7.4认识三角形(1)
苏科版七年级数学下册目录

苏科版七年级数学下册目录教材作为七年级数学教学的重要媒介,在课堂教学中有着至关重要的作用,那么数学教材目录主要有什么知识?小编整理了关于苏科版七年级数学下册目录,希望对大家有帮助!苏科版七年级数学下册课本目录第七章平面图形的认识(二)7.1 探索直线平行的条件7.2 探索平行线的性质7.3 图形的平移7.4 认识三角形7.5 三角形的内角和第八章幂的运算8.1 同底数幂的乘法8.2 幂的乘方与积的乘方8.3 同底数幂的除法第九章从面积到乘法公式9.1 单项式乘单项式9.2 单项式乘多项式9.3 多项式乘多项式9.4 乘法公式9.5 单项式乘多项式法则的再认识------因式分解(一)9.6 乘法公式的再认识------因式分解(二)第十章二元一次方程10.1 二元一次方程10.2 二元一次方程组10.3 解二元一次方程组10.4 用方程组解决问题第十一章图形的全等11.1 全等图形11.2 全等三角形11.3 探索三角形全等的条件第十二章数据在我们身边12.1 普查与抽样调查12.2 统计图的选用12.3 频数分布表和频数分布图第十三章感受概率13.1 确定与不确13.2 可能性七年级数学三角形复习内容1、由三条不在同一直线上的三条线段首尾依次相接组成的图形叫做三角形。
2、三角形的性质1)三角形的任意两边之和大于第三边(由此得三角形的两边的差一定小于第三边)2)三角形三个内角的和等于180度(在三角形中至少有一个角大于等于60度,也至少有一个角小于等于60度)(一个三角形的3个内角中最少有2个锐角)3)直角三角形的两个锐角互余4)三角形的一个外角等于与它不相邻的两个内角之和(三角形的一个外角大于任何一个与它不相邻的内角) 5)等腰三角形的顶角平分线,底边的中线,底边的高重合,即三线合一6)三角形的三条角平分线交于一点,三条高线的所在直线交于一点,三条中线交于一点7)三角形的外角和是360°8)等底等高的三角形面积相等9)三角形的任意一条中线将这个三角形分为两个面积相等的三角形。
苏科版数学七年级下册认识三角形课件

第7章 平面图形的认识(二)
7.4认识三角形
教学目标:
1.认识三角形的概念及其基本要素; 2、会按照边长、角的大小对三角形进行分类; 3、掌握三角形三边的关系及应用.
自学指点:
• 看书思考下面问题 • 1、生活中形状为三角形的物体?
• 2、三角形概念是什么?
• 3、三角形要素及表示方法?
• 4、三角形分类?
B
CD
△ABC
△ABD △ABE △ACD △ACE E △ADE
1、三角形按角的大小分类: 锐角三角形(三个都是锐角)
直角三角形(有一个直角) 钝角三角形(有一个钝角)
哪些三角形是锐角三角形、直角三角形、钝角三角形?并将三 角形的序号填入相关的椭圆框内.
①
②
③
④
⑤
⑥
锐角三角形②③ 直角三角形①④⑤ 钝角三角形⑥
取3cm、4cm、5cm 的三根小木棒,可以 搭成一个三角形.
பைடு நூலகம்
取3cm、5cm、 9cm的三根小木 棒不能搭成一个 三角形.
5 4
5
3
9
3
2.小明说我上学走中间这条路最近,你知道 这是什么原因吗?两点之间线段最短.
三角形的任意两边之和大于第三边.
1.图中共有几个三角形?把它们分别表示出来, 并用量角器检验它们是锐角三角形、直角三角形, 还是钝角三角形.
当堂检测
1. 有两根长度分别为4cm和7cm的木棒, (1)再取一根长度为2cm的木棒,它们能摆成 三角形?为什么? (2)如果取一根长度为11cm的木棒呢? (3)你能取一根木棒,与本来的两根木棒摆成 三角形吗?求出木棒长度的范围.
2. 被公认为目前“世界第一高人”的土耳其 公民苏坦科森身高2.51米,若他的腿长为1.3米,他 一步(两脚着地时两脚的间距)能迈3XXX?你相信吗?
苏科版2020-2021学年七年级数学下册7.4认识三角形考点同步训练(含答案)

苏科版2020-2021 学年七年级数学下册7.4 认识三角形考点同步训练考点一.三角形:1.如图,图中直角三角形共有()A.1 个B.2 个C.3 个D.4 个2.某同学在纸上画了四个点,如果把这四个点彼此连接,连成一个图形,则这个图形中会有个三角形出现.3.如图,直角三角形的个数为.4.过A、B、C、D、E 五个点中任意三点画三角形;(1)其中以AB 为一边可以画出个三角形;(2)其中以C 为顶点可以画出个三角形.考点二.三角形的角平分线、中线和高:5.用三角板作△ABC 的边BC 上的高,下列三角板的摆放位置正确的是()A.B.C.D.6.以下是四位同学在钝角三角形△ABC 中画AC 边上的高,其中正确的是()A.B.C.D.7.在数学课上,同学们在练习画边AC 上的高时,出现下列四种图形,其中正确的是()A.B.C.D.8.如图,△ABC 中,∠BAC 是钝角,AD⊥BC、EB⊥BC、FC⊥BC,则下列说法正确的是()A.AD 是△ABC 的高B.EB 是△ABC 的高C.FC 是△ABC 的高D.AE、AF 是△ABC 的高9.如图,已知P 为直线l 外一点,点A、B、C、D 在直线l 上,且PA>PB>PC>PD,下列说法正确的是()A.线段PD 的长是点P 到直线l 的距离B.线段PC 可能是△PAB 的高C.线段PD 可能是△PBC 的高D.线段PB 可能是△PAC 的高10.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.等边三角形11.如图,在四边形ABCD 中,AB∥CD,3AB=4AD=6CD,E 为AB 的中点.萧钟同学用无刻度的直尺先连接CE 交BD 于点F,再连接AF.则线段AF 是△ABD 的()A.中线B.高线C.角平分线D.中线、高线、角平分线(三线合一)12.如图,D、E 分别是△ABC 的边AC、BC 的中点,则下列说法不正确的是()A.DE 是△ABC 的中线B.BD 是△ABC 的中线C.AD=DC,BE=EC D.DE 是△BCD 的中线13.如图,AD⊥BC 于D,BE⊥AC 于E,CF⊥AB 于F,GA⊥AC 于A,在△ABC 中,AB边上的高为()A.AD B.GA C.BE D.CF14.如图,在△ABC 中,∠ACB=60°,∠BAC=75°,AD⊥BC 于D,BE⊥AC 于E,AD 与BE 交于H,则∠CHD=.15.在△ABC 中,AC=5cm,AD 是△ABC 中线,若△ABD 周长与△ADC 的周长相差2cm,则BA=cm.16.如图,在△ABC 中(AB>BC),AB=2AC,AC 边上中线BD 把△ABC 的周长分成30和20 两部分,求AB 和BC 的长.17.如图,△ABC 的周长是21cm,AB=AC,中线BD 分△ABC 为两个三角形,且△ABD的周长比△BCD 的周长大6cm,求AB,BC.18.已知:∠MON=40°,OE 平分∠MON,点A、B、C 分别是射线OM、OE、ON 上的动点(A、B、C 不与点O 重合),连接AC 交射线OE 于点D.设∠OAC=x°.(1)如图1,若AB∥ON,则①∠ABO 的度数是;②当∠BAD=∠ABD 时,x=;当∠BAD=∠BDA 时,x=.(2)如图2,若AB⊥OM,则是否存在这样的x 的值,使得△ADB 中有两个相等的角?若存在,求出x 的值;若不存在,说明理由.考点三.三角形的面积:19.如图,AD 是△ABC 的中线,DE 是△ADC 的高线,AB=3,AC=5,DE=2,那么点D 到AB 的距离是()A. B. C. D.2 20.如图,在△ABC 中,已知点E、F 分别是AD、CE 边上的中点,且S△BEF=4cm2,则S△ABC 的值为()A.1cm2 B.2cm2 C.8cm2 D.16cm221.已知AD 是△ABC 的中线,BE 是△ABD 的中线,若△ABC 的面积为18,则△ABE 的面积为(A.5 )B.4.5C.4 D.922.如图,D,E,F 分别是边BC,AD,AC 上的中点,若S 四边形的面积为3,则△ABC的面积是()A.5 B.6 C.7 D.8 23.如图,长方形ABCD 中,AB=4cm,BC=3cm,点E 是CD 的中点,动点P 从A 点出发,以每秒1cm 的速度沿A→B→C→E 运动,最终到达点E.若点P 运动的时间为x 秒,那么当x =时,△APE 的面积等于5.24.把一张三角形的纸折叠成如图后,面积减少,已知阴影部分的面积是50 平方厘米,则这张三角形纸的面积是平方分米.考点四.三角形的稳定性:25.如图,工人师傅砌门时,常用木条EF 固定长方形门框ABCD,使其不变形,这样做的根据是()A.两点之间的线段最短B.三角形具有稳定性C.长方形是轴对称图形D.长方形的四个角都是直角26.下列图形中不具有稳定性是()A.B.C.D.27.用八根木条钉成如图所示的八边形木架,要使它不变形,至少要钉上木条的根数是()A.3 根B.4 根C.5 根D.6 根考点五.三角形的重心:28.三角形的重心是()A.三角形三条边上中线的交点B.三角形三条边上高线的交点C.三角形三条边垂直平分线的交点D.三角形三条内角平分线的交点29.在Rt△ABC 中,AD 是斜边BC 边上的中线,G 是△ABC 重心,如果BC=6,那么线段AG 的长为.考点六.三角形三边关系:30.下列长度的三条线段能组成三角形的是()A.3,4,8 B.5,6,11 C.5,6,10 D.1,2,3 31.如图,为估计池塘岸边A、B 两点的距离,小方在池塘的一侧选取一点O,测得OA=15 米,OB=10 米,A、B 间的距离不可能是()A.5 米B.10 米C.15 米D.20 米32.已知关于x 的不等式组至少有两个整数解,且存在以3,a,7 为边的三角形,则a 的整数解有()A.4 个B.5 个C.6 个D.7 个33.若a、b、c 为△ABC 的三边长,且满足|a﹣4|+=0,则c 的值可以为()A.5 B.6 C.7 D.834.已知三角形两边的长分别是4 和10,则此三角形第三边的长可能是()A.5 B.6 C.12 D.1635.△ABC 中,AB=10,BC=2x,AC=3x,则x 的取值范围.36.在△ABC 中,若AB=4,BC=2,且AC 的长为偶数,则AC=.37.若a、b、c 为三角形的三边,且a、b 满足+(b﹣2)2=0,第三边c 为奇数,则c=.38.三角形的两边长分别是3 和4,第三边长是方程x2﹣13x+40=0 的根,则该三角形的周长为.39.如图:已知AD 为△ABC 的中线,且∠1=∠2,∠3=∠4,求证:BE+CF>EF.40.在△ABC 中,AB=5,AC=3,AD 是BC 边上的中线,则AD 的取值范围是.参考答案1.解:如图,图中直角三角形有Rt△ABD、Rt△BDC、Rt△ABC,共有3 个,故选:C.2.解:∵①当四个点共线时,不能作出三角形;②当三个点共线,第四个点不在这条直线上时,能够画出3 个三角形;③若4 个点能构成凹四边形,则能画出4 个三角形;④当任意的三个点不共线时,则能够画出8 个三角形.∴0 或3 或4 或8.3.解:如图,直角三角形有:△ADC、△BCD、△CDE、△BDE、△ACE、△ACB,一共6 个,故答案为:6.4.解:(1)如图,以AB 为一边的三角形有△ABC、△ABD、△ABE 共3 个;(2)如图,以点C 为顶点的三角形有△ABC、△BEC、△BCD、△ACE、△ACD、△ CDE 共6 个.故答案为:(1)3,(2)6.5.解:B,C,D 都不是△ABC 的边BC 上的高,故选:A.6.解:A、高BD 交AC 的延长线于点D 处,符合题意;B、没有经过顶点B,不符合题意;C、做的是BC 边上的高线AD,不符合题意;D、没有经过顶点B,不符合题意.故选:A.7.解:AC 边上的高应该是过B 作垂线段AC,符合这个条件的是C;A,B,D 都不过B 点,故错误;故选:C.8.解:△ABC 中,画BC 边上的高,是线段AD.故选:A.9.解:A.线段PD 的长不一定是点P 到直线l 的距离,故本选项错误;B.线段PC 不可能是△PAB 的高,故本选项错误;C.线段PD 可能是△PBC 的高,故本选项正确;D.线段PB 不可能是△PAC 的高,故本选项错误;故选:C.10.解:一个三角形的三条高的交点恰是三角形的一个顶点,这个三角形是直角三角形.故选:C.11.解:∵3AB=6CD,E 为AB 的中点,∴CD=AB,BE=AB,∴CD=BE,又∵AB∥CD,∴∠EBF=∠CDF,又∵∠EFB=∠CFD,∴△BEF≌△DCF(AAS),∴BF=DF,∴线段AF 是△ABD 的中线,故选:A.12.解:∵D、E 分别是△ABC 的边AC、BC 的中点,∴DE 是△ABC 的中位线,不是中线;BD 是△ABC 的中线;AD=DC,BE=EC;DE 是△BCD 的中线;故选:A.13.解:∵AB 边上的高是指过顶点C 向AB 所在直线作的垂线段,∴在AD⊥BC 于D,BE⊥AC 于E,CF⊥AB 于F,GA⊥AC 于A 中,只有CF 符合上述条件.故选:D.14.解:延长CH 交AB 于点H,在△ABC 中,三边的高交于一点,所以CF⊥AB,∵∠BAC=75°,且CF⊥AB,∴∠ACF=15°,∵∠ACB=60°,∴∠BCF=45°在△CDH 中,三内角之和为180°,∴∠CHD=45°,故答案为∠CHD=45°.15.解:如图,∵AD 是△ABC 中线,∴BD=CD,∴△ABD 周长﹣△ADC 的周长=(BA+BD+AD)﹣(AC+AD+CD)=BA﹣AC,∵△ABD 周长与△ADC 的周长相差2cm,∴|BA﹣5|=2,∴解得BA=7 或3.故答案为:3 或7.16.解:设AC=x,则AB=2x,∵BD 是中线,∴AD=DC=x,由题意得,2x+x=30,解得,x=12,则AC=12,AB=24,∴BC=20﹣×12=14.答:AB=24,BC=14.17.解:∵BD 是中线,∴AD=CD=AC,∵△ABD 的周长比△BCD 的周长大6cm,∴(AB+AD+BD)﹣(BD+CD+BC)=AB﹣BC=6cm①,∵△ABC 的周长是21cm,AB=AC,∴2AB+BC=21cm②,联立①②得:AB=9cm,BC=3cm.18.解:(1)①∵∠MON=40°,OE 平分∠MON,∴∠AOB=∠BON=20°,∵AB∥ON,∴∠ABO=20°,②∵∠BAD=∠ABD,∴∠BAD=20°,∵∠AOB+∠ABO+∠OAB=180°,∴∠OAC=120°,∵∠BAD=∠BDA,∠ABO=20°,∴∠BAD=80°,∵∠AOB+∠ABO+∠OAB=180°,∴∠OAC=60°;故答案为:①20°;②120,60;(2)①当点D 在线段OB 上时,∵OE 是∠MON 的角平分线,∴∠AOB=∠MON=20°,∵AB⊥OM,∴∠AOB+∠ABO=90°,∴∠ABO=70°,若∠BAD=∠ABD=70°,则x=20若∠BAD=∠BDA=(180°﹣70°)=55°,则x=35若∠ADB=∠ABD=70°,则∠BAD=180°﹣2×70°=40°,∴x=50②当点D 在射线BE 上时,因为∠ABE=110°,且三角形的内角和为180°,所以只有∠BAD=∠BDA,此时x=125.综上可知,存在这样的x 的值,使得△ADB 中有两个相等的角,且x=20、35、50、125.19.解:∵AC=5,DE=2,∴△ADC 的面积为=5,∵AD 是△ABC 的中线,∴△ABD 的面积为5,∴点D 到AB 的距离是.故选:A.20.解:∵由于E、F 分别为AD、CE 的中点,∴△ABE、△DBE、△DCE、△AEC 的面积相等,∴S△BEC=2S△BEF=8(cm2),∴S△ABC=2S△BEC=16(cm2).故选:D.21.解:∵AD 是△ABC 的中线,∴S△ABD=S△ABC=×18=9,∵BE 是△ABD 的中线,∴S△ABE=S△ABD=×9=4.5.故选:B.22.解:∵D 为BC 的中点,∴S△ABD=S△ACD=S△ABC,∵E,F 分别是边AD,AC 上的中点,∴S△BDE=S△ABD,S△ADF=S△ADC,S△DEF=S△ADF,∴S△BDE=S△ABC,S△DEF=S△ADC=S△ABC,S△BDE+S△DEF=S△ADC+ S△ABC=S△ABC,∴S△ABC=S 阴影部分=×3=8.故选:D.23.解:①如图1,当P 在AB 上时,∵△APE 的面积等于5,∴x•3=5,x=;②当P 在BC 上时,∵△APE 的面积等于5,∴S 长方形ABCD﹣S△CPE﹣S△ADE﹣S△ABP=5,∴3×4﹣(3+4﹣x)×2﹣×2×3﹣×4×(x﹣4)=5,x=5;③当P 在CE 上时,∴ (4+3+2﹣x)×3=5,x=<3+4,此时不符合;故答案为:或5.24.解:∵折叠后面积减少,∴阴影部分的面积占三角形纸的面积的(1﹣﹣)=,∴三角形纸的面积=50÷ =200 平方厘米=2 平方分米.故答案为:2.25.解:加上EF 后,原图形中具有△AEF 了,故这种做法根据的是三角形的稳定性.故选:B.26.解:根据三角形具有稳定性,只要图形分割成了三角形,则具有稳定性.显然B 选项中有四边形,不具有稳定性.故选:B.27.解:过八边形的一个顶点作对角线,可以做5 条,把八边形分成6 个三角形,因为三角形具有稳定性.故选:C.28.解:三角形的重心是三条中线的交点,故选:A.29.解:∵AD 是斜边BC 边上的中线,∴AD=BC=×6=3,∵G 是△ABC 重心,∴=2,∴AG=AD=×3=2.故答案为2.30.解:3+4<8,则3,4,8 不能组成三角形,A 不符合题意;5+6=11,则5,6,11 不能组成三角形,B 不合题意;5+6>10,则5,6,10 能组成三角形,C 符合题意;1+2=3,则1,2,3 不能组成三角形,D 不合题意,故选:C.31.解:连接AB,根据三角形的三边关系定理得:15﹣10<AB<15+10,即:5<AB<25,∴A、B 间的距离在 5 和25 之间,∴A、B 间的距离不可能是5 米;故选:A.32.解:解不等式①,可得x<a,解不等式②,可得x≥4,∵不等式组至少有两个整数解,∴a>5,又∵存在以3,a,7 为边的三角形,∴4<a<10,∴a 的取值范围是5<a<10,∴a 的整数解有4 个,故选:A.33.解:∵|a﹣4|+ =0,∴a﹣4=0,a=4;b﹣2=0,b=2;则4﹣2<c<4+2,2<c<6,5 符合条件;故选:A.34.解:设第三边的长为x,∵三角形两边的长分别是4 和10,∴10﹣4<x<10+4,即6<x<14.故选:C.35.解:根据题意得:3x﹣2x<10<3x+2x,解得:2<x<10.故答案为:2<x<10.36.解:因为4﹣2<AC<4+2,所以2<AC<6,因为AC 长是偶数,所以AC 为4,故答案为:4.37.解:∵a、b 满足+(b﹣2)2=0,∴a=9,b=2,∵a、b、c 为三角形的三边,∴7<c<11,∵第三边c 为奇数,∴c=9,故答案为9.38.解:x2﹣13x+40=0,(x﹣5)(x﹣8)=0,所以x1=5,x2=8,而三角形的两边长分别是3 和4,所以三角形第三边的长为5,所以三角形的周长为3+4+5=12.故答案为12.39.证明:延长ED 到H,使DE=DH,连接CH,FH,∵AD 是△ABC 的中线,∴BD=DC,∵DE、DF 分别为∠ADB 和∠ADC 的平分线,∴∠1=∠2=∠ADB,∠3=∠4=∠ADC,∴∠1+∠4=∠2+∠3=∠ADB+ ∠ADC=×180°=90°,∵∠1=∠5,∴∠5+∠4=90°,即∠EDF=∠FDH=90°,在△EFD 和△HFD 中,,∴△EFD≌△HFD(SAS),∴EF=FH,在△BDE 和△CDH 中,,∴△BDE≌△CDH(SAS),∴BE=CH,在△CFH 中,由三角形三边关系定理得:CF+CH>FH,∵CH=BE,FH=EF,∴BE+CF>EF.40.解:如图,延长AD 到E,使DE=AD,∵AD 是BC 边上的中线,∴BD=CD,在△ABD 和△ECD 中,,∴△ABD≌△ECD(SAS),∴CE=AB,∵AB=5,AC=3,∴5﹣3<AE<5+3,即2<AE<8,1<AD<4.故答案为:1<AD<4.。
新苏教版七年级数学下册《认识三角形》题及答案解析一(精品试卷).doc

苏教版2017-2018学年七年级下册第7章《平面图形的认识(二)》7.4 认识三角形填空题1.在直角三角形、钝角三角形和锐角三角形这三种三角形中,有两条高在三角形外部的是三角形.2.如图,对面积为1的△ABC逐次进行以下操作:第一次操作,分别延长AB,BC,CA至点A1,B1,C1,使得A1B=2AB,B1C=2BC,C1A=2CA,顺次连接A1,B1,C1,得到△A1B1C1,记其面积为S1;第二次操作,分别延长A1B1,B1C1,C1A1至点A2,B2,C2,使得A2B1=2A1B1,B2C1=2B1C1,C2A1=2C1A1,顺次连接A2,B2,C2,得到△A2B2C2,记其面积为S2;…;按此规律继续下去,可得到△A5B5C5,则其面积S5= .3.如图,AD是△ABC的中线,如果△ABC的面积是18cm2,则△ADC的面积是cm2.4.如图,AD是△ABC的中线,△ABC的面积为100cm2,则△ABD的面积是cm2.5.在△ABC中,AD是中线,则△ABD的面积△ACD 的面积.(填“>”,“<”或“=”)6.如图,在△ABC中,已知点D,E,F分别为边BC,AD,CE 的中点,且S△ABC=4cm2,则S阴影= cm2.7.已知方格纸中的每个小方格是边长为1的正方形,A,B两点在小方格的顶点上,位置如图所示,在小方格的顶点上确定一点C,连接AB,AC,BC,使△ABC的面积为3个平方单位.则这样的点C共有个.8.要使五边形木架(用5根木条钉成)不变形,至少要再钉根木条.9.在△ABC中,已知两条边a=3,b=4,则第三边c的取值范围是.10.两根木棒的长分别为7cm和10cm,要选择第三根木棒,将它们钉成一个三角形框架,那么第三根木棒长xcm的范围是.11.以10cm,8cm为两边,第三边长为整数的三角形共有个.12.已知三角形的三边长为3,5,x,则第三边x的取值范围是.13.若三角形的三边长分别是5,a,7,则a的取值范围为<a<.14.一个三角形的两边长分别为2厘米和9厘米,若第三边的长为奇数,则第三边的长为厘米.15.甲地离学校4km,乙地离学校1km,记甲乙两地之间的距离为dkm,则d的取值范围为.16.三角形的两边的长分别为2cm和7cm,若第三边的长为奇数,则三角形的周长是cm.解答题17.如图,是一个食品包装盒的表面展开图.(1)请写出这个包装盒的多面体形状的名称;(2)请根据图中所标示的尺寸,计算这个多面体的侧面积和全面积.(侧面积与两个底面积之和)18.如图①所示,已知直线m∥n,A,B为直线n上的两点,C,D为直线m上的两点.(1)写出图中面积相等的各对三角形;(2)如果A,B,C为三个定点,点D在m上移动,那么无论D 点移动到任何位置,总有与△ABC的面积相等,理由是.解决以下问题:如图②所示,五边形ABCDE是张大爷十年前承包的一块土地的示意图,经过多年开垦荒地,现已变成如图③所示的形状,但承包土地与开垦荒地的分界小路(即图中的折线CDE)还保留着.张大爷想过E点修一条直路,使直路左边的土地面积与承包时的一样多,右边的土地面积与开垦荒地面积一样多.请你用相关的几何知识,按张大爷的要求设计出修路方案.(不计分界小路与直路的占地面积)(3)写出设计方案,并在图③中画出相应的图形;(4)说明方案设计的理由.19.我们把能平分四边形面积的直线称为“好线”.利用下面的作图,可以得到四边形的“好线”:在四边形ABCD中,取对角线BD的中点O,连接OA、OC.显然,折线AOC能平分四边形ABCD 的面积,再过点O作OE∥AC交CD于E,则直线AE即为一条“好线”.(1)试说明直线AE是“好线”的理由;(2)如下图,AE为一条“好线”,F为AD边上的一点,请作出经过F点的“好线”,并对画图作适当说明(不需要说明理由).20.探索:在如图1至图3中,△ABC的面积为a.(1)如图1,延长△ABC的边BC到点D,使CD=BC,连接DA.若△ACD的面积为S1,则S1= (用含a的代数式表示);(2)如图2,延长△ABC的边BC到点D,延长边CA到点E,使CD=BC,AE=CA,连接DE.若△DEC的面积为S2,则S2=(用含a的代数式表示),并写出理由;(3)在图2的基础上延长AB到点F,使BF=AB,连接FD,FE,得到△DEF(如图3).若阴影部分的面积为S3,则S3= (用含a的代数式表示).像上面那样,将△ABC各边均顺次延长一倍,连接所得端点,得到△DEF(如图3),此时,我们称△ABC向外扩展了一次.可以发现,扩展一次后得到的△DEF的面积是原来△ABC面积的倍.应用:去年在面积为10m2的△ABC空地上栽种了某种花卉.今年准备扩大种植规模,把△ABC向外进行两次扩展,第一次由△ABC扩展成△DEF,第二次由△DEF扩展成△MGH(如图4).求这两次扩展的区域(即阴影部分)面积共为多少m2?21.探究规律:如图,已知直线m∥n,A,B为直线m 上的两点,C,P为直线n上两点.(1)请写出图中面积相等的各对三角形:.(2)如果A,B,C为三个定点,点P在n上移动,那么,无论P点移动到任何位置,总有与△ABC的面积相等.理由是:.答案:填空题1、钝角2、解:连接A1C,根据A1B=2AB,得到:AB:A1A=1:3,因而若过点B,A1作△ABC与△AA1C的AC边上的高,则高线的比是1:3,因而面积的比是1:3,则△A1BC的面积是△ABC的面积的2倍,设△ABC的面积是a,则△A1BC的面积是2a,同理可以得到△A1B1C的面积是△A1BC面积的2倍,是4a,则△A1B1B的面积是6a,同理△B1C1C和△A1C1A的面积都是6a,△A1B1C1的面积是19a,即△A1B1C1的面积是△ABC的面积的19倍,同理△A2B2C2的面积是△A1B1C1的面积的19倍,即△A1B1C1的面积是19,△A2B2C2的面积192,依此类推,△A5B5C5的面积是S5=195=2476099.3、94、505、=6、解:∵点E是AD的中点,∴△BDE的面积是△ABD的面积的一半,△CDE的面积是△ACD 的面积的一半.则△BCE的面积是△ABC的面积的一半,即为2cm2.∵点F是CE的中点,∴阴影部分的面积是△BCE的面积的一半,即为1cm2.7、分析:首先在AB的两侧各找一个点,使得三角形的面积是3.再根据两条平行线间的距离相等,过两侧的点作AB的平行线,交了几个格点就有几个点.解:如图,符合条件的点有4个.8、解:再钉上两根木条,就可以使五边形分成三个三角形.故至少要再钉2 根木条.9、解:三角形两边的和>第三边,两边的差<第三边.则4-3<c<4+3,即1<c<7 .10、3<x<17 11、1512、2<x<8 13、2<a<12 14、9 15、3≤d≤5 16、16解答题17、解:(1)根据图示可知形状为直六棱柱.(2)S 侧=6ab ,S 正六边形=3 3 2b ², S 全=6ab+3 3 b ². 18、分析:(1)利用三角形的面积公式=底乘高除2,可知△ABC 和△ABD ,△AOC 和△BOD ,△CDA 和△CDB 面积相等.(2)因为平行线间的距离处处相等,所以无论点D 在m 上移动到何位置,总有△ABD 与△ABC 同底等高,因此它们的面积相等.(3)可利用三角形的面积公式和平行线的性质进行设计.这里就要添加辅助线.连接EC ,过D 作DF ∥EC 交CM 于点F ,连接EF 然后证明即可.解:(1)△ABC 和△ABD ,△AOC 和△BOD ,△CDA 和△CDB .(2)总有△ABD 与△ABC 的面积相等,理由是平行线间的距离处处相等;(3)如图所示,连接EC ,过D 作DF ∥EC 交CM 于点F ,连接EF ,则EF 即为所求直线.(4)设EF 交CD 于点H ,由(1),(2)知S △ECF =S △ECD ,所以S △ECF -S △ECH =S △ECD -S △ECH ,所以S △HCF =S △EDH ,所以S 五边形ABCDE =S 四边形ABFE ,S 五边形EDCMN =S 四边形EFMN .错误!未找到引用源。
苏教版七下7.4认识三角形(1)

①
②
③
④
⑤
⑥
⑦
这些三角形中,有等腰三角形吗?
练一练:
把图中的三角形按角来分类
A
B
D
E
C
准备5根木棒长分别为3cm,4cm,5cm,6cm,9cm, 任意取出3根首尾相接搭三角形,并填表:
选择的长度
3cm,4cm,5cm 能否搭出三 角形
能 不能
A 4 B 5 3 C
示意图
√
选择的长度 3cm,4cm,5cm 3cm,4cm,6cm 3cm,4cm,9cm 3cm,5cm,6cm 3cm,5cm,9cm 3cm,6cm,9cm 4cm,5cm,6cm 4cm,5cm,9cm 4cm,6cm,9cm 5cm,6cm,9cm
初中数学七年级下册 (苏科版)
7.4 认识三角形(1)
扬州梅岭中学
说一说:
日常生活中,有关三角 形的实例
在我们的生活中几乎随处可见 三角形。它简单,有趣,也十分有 用。三角形可以帮助我们更好认识 周围世界,解决很多的实际问题。
认识三角形
认识三角形
• 观察房屋顶的框架;
斜 梁 斜 梁
直
梁
回答什么叫三角形?
认识三角形
三角形的概念: 由不在同一直线上的 三条线段,首尾顺次 相接组成的图形。
练一练:
1、如图是用三根细棍组 成的图形, 其中符合三角 形概念的图形是( D )
A
B
C
D
A
c
b
记作:△ABC
三角形的顶点: A、B、C
C
B
a
三角形的内角:∠A 、 ∠B 、 ∠C
三角形的边:AB、AC、BC
能否搭出三 角形 能 √ √ √ 不能
7.4认识三角形(1)

2)按边分
A
B P
不等边三角形:三个边均不相等 三角形等腰三角形:有两个边相等的三角形 等边三角形:三边均相等的三角形
4 实验室 问:是不是任意三条线段都能够组成三角形? 答:不是 现在我们就来看一看三条线段满足什么条件才能组成一个三角形 请学生在课前准备好五条长度分别为 3 ㎝、4 ㎝、5 ㎝、6 ㎝、9 ㎝ 的绳子,现任意取出 3 根细绳首尾相接搭成三角形,并填写 25 页 表格 在教师的引导下让学生自己归纳总结,最后教师在此基础上补充完 整得到: 三角形任意两边之和大于第三边 例如在△ABC 中,根据两点之间线段最短,我们有 点 A 到点 B,C 的距离之和要大于线段 BC 的长 即 AB+AC〉BC 素材 A: 1. 在练习本上画出: (1) 等腰锐角三角形; (2) 等腰直角三角形; (3)等腰钝角三角形. 2 下列长度的各组线段能否组成一个三角形? (1) 15cm、10 cm、7 cm; (2)4 cm、5 cm、10 cm; (3)3 cm、8 cm、5 cm; (4)4 cm、5 cm、6 cm. 3.画一个三角形,使它的三条边长 分别为 3 cm、4 cm、6 cm. A 4 如图,以∠C 为内角的三角形 有 和 在这两个三角形中,∠C 的对边 B 分别为 和 素材 B: 5 等腰三角形的一边长为 3 ㎝,另一边长是 5 ㎝ 则它的第三边长为 答案:1 略 2 (1)能 (2) 不能 ( 3) 不能 3 略 4 △ABC △ADC AD AB 5 3 ㎝或 5 ㎝
D
C
(4)能
作业
P28/1,2,3
板
书
7.4认识三角形(1)教案

怀文中学2012—2013学年度第一学期教学设计初一数学(认识三角形(1))主备:樊新玲审校:日期:2013年2月19日教学目标:1.认识三角形的概念及其基本要素,并能用符号语言表示三角形及其基本要素.2.能正确区分锐角三角形、直角三角形、钝角三角形,体悟分类的数学思想.3.理解三角形三边之间的关系,并能用于解决相关的问题;提高自主探究的能力,增强学好数学的信心.教学重点:三角形的概念及三角形的三边之间的关系的探究与归纳,发展推理能力及表达能力.教学难点:三角形三边关系的应用一、自主学习1.预习课本,记下你的疑惑.2.△ABC是△DEF经过平移得到的,若AD =4cm,则BE = __ cm,CF= __ cm,若M为AB的中点,N为DE的中点,则MN = cm.3.下列各组长度的3条线段,不能构成三角形的是()A.3cm 8cm. 10cmB.5cm 4cm 9cmC.4cm 6cm 9cmD.2cm 3cm 4cm4.一个等腰三角形的两边长分别是6cm和9cm,则它的周长是 .5.由3条不在同一直线上的线段,首尾依次相接组成的图形称为三角形三角形的基本元素:顶点用大写字母表示.例如:A B C归纳:(内)角用一个大写字母或三个大写字母表示. 例如:∠A,∠ABC边用两个大写字母或一个小写字母表示. 例如:BC a注意:在表示的时候要注意角与边的对应.∠A←→a边(BC)∠B←→b边(AC)∠C←→c边(AB)6.课本P22议一议.三角形的分类(1)按角分:三角形(2)按边分:三角形7.议一议结论:三角形的任意两边之和大于第三边;二、合作、探究、展示1.小丽在纸上画了四点,如果把这些点彼此用线段连结,连成一个图形,则图形中有几个三角形?并把它们一一表示出来. 2.一个等腰三角形的两边分别为3和6,求这个三角形的周长.3.做一做:分别量出如图锐角三角形的三边的长度,并填到横线上. ①a = b = c =②计算三角形的任意两边之差,并与第三边比较 a-b c , c-b a , c-a b ,③你有什么发现吗?④对于直角三角形和钝角三角形,按照上面的研究方法,继续探究,你有什么发现?4.有两根长度分别为4cm 和7cm 的木棒,①用长度为2cm 的木棒与它们能摆成三角形吗?为什么?②长度为11cm 的木棒呢?③长度为4cm 的木棒呢?④什么长度范围的木棒, 能与原来的两根木棒摆成三角形?5.△ABC 三边的长a ,b ,c 都是整数,且a >b >c ,a =8,问:满足条件的三角形共有多少个?6.有3条线段,其长度分别为a 、a +4、a +6(a >0),请问这3条线段能否组成三角形? 三、巩固练习1.小晶有两根长度为5cm 、8cm 的木条,她想钉一个三角形的木框,现在有长度分别为2cm 、3cm 、 8cm 、15cm 的木条供她选择,那她第三根应选择( )A.2cmB.3cmC.8cmD.15cm2.等腰三角形的一边长为3㎝,另一边长是5㎝,则它的第三边长为 .3.等腰三角形的一边长为2㎝,另一边长是5㎝,则它的第三边长为 .4.如图,以∠C 为内角的三角形有 和 在这两个三角形中,∠C 的对边分别为 和5.下图中有几个三角形,分别用字母把它们表示 出来,说明是什么三角形, 并写出他们的边和角.6.如图:有A 、B 、C 、D 四个村庄,打算公用一个水厂, 若要使用的水管最节约,水厂应建在村庄的什么地方?7.已知△ABC 中,a =2,b =4,第三边c 为偶数,求c 的值.8.有长度分别为2cm,3cm,4cm 和5cm 的小木棒各两根..,任取其中3根,你可以搭出几种不同..的三角形? 四、课堂小结 五、布置作业P 26习题 1、2、4六、预习指导教学反思: a b c A B CD A B C D · ·· · D C。
认识三角形(1)

不是 理由是„„
例如在△ABC 中,根据两点之间线段最 短,我们有点 A 到点 B,C 的距离之和 在教师的引导下让学生自己归 要大于线段 BC 的长 纳总结, 最后教师在此基础上补 即 AB+AC〉BC 充完 素材 A: 1、 在练习本上画出: ①等腰锐角三角形; ②等腰直角三角形; ③等腰钝角三角形. 2 下列长度的各组线段能否组成一个 三角形? (1) 15cm、 cm、 cm; 10 7 (2) cm、 4 5 cm、10 cm; (3)3 cm、8 cm、5 cm; (4) 4 cm、5 cm、6 cm. 3.画一个三角形,使它的三条边长 分别为 3 cm、4 cm、6 cm.
通过练习进一步 巩固今天所学的 知识。 培养学生自 主学习能力。 整理 知识, 检验目标的 实施情况
4 如图,以∠C 为内角的三角形 有 和
在这两个三角形中,∠C 的对边 分别为 和
A
B
D
C
板书设计
情境创设 1、 2、
例 1:„„
例 2:„„
习题 „„
„„ „„
„„ „„
„„ „„
作业布置 课后随笔
要求学生从实际模型中找出不 同的三角形,并进行交流 认真听讲, 注意格 归纳 式 引导学生会按角将三角形分类, 渗透分类的思想 鼓励学生主动探索、善于思维, 勇于实践、敢于发现
通常情况下, 我们用三角形的三 个顶点加以一个 “△” 来表示一 个三角形, 在表示三角形时, 三 个字母之间并无顺序关系
边 BC 称为∠A 所对的边,或顶点 A 所 对的边,因此边 BC 也可以表示为 a 那么边 AB,AC 呢? 三角形的分类 1)按角分
B P C
问: 是不是任意三条线段都能够组成三 角形? 答:不是 现在我们就来看一看三条线段满足什 么条件才能组成一个三角形 整得到: 三角形任意两边之和为 3 ㎝、4 ㎝、5 ㎝、6 ㎝、 9㎝ 的绳子, 现任意取出 3 根细绳首 尾相接搭成三角形,并填写 25 页表格
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a b c b c a c b 2a
例4:已知等腰三角形的两边分别为2和5,则 三角形的周长是多少?
练习二: 1.小晶有两根长度为5cm、8cm的木条, 她想钉一个三角形的木框,现在有长度分别 为2cm 、3cm、 8cm 、15cm的木条供 她选择,那她第三根应选择( ) A 2cm B 3cm C 8cm D 15cm 2.如果一个等腰三角形的两边长分别为4cm 和9cm,则这个等腰三角形的周长为多少?
(1) (5)
(2) (6)
(3) (7)
(4)
锐角三角形
直角三角形
钝角三角形
2.在上面的三角形中,有等腰三角形吗?
三角形的分类
1.按“边”分
等边三角形
等腰三角形 腰和底不相等的 三角形 等腰三角形 非等腰三角形
2.按“角”分
直角三角形 三角形 锐角三角形 钝角三角形
练习1: 1.图中共有几个三角形?请分别把它们表示 出来,并指出它们是锐角三角形?直角三角 形?还是钝角三角形? A
变式: 准备5根小棒,长度分别为4cm、5cm、 6cm、7cm、9cm,任意取出三根小棒首尾 相接搭三角形. 在活动的过程中,思考下列问题: (1)什么样长度的小木棒不能组成三角形? (2)什么样长度的小木棒能组成三角形?
例2:△ABC中a=5cm,b=7cm,则c的取值范围 是 . 例3:已知a、b、c是△ABC的三边,请化简:
E
C ∟ D B
2.在△ABC中,点D、E分别在BC、AB上, AD与CE相交于点F,AC分别是哪些三角形的 边? ∠B分别是哪些三角形的一个内角? A
E F B D C
利用两点之间线段最短,说明△ABC三边a、 b、c之间有怎样的关系? A a+b>c a-b<c b
b+c>a a+c>b b-c<a a-c<b c
.B
为什么经常有行 人斜穿马路而不 走人行横道?
人 行 横 道
.A
学习小结
通过本节课的学习,能 说说你取得了哪些成果吗? 你还有什么困惑吗?
5.如图:有A、B、C、D四个村庄,打算共 用一个水厂,若要使用的水管最节约,水 厂应建在村庄的什么地方?
A · C · D ·
B·
链接中考:
一个等腰三角形的周长为18cm (1)已知腰长是底边长的2倍,求各边长; (2)已知其中一边长为4cm,求其它 两边的长。
议一议
观察下图,联想实际,结合所学的数学知识 说几句话.
三角形有三个顶点,顶点A,顶点B,顶点C. 顶点: 三角形有三个角:∠A,∠B,∠C. 角: 三角形有三边 , AB、BC、AC.顶点A所对的边 边:
BC也可表示为a,顶点B所对的边AC也可表示为 b ,顶点C所对的边AB也可表示为c.
说一说:∠B 的对边是_______.
1.观察下面的三角形,请把它们的标号填 入相应的椭圆框内:
C a B
三角形任意两边之和大于第,用它们 能摆成三角形吗? (1)5cm,8cm,2cm (2)3cm,3cm,4cm (3)5cm,8cm,13cm (4)3.5cm,7.5cm,4.5cm
友情提醒:只需比较两较短线段之和 与最长线段的大小
一只小猫
你在生活中还见过哪些三角形 形状的物体?
如图是用三根细木棒组成的图形, ( D ) 你认为是三角形的图形为
A
B
C
D
由不在同一直线上的三条线段首尾 顺次相接所组成的图形叫做三角形.
记法:
用符号“△”表示三角形, 右图三角形记作:△ABC
A
c
B
b a
C
三角形的三要素:
3.有两根长度分别为4cm和7cm的木棒, (1) 用长度为2cm的木棒与它们能摆成三角形 吗?为什么? (2) 长度为11cm的木棒呢?长度为4cm的木棒 呢? (3)什么长度范围的木棒, 能与原来的两根木 棒摆成三角形?
4.用7根长度相同的木条首尾依次连接摆成一 个三角形,能摆成不同的三角形的个数最多 为 .