线,另外两边所在的直线是被截线,即需判定平行的两条直线.命题点4平行线判定方法的选用[热度:96%]14.如图5-2-22,已知AB⊥BC,∠1+∠2=90°,∠2=∠3,BE与DF平行吗?为什么?图5-2-2215.⑧小明到工厂进行社会实践活动时,发现工人师傅生产了一种如图5-2-23所示的零件,要求AB∥CD,∠BAE=35°,∠AED=90°.小明发现工人师傅只是量出∠BAE=35°,∠AED=90°后,又量了∠EDC=55°,就说AB与CD肯定是平行的.你知道原因吗?图5-2-23方法点拨⑧(1)判定两直线平行,通常找这两条直线被第三条直线所截得的同位角、内错角、同旁内角的数量关系;(2)若找到的“截线”是折线,通常过折线的拐点再作一条直线,把图形转化成多个两直线被第三条直线所截的图形,再用(1)解决.典题讲评与答案详析1.A 2.A 3.C4.A[解析]∵∠1=120°,∴∠1的邻补角为60°.当直线b与直线c平行时,∵∠2=45°,∴∠1的邻补角为45°,∴可将直线b绕点A逆时针旋转15°.故选A.5.D[解析] 在四个选项中,只有选项D满足“同位角相等,两直线平行”.6.A[解析] 此题可看作平行线性质的实际应用,解决该题单纯从文字方面去分析,很难判断出结果,但是结合题意画出各选项的示意图后,结果也就一目了然了.各选项的示意图如下:虽然有的图形符合了两直线平行,但行驶方向与原来的方向不相同.两次拐弯的方向与角度决定了行驶方向与原来的方向是否相同.对照上面示意图,发现A选项是正确的.7.解:AB∥CD.理由如下:∵PE⊥MN,QF⊥MN(已知),∴∠MEP=∠MFQ=90°(垂直的定义).又∵∠1=∠2(已知),∴∠MEP-∠1=∠MFQ-∠2(等式的性质),即∠MEB=∠MFD,∴AB∥CD(同位角相等,两直线平行).8.B[解析]∠1,∠2是直线AD,BC被直线AC所截得到的内错角,由内错角相等,两直线平行,可知AD∥BC.故选B.9.5710.解:BE∥CF.理由如下:因为AB⊥BC,DC⊥BC,所以∠ABC=∠BCD=90°.又因为∠1=∠2,所以∠ABC-∠1=∠BCD-∠2,即∠EBC=∠BCF,所以BE∥CF(内错角相等,两直线平行).11.解:∠4应为100°.理由如下:∵∠1=∠2,∴AB∥CD(内错角相等,两直线平行).∵∠4=∠3=100°,∴EF∥CD(内错角相等,两直线平行),∴AB∥EF(平行于同一直线的两条直线平行).12.A[解析]AE平分∠BAC,CE平分∠ACD,选项A中,由∠1=∠2,可得∠BAC=∠ACD,而∠BAC,∠ACD是一对同旁内角,显然不能判定AB∥CD.13.解:CD∥EF.理由如下:∵∠ABD=90°,∠BDC=90°,∴∠ABD+∠BDC=180°,∴AB∥CD(同旁内角互补,两直线平行).又∵∠1+∠2=180°,∴AB∥EF(同旁内角互补,两直线平行),∴CD∥EF(平行于同一条直线的两直线平行).14.解:BE∥DF.理由如下:∵AB⊥BC,∴∠ABC=90°,即∠3+∠EBC=90°.又∵∠1+∠2=90°,且∠2=∠3,∴∠1=∠EBC,∴BE∥DF.15.解:以E为顶点,AE为一边,在∠AED的内部作∠AEM=∠BAE=35°,∴AB∥EM(内错角相等,两直线平行).又∵∠AED=90°,∴∠DEM=∠EDC=55°,∴CD∥EM(内错角相等,两直线平行),∴AB∥CD(平行于同一条直线的两直线平行).【关键问答】①要确定同一平面内两直线不相交,比较困难,因此不便操作.②方法1:同位角相等,两直线平行;方法2:内错角相等,两直线平行;方法3:同旁内角互补,两直线平行.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5.2.2平行线的判定
关键问答
①由平行线的定义来判定平行线,在什么地方不便操作?
②平行线的判定方法有哪些?
1.①图5-2-10是我们学过的用直尺和三角尺画平行线的方法示意图,画图原理是()
图5-2-10
A.同位角相等,两直线平行
B.内错角相等,两直线平行
C.同旁内角互补,两直线平行
D.如果两条直线都和第三条直线平行,那么这两条直线平行
2.②用两块相同的三角尺按如图5-2-11所示的方式作平行线AB和CD,能解释其中道理的依据是()
图5-2-11
A.内错角相等,两直线平行B.同位角相等,两直线平行
C.同旁内角互补,两直线平行D.平行于同一直线的两直线平行
3.如图5-2-12,工人师傅在工程施工中,需在同一平面内弯制一个变形管道ABCD,使其拐角∠ABC=150°,∠BCD=30°,则()
图5-2-12
A.AB∥BC B.BC∥CD C.AB∥CD D.AB与CD相交
命题点1同位角相等,两直线平行[热度:94%]
4.如图5-2-13,直线a与直线b相交于点A,与直线c相交于点B,∠1=120°,∠2=45°.若使直线b与直线c平行,则可将直线b绕点A逆时针旋转()
图5-2-13
A.15°B.30°C.45°D.60°
5.③已知∠1=∠2,下列能判定AB∥CD的是()
图5-2-14
方法点拨
③先判断∠1,∠2是由哪两条直线被哪条直线所截得到的,再确定两角位于被截直线之间还是同旁,在截线同侧还是异侧.
6.一学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是()
A.第一次向左拐30°,第二次向右拐30°
B.第一次向右拐50°,第二次向左拐130°
C.第一次向右拐50°,第二次向右拐130°
D.第一次向左拐50°,第二次向左拐130°
7.如图5-2-15,PE⊥MN,QF⊥MN,∠1=∠2,直线AB与CD平行吗?为什么?
图5-2-15
命题点2内错角相等,两直线平行[热度:94%]
8.④如图5-2-16,已知∠1=∠2,那么()
图5-2-16
A.AB∥CD,根据内错角相等,两直线平行
B.AD∥BC,根据内错角相等,两直线平行
C.AB∥CD,根据同位角相等,两直线平行
D.AD∥BC,根据同位角相等,两直线平行
解题突破
④分析∠1,∠2是由哪两条直线被哪条直线所截得到的,是一对什么位置关系的角.
9.⑤如图5-2-17,点A在直线DE上,当∠BAC=________°时,DE∥BC.
图5-2-17
方法点拨
⑤求角时,先看能否将其转化成已知角的和与差,这时的标志是其与已知角有公共顶点和公共边;再看所求角与已知角是不是同位角、内错角或同旁内角.
10.如图5-2-18,已知AB⊥BC,DC⊥BC,∠1=∠2,直线BE,CF平行吗?为什么?
图5-2-18
11.如图5-2-19,∠1=60°,∠2=60°,∠3=100°.要使AB∥EF,∠4应为多少度?说明理由.
图5-2-19
命题点3同旁内角互补,两直线平行[热度:94%]
12.⑥如图5-2-20,AE平分∠BAC,CE平分∠ACD,不能判定AB∥CD的条件是()
图5-2-20
A.∠1=∠2 B.∠1+∠2=90°C.∠3+∠4=90°D.∠2+∠3=90°方法点拨
⑥对于复杂图形,可以采用去掉与条件无关的直线的方法,使图形变得简单,从而使问题难度减小.
13.⑦如图5-2-21,∠ABD=90°,∠BDC=90°,∠1+∠2=180°,CD与EF平行吗?为什么?
图5-2-21
方法点拨
⑦准确识别同位角、内错角、同旁内角是判断哪两条直线平行的关键.一般地,“F”形中有同位角,“Z”形中有内错角,“U”形中有同旁内角.每一对角的公共边所在的直线是截线,另外两边所在的直线是被截线,即需判定平行的两条直线.
命题点4平行线判定方法的选用[热度:96%]
14.如图5-2-22,已知AB⊥BC,∠1+∠2=90°,∠2=∠3,BE与DF平行吗?为什么?
图5-2-22
15.⑧小明到工厂进行社会实践活动时,发现工人师傅生产了一种如图5-2-23所示的零件,要求AB∥CD,∠BAE=35°,∠AED=90°.小明发现工人师傅只是量出∠BAE=35°,∠AED=90°后,又量了∠EDC=55°,就说AB与CD肯定是平行的.你知道原因吗?
图5-2-23
方法点拨
⑧(1)判定两直线平行,通常找这两条直线被第三条直线所截得的同位角、内错角、同旁内角的数量关系;
(2)若找到的“截线”是折线,通常过折线的拐点再作一条直线,把图形转化成多个两直线被第三条直线所截的图形,再用(1)解决.
典题讲评与答案详析
1.A 2.A 3.C
4.A[解析]∵∠1=120°,∴∠1的邻补角为60°.
当直线b与直线c平行时,
∵∠2=45°,∴∠1的邻补角为45°,
∴可将直线b绕点A逆时针旋转15°.故选A.
5.D[解析] 在四个选项中,只有选项D满足“同位角相等,两直线平行”.
6.A[解析] 此题可看作平行线性质的实际应用,解决该题单纯从文字方面去分析,很难判断出结果,但是结合题意画出各选项的示意图后,结果也就一目了然了.各选项的示意图如下:
虽然有的图形符合了两直线平行,但行驶方向与原来的方向不相同.两次拐弯的方向与角度决定了行驶方向与原来的方向是否相同.对照上面示意图,发现A选项是正确的.7.解:AB∥CD.理由如下:
∵PE⊥MN,QF⊥MN(已知),
∴∠MEP=∠MFQ=90°(垂直的定义).
又∵∠1=∠2(已知),
∴∠MEP-∠1=∠MFQ-∠2(等式的性质),
即∠MEB=∠MFD,
∴AB∥CD(同位角相等,两直线平行).
8.B[解析]∠1,∠2是直线AD,BC被直线AC所截得到的内错角,由内错角相等,两直线平行,可知AD∥BC.故选B.
9.57
10.解:BE∥CF.理由如下:
因为AB⊥BC,DC⊥BC,
所以∠ABC=∠BCD=90°.
又因为∠1=∠2,
所以∠ABC-∠1=∠BCD-∠2,
即∠EBC=∠BCF,
所以BE∥CF(内错角相等,两直线平行).
11.解:∠4应为100°.理由如下:
∵∠1=∠2,∴AB∥CD(内错角相等,两直线平行).
∵∠4=∠3=100°,
∴EF∥CD(内错角相等,两直线平行),
∴AB∥EF(平行于同一直线的两条直线平行).
12.A[解析]AE平分∠BAC,CE平分∠ACD,
选项A中,由∠1=∠2,可得∠BAC=∠ACD,
而∠BAC,∠ACD是一对同旁内角,显然不能判定AB∥CD.
13.解:CD∥EF.理由如下:
∵∠ABD=90°,∠BDC=90°,
∴∠ABD+∠BDC=180°,
∴AB∥CD(同旁内角互补,两直线平行).
又∵∠1+∠2=180°,
∴AB∥EF(同旁内角互补,两直线平行),
∴CD∥EF(平行于同一条直线的两直线平行).
14.解:BE∥DF.理由如下:∵AB⊥BC,
∴∠ABC=90°,即∠3+∠EBC=90°.
又∵∠1+∠2=90°,且∠2=∠3,
∴∠1=∠EBC,∴BE∥DF.
15.解:以E为顶点,AE为一边,在∠AED的内部作∠AEM=∠BAE=35°,∴AB∥EM(内错角相等,两直线平行).
又∵∠AED=90°,∴∠DEM=∠EDC=55°,
∴CD∥EM(内错角相等,两直线平行),
∴AB∥CD(平行于同一条直线的两直线平行).
【关键问答】
①要确定同一平面内两直线不相交,比较困难,因此不便操作.
②方法1:同位角相等,两直线平行;方法2:内错角相等,两直线平行;方法3:同旁内角互补,两直线平行.。

相关文档
最新文档