纳米氧化物材料研究的现状及进展

合集下载

纳米氧化锌的制备现状及研究进展

纳米氧化锌的制备现状及研究进展

纳米氧化锌的制备现状及研究进展摘要:本文综述了近几十年来纳米氧化锌制备的发展现状及各自的优缺点,提出了目前研究中存在的问题并对其发展方向进行了展望。

关键词:纳米氧化锌制备研究进展一、引言纳米氧化锌是21世纪的一种多功能新型无机材料,其粒径介于1~100nm之间。

由于粒径比较微小,使得比表面积、表面原子数、表面能较大,产生了如表面效应、体积效应、量子尺寸效应和宏观隧道效应以及高透明度、高分散性等一系列奇异的物理效应。

它的特殊性质使其在陶瓷、化工、电子、光学、生物、医药等许多领域都有着重要的应用。

近年来,国内外对其制备和应用的研究较为广泛,且取得了不少成果。

二、纳米氧化锌的制备方法目前,制备纳米氧化锌主要有物理法、化学法及一些兴起的新方法。

1.物理法物理法是采用光、电技术使材料在惰性气体或真空中蒸发,然后使原子或分子形成纳米微粒,或使用喷雾、球磨等力学过程为主获得纳米微粒的制备方法[1]。

用来制备纳米zno的物理方法主要有脉冲激光沉积(pld)、分子束外延(mbe)、磁控溅射、球磨合成、等离子体合成、热蒸镀等。

此法虽然工艺简单,所得的氧化锌粉体纯度高、粒度可控,但对生产设备要求高,且得不到需要粒径的粉体,因此工业上不常用此法。

2.化学法2.1液相法2.1.1直接沉淀法直接沉淀法就是向可溶性锌盐溶液中加入沉淀剂,经过反应形成沉淀物,再通过过滤、洗涤、干燥、煅烧从而制得超细的纳米zno 粉体。

选用的沉淀剂有氨水(nh3·h2o)、碳酸铵((nh4)2 co3)、碳酸氢铵(nh4hco3)、草酸铵((nh4)2 c2o4)、碳酸钠(na2co3)等。

该法操作简便易行、所得产品纯度高、对设备要求低且易规模生产,但是存在在洗涤的过程中阴离子难以洗尽、产物粒度分布不均匀、分散性较差、粉体易团聚等缺点。

2.1.2 均匀沉淀法均匀沉淀法是缓慢分解的沉淀剂与溶液中的构晶阳离子(阴离子)结合而逐步、均匀地沉淀出来。

纳米二氧化硅的发展现状及前景

纳米二氧化硅的发展现状及前景

纳米二氧化硅的发展现状及前景一、引言纳米二氧化硅(SiO2)是一种具有特殊结构和性质的纳米材料,具有广泛的应用前景。

本文将对纳米二氧化硅的发展现状及前景进行详细探讨。

二、纳米二氧化硅的制备技术纳米二氧化硅的制备技术主要包括溶胶-凝胶法、热解法、气相法等。

其中,溶胶-凝胶法是最常用的制备方法之一。

该方法通过溶胶的制备、凝胶的形成和热处理等步骤,可以制备出粒径可控的纳米二氧化硅材料。

三、纳米二氧化硅的性质和特点纳米二氧化硅具有许多独特的性质和特点,包括高比表面积、优异的化学稳定性、良好的生物相容性等。

这些特点使得纳米二氧化硅在许多领域具有广泛的应用前景。

四、纳米二氧化硅的应用领域1. 生物医学领域纳米二氧化硅在生物医学领域具有广泛的应用前景。

例如,可以用于药物传递系统、生物传感器、组织工程等方面。

纳米二氧化硅可以作为药物的载体,通过调控其粒径和表面性质,实现药物的靶向输送和控释。

此外,纳米二氧化硅还可以用于制备生物传感器,用于检测生物标志物的存在和浓度。

在组织工程方面,纳米二氧化硅可以用于制备材料支架,促进组织再生和修复。

2. 环境领域纳米二氧化硅在环境领域也有重要的应用价值。

例如,可以用于水处理、气体吸附等方面。

纳米二氧化硅具有高比表面积和优异的吸附性能,可以用于去除水中的重金属离子、有机污染物等。

此外,纳米二氧化硅还可以用于吸附空气中的有害气体,如甲醛、苯等。

3. 功能材料领域纳米二氧化硅还可以用于制备各种功能材料。

例如,可以用于制备防晒剂、涂料、催化剂等。

纳米二氧化硅可以作为防晒剂的成份,可以有效地吸收紫外线,保护皮肤免受紫外线辐射的伤害。

在涂料方面,纳米二氧化硅可以提高涂料的耐候性和抗污性。

此外,纳米二氧化硅还可以作为催化剂的载体,用于促进化学反应的进行。

五、纳米二氧化硅的发展现状目前,纳米二氧化硅的研究和应用已经取得了一些发展。

在制备技术方面,溶胶-凝胶法、热解法等方法已经得到了广泛应用。

2023年纳米氧化铁行业市场发展现状

2023年纳米氧化铁行业市场发展现状

2023年纳米氧化铁行业市场发展现状近年来,纳米氧化铁行业市场呈现出快速发展的趋势。

纳米氧化铁是一种高性能、高效能、绿色环保、无毒无害的新型材料,具有较好的物理、化学和生物特性,在环境保护、制备基板、生物医药、信息存储、催化剂、磁记录、传感器等领域具有广泛的应用前景。

纳米氧化铁行业市场发展现状主要包括以下几个方面:一、市场规模不断扩大近年来,纳米氧化铁行业市场规模不断扩大。

国内外的纳米氧化铁生产厂家数量逐年增多,综合实力和技术水平逐渐提高。

根据统计数据显示,截至2021年,全球纳米氧化铁市场规模已经达到280亿美元,预计在未来几年内将保持较高速度的增长。

二、技术创新不断推进纳米氧化铁行业市场的快速发展离不开技术创新的不断推进。

国内外的纳米氧化铁研究机构和企业不断进行技术攻关,成功地研发出了一系列高性能的纳米氧化铁制备方法和应用技术,包括:热分解法、水热法、溶胶-凝胶法、电沉积法等制备方法。

同时,通过材料表面改性和掺杂等手段,实现了对纳米氧化铁各项性能的优化和提高。

三、应用范围不断拓展纳米氧化铁行业市场的应用范围不断拓展。

目前,纳米氧化铁已经广泛应用于环境保护、制备基板、生物医药、信息存储、催化剂、磁记录、传感器等众多领域,具有广泛的应用前景。

例如在环境保护领域,纳米氧化铁可以通过光催化、电催化等方式来降解废水、废气、有害气体等;在生物医药领域,纳米氧化铁可以作为药物的靶向传递器,提高药效,并且还可以利用纳米氧化铁的磁性特性实现磁导靶向治疗。

四、市场竞争加剧随着纳米氧化铁行业市场的快速发展,市场竞争也日趋激烈。

国内外的生产厂家数量不断增多,产品种类和规格也越来越多样化。

在这种情况下,企业需要通过技术创新、市场营销、产品差异化等手段来提高自身的核心竞争力,才能在市场竞争中占据一定的份额。

同时,监管部门也需要加强对纳米氧化铁行业的监管和规范,保障消费者的权益和市场的稳定性。

总之,纳米氧化铁行业市场在近年来呈现出快速发展的趋势,市场规模不断扩大,技术创新不断推进,应用范围不断拓展,市场竞争加剧。

纳米金属氧化物

纳米金属氧化物

纳米金属氧化物
纳米金属氧化物是一类具有纳米级粒径的金属氧化物材料,它们因其独特的物理和化学性质而在多个领域有着广泛的应用。

具体如下:
1. 种类多样:包括纳米二氧化钛、纳米二氧化硅、纳米氧化锌、纳米氧化铝、纳米氧化锆、纳米氧化铈、纳米氧化铁等。

2. 制备方法:这些纳米材料的制备方法多种多样,如水热合成法、溶胶-凝胶法、模板法、溶液喷射法、直接发泡法等。

3. 应用领域:纳米金属氧化物在污水治理、空气净化、储能、隔热等领域有着广泛的应用。

它们通常具有优异的催化性能,可以作为催化剂或催化剂载体使用。

4. 结构特点:一些纳米金属氧化物具有独特的连续多孔网络结构,这种结构不仅保留了金属氧化物的化学性质,还赋予了材料优异的物理性能。

5. 研究进展:近年来,科学家们还提出了一些新的制备策略,例如利用前驱体热膨胀形成的气泡作为软模板辅助制备二维金属氧化物,并同步在纳米片上生成大量介孔,这种方法可以一步法成功制备出高结晶度、厚度均一、高比表面积的均相金属氧化物纳米材料。

6. 性能调控:调控金属氧化物纳米材料的形貌对于调变其性能、拓展其应用空间具有重要意义。

因此,研究者们不断探索新的合成方法和条件,以获得具有特定形貌和性能的纳米金属氧化物。

综上所述,纳米金属氧化物是一类非常重要的纳米材料,其不仅在科学研究中占有重要地位,而且在工业和技术应用中也展现出巨大的潜力。

随着科学技术的发展,人们对这类材料的理解和应用能力将不断提升,从而推动相关领域的进步和创新。

纳米材料的研究进展以及应用前景研究

纳米材料的研究进展以及应用前景研究

纳米材料的研究进展以及应用现状1.绪论从概念来说,纳米材料是由无数个晶体组成的,它的大小尺寸在1~100纳米范围内的一种固体材料。

主要包括晶态、非晶态的金属、陶瓷等材料组成。

因为它的大小尺寸已经接近电子的相干长度,它有着特殊的性质。

这些特殊性质所表现出来的有导电、导热、光学、磁性等。

目前国内、国际的科学家都在研究纳米材料,试图打造一种全新的新技术材料,将来为人类创造更大的价值。

纳米科学技术也引起了科学家的重视,在当代的科学界有着举足轻重的地位。

纳米技术的范围包括纳米加工技术、纳米测量技术,纳米材料技术等。

其中纳米材料技术主要应用于材料的生产,主要包括航天材料、生物技术材料,超声波材料等等。

从1861年开始,因为胶体化学的建立,人们开始了对直径为1~100纳米粒子的研究工作。

然而真正意义上的研究工作可以追溯到20世纪30年代的日本为了战争的胜利进行了“沉烟实验”,由于当时科技水平落后研究失败。

2.纳米材料的应用现状研究表明在纺织和化纤制品中添加纳米微粒,不仅可以除去异味和消毒。

还使得衣服不易出现折叠的痕迹。

很多衣服都是纤维材料制成的,通常衣服上都会出现静电现象,在衣服中加入金属纳米微粒就可消除静电现象。

利用纳米材料,冰箱可以消毒。

利用纳米材料做的无菌餐具、无菌食品包装用品已经可以在商场买到了。

另外利用纳米粉末,可以快速使废水彻底变清水,完全达到饮用标准。

这个技术可以提高水的重复使用率,可以运用到化学工业中。

比如污水处理厂、化肥厂等,一方面使得水资源可以再次利用,另一方面节约资源。

纳米技术还可以应用到食品加工领域,有益健康。

纳米技术运用到建筑的装修领域,可以使墙面涂料的耐洗刷性可提高11倍。

玻璃和瓷砖表面涂上纳米材料,可以制成自洁玻璃和自洁瓷砖,根本不用擦洗。

这样就可以节约成本,提高装修公司的经济效益。

使用纳米微粒的建筑材料,可以高效快速吸收对人体有害的紫外线。

纳米材料可以提高汽车、轮船,飞机性能指标。

纳米材料行业发展现状及前景趋势分1

纳米材料行业发展现状及前景趋势分1

纳米材料行业发展现状及前景趋势分析纳米材料行业发展现状及前景趋势分析纳米材料是指在三维空间中至少有一维处于纳米尺度范围(1-100 nm)或由它们作为基本单元构成的材料,大约相当于10-100个原子紧密排列在一起的尺度。

纳米材料行业发展现状:在充满生机的21世纪,信息、生物技术、能源、环境、先进制造技术和国防的高速发展必然对材料提出新的需求,元件的小型化、智能化、高集成、高密度存储和超快传输等对材料的尺寸要求越来越小;航空航天、新型军事装备及先进制造技术等对材料性能要求越来越高。

新材料的创新,以及在此基础上诱发的新技术、新产品的创新是未来10年对社会发展、经济振兴、国力增强最有影响力的战略研究领域,纳米材料将是起重要作用的关键材料之一。

纳米材料自问世以来,受到科学界追捧,成为材料科学现今最为活跃的研究领域。

纳米材料根据不同尺寸和性质,在电子行业、生物医药、环保、光学等领域都有着开发的巨大潜能。

在将纳米材料应用到各行各业的同时,对纳米材料本身的制备方法和性质的研究也是目前国际上非常重视和争相探索的方向。

中国在纳米科技领域的研究起步较早,基本上与国际发展同步。

中国已经初步具备开展纳米科技的研究条件,国家重点研究机构及相关高科技技术企业对纳米材料的研究步伐不断加快;在纳米科技领域,我国“十五”、“十一五”期间取得了一批重要的研究成果,在部分领域已达到国际先进水平。

这些都为实现跨越式发展提供了可能。

中国在经济高速发展、在节省能源和资源方面,纳米材料和纳米技术将发挥重要作用。

结合国家战略需求,纳米材料和纳米技术在能源、环境、资源和水处理产业应用近年来出现了良好的开端。

纳米净化剂、纳米助燃剂、纳米固硫剂、用于水处理的纳米絮凝剂等新型产品相继开发成功,在这些产品基础上,发展了一些新型纳米产业,前景看好。

纳米材料行业前景趋势分析:市场成长迅速、国家对高科技新材料产业的重视、中国的纳米材料技术水平的进一步突破、纳米材料与日常起居结合紧密、纳米材料应用领域不断开拓等等这些因素必将使中国的纳米产业未来更加光明。

纳米二氧化钛研究现状

纳米二氧化钛研究现状

纳米二氧化钛研究现状论文导读:综述了纳米TiO2的特性,包括纳米级TiO2常见的三种结构,化学稳定性及热稳定性等方面性质。

重点综述了纳米TiO2常见制备方法,包括气相法、液相法。

并讨论了液相法和气相法合成纳米级TiO2粉体的优缺点。

关键词:纳米TiO2,气相法,液相法0.前言二十世纪纳米技术兴起并迅速发展,由于纳米材料的独特性质使它在科学技术领域占据重要地位。

我们把粉体粒径小于100nm的粉体称作纳米粉体。

纳米粉体具有宏观块材所没有的奇特性质,如量子尺寸效应,宏观隧道效应等。

这些奇特的性质决定了纳米粉体的广阔运用前景。

纳米粉体中纳米TiO2粉体目前在能源、化工、冶金、半导体材料、光催化材料、太阳能的储存与利用、光化学转换、精细陶瓷等方面得到广泛应用,所以合成纳米TiO2已经成为人们广泛关注的热点。

纳米TiO2的制备方法有气相法、液相法。

此两种方法各有其优缺点。

气相法制备的TiO2纳米粒径小,单分散性好但能耗大,成本较高。

与气相法相比液相法制备纳米TiO2方法简单、易操作、成本低,但制备的TiO2纳米形貌不易控制。

本文综述了近年来制备纳米TiO2的常见方法,客观的分析和评价了各种方法的优缺点。

1.纳米TiO2的性能纳米TiO2有白色和透明状的两种颗粒,常见的TiO2粉体有金红石、锐钛矿、板钛矿等3种晶型。

其中金红石和锐钛矿是四方晶系,板钛矿是正交晶系。

纳米TiO2化学性能稳定,常温下几乎不与其它化合物反应,不溶于水和稀酸,在一定条件下微溶于碱和热硝酸,纳TiO2热稳定性也比较好。

纳米TiO2的一个显著特点是他具有半导体性质,它的禁带宽度较宽,其中锐钛矿为3.2eV,金红石为3.0eV,当吸收一定波长的光子后价带中的电子就会被激发到导带,形成带负电的高活性电子e-,同时在价带上产生带正电的空穴h+。

2. 纳米TiO2的制备方法2.1 气相法2.1.1 气相氢氧焰水解法该法[1]是以精制的氢气、空气、氯化物(TiCl4)蒸气为原料。

纳米氧化锌吸波材料的研究现状

纳米氧化锌吸波材料的研究现状

纳米氧化锌吸波材料的研究现状摘要: 氧化锌(ZnO)是一种应用广泛的半导体金属氧化物,其在吸波领域的应用引起了越来越多研究者的关注。

本文简述了氧化锌的特点、应用、吸波原理,并对近年来国内外纳米氧化锌吸波材料的研究进展做了简要介绍。

关键词: 纳米ZnO,微波吸收1 引言随着科技的飞速发展,各种电子设备在日常生活、社会建设及国防安全方面发挥着重要的作用。

然而,这些设备在工作过程中时刻辐射着不同波长和频率的电磁波,造成了一个令人困扰的问题,即电磁干扰(EMI),又称电磁污染。

为了应对电磁干扰,微波吸收材料应运而生。

微波吸收材料是指能吸收、衰减入射的电磁波,将其电磁能转换成热能耗散掉或使电磁波因干涉而消失,达到减小目标雷达散射截面的隐身效果或者减少电磁干扰的目的。

2 相关知识2.1 氧化锌简介ZnO是一种N型半导体材料,具有较大的禁带宽度(3.37eV)和较高的激子结合能(60 meV),较高的电子迁移率和热导率,同时,它还具有制备成本低、无毒性、质量轻、可降解的优点,作为功能材料具有广阔的应用前景,在气敏、发光、催化等领域具有广泛的应用,同时,氧化锌在电磁场中介电常数较大,具有优异的介电损耗和半导体性能,是一种性能优异的吸波材料,国内外许多研究人员都对其吸波性能进行了研究。

2.2 吸波材料的工作原理当电磁波进入吸波材料后,每传播到一个界面,会产生三种情况:1电磁波与介质直接作用,使一部分电磁波转变成热能或其他形式的能量而耗散掉;2部分电磁波进入介质内部,产生多次反射和散射,并因自身干涉相消耗散一部分;3部分电磁波穿透吸波材料成为透射波继续传播。

如果要求吸波材料能对特定频率的电磁波进行高效的吸收,实现零反射,则必须满足一定的条件,一是电磁波接触到吸波材料时,尽可能不被反射;二是进入材料内部的电磁波尽可能被全部吸收。

3 纳米氧化锌吸波材料的研究现状微波吸收性能往往与材料的复磁导率、复介电常数、阻抗匹配有关,这些参数可以通过材料的组分、形貌、大小等来进行调节,这也是我们改进提高材料的微波吸收性能的方向。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

纳米氧化物材料研究的现状及进展
发表时间:2018-11-27T16:11:48.977Z 来源:《建筑学研究前沿》2018年第21期作者:邵琪
[导读] 并作了一定的评价,介绍了一些较新的纳米氧化物制备方法。

从纳米材料合成和制备的角度出发,较系统的阐述了纳米材料合成与制备的最新研究进展,并介绍了纳米材料在高科技领域中的应用展望。

邵琪
山东建筑大学土木工程学院山东济南 250101
摘要:综述了近10 年来纳米氧化物的发展情况及各种制备方法及特点,并作了一定的评价,介绍了一些较新的纳米氧化物制备方法。

从纳米材料合成和制备的角度出发,较系统的阐述了纳米材料合成与制备的最新研究进展,并介绍了纳米材料在高科技领域中的应用展望。

关键字:纳米材料;氧化物
前言:纳米材料和纳米结构是当今新材料研究域中最富有活力、对未来经济和社会发展有着十分重要影响的研究对象,也是纳米科技中最为活跃、最接近应用的重要组成部分。

1 纳米材料的特性
纳米材料具有极佳的力学性能,如高强、高硬和良好的塑性。

例如,金属材料的屈服强度和硬度随着晶粒尺寸的减小而提高,同时也不牺牲其塑性和韧性。

纳米材料的表面效应和量子尺寸效应对纳米材料的光学特性有很大的影响,如它的红外吸收谱频带展宽,吸收谱中的精细结构消失,中红外有很强的光吸收能力。

2 纳米氧化物材料的制备方法
纳米微粒(膜)的制备方法包括物理方法、化学方法、膜模拟法等.物理制备方法主要涉及蒸发熔融,凝固形变和粒径缩减等。

物理变化过程,具体包括粉碎法、蒸发凝聚法、离子溅射法、冷冻干燥法、电火花放电法、爆炸烧结法等。

化学制备纳米微粒(膜)的过程通常包含着基本的化学反应,在反应过程中物质之间的原子组织排列,这种组织排列决定物质的存在形态。

化学方法主要有化学反应法、沉淀法、水热合成法、喷雾热解法、溶胶-凝胶法、γ射线辐射法、相转移法等。

2.1 物理制备法
2.1.1 真空冷凝法
用真空蒸发、加热、高频感应等方法使原料气化或形成等粒子体,然后骤冷。

其特点纯度高、结晶组织好、粒度可控,但技术设备要求高。

2.1.2 物理粉碎法
通过机械粉碎、电火花爆炸等方法得到纳米粒子。

其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。

2.1.3高能机械球磨法
高能机械球磨法是近年来发展起来的制备纳米材料的一种新的方法,1988 年,日本京都大学导了用该方法制备出了 Al -Fe纳米晶材料。

高能机械球磨法是利用球磨机的转动或震动使硬球对原料进行强烈的撞击,研磨和搅拌,把金属或合金粉末粉碎成纳米微粒的方法。

目前,采用该方法已成功的制备出了纳米晶纯金属(Fe , Nb , W , Hf , Zr , Co , Cr 等);不相溶体系的固溶体(Cu -Ta ,Cu -W ,Al -Fe 等);纳米金属间化合物(Fe -B , Ti -Al ,Ni -Si , W -C 等);纳米金属陶瓷粉等材料。

2.2 膜模拟法
吴庆生等人利用绿豆芽通过生物膜法合成纳CdS[1]。

用这种方法制备纳米物质仅仅是个尝试,在现有的试验条件下对它的合成机理还没有做出合理的解释,且与大规模生产还有一定距离。

2.3 化学方法
2.3.1 共沉淀法
共沉淀法是液相化学反应合成金属氧化物纳米颗粒最早采用的方法。

赵辉等人在研究 PbO - Nb2O5 -KOH -H2O 体系中[2],发现采用共沉淀法可直接从水溶液中合成 Pb3Nb2O8 纳米粉。

这种合成方法虽成本较低,但仍存在一些缺点,如沉淀通常为胶状物,水洗、过滤较困难;沉淀剂作为杂质易混入;沉淀过程中各种成分可能发生偏析,水洗时部分沉淀物发生溶解。

2.3.2 分步-均一沉淀法
分步-均一沉淀是利用某一化学反应使溶液中的构晶离子由溶液中缓慢地、均匀地释放出来。

因此,加入的沉淀剂并不直接与被沉淀组分发生反应,而是通过化学反应让沉淀剂在整个溶液中均匀地、缓慢地析出,让沉淀物均匀地生成。

以尿素为沉淀剂制备粒径为40 nm 锐钛矿型二氧化钛超细粒子,并在其表面包覆晶体粒径为10.2 nm 的氧化锌。

2.3.3 溶胶-凝胶法
将金属醇盐或无机盐类经水解形式或者解凝形式形成溶胶物质,然后使溶质聚合胶凝化,经过凝胶干燥,还原焙烧等过程可以得到氧化物,金属单质等纳米材料,这样的方法称之为溶胶凝胶法。

法具有所需反应温度低,化学均匀性好,产物纯度高,颗粒细小,粒度分步窄等特点,但是采用金属醇盐作为原料成本高,排放物对环境有污染。

溶胶凝胶法制备纳米粉体的工作开始于20 世纪 60 年代:可以制备一系列纳米氧化物,复合氧化物,金属单质及金属薄膜等。

2.3.4 有机配合物前躯体法
有机配合物前躯体法是另一类重要的氧化物纳米晶的制备方法。

其原理是采用容易通过热分解取出的多齿配合物,如柠檬酸为分散剂,通过配合物与金属离子的配合作用得到高度分散的复合物前躯体,最后再通过热分解的方法去除有机配合体得到纳米复合氧化物。

2.3.5 等离子增强化学气相沉淀(PECVD)法
该方法等离子增强化学气相沉淀系统中,用高倍稀释硅烷和高倍稀释的掺杂气体(主要是磷烷和硼烷)作为反应气体,在射频和直流双重功率源作用下制备出掺杂纳米硅薄膜(nc-Si:H),并利用高分辨电子显微镜(HREM)、Raman 散射、X射线衍射(XRD)、俄歇电
子能谱(AES)等手段对掺入不同杂质后的纳米硅薄的微结构进行了系统的研究。

随着掺磷浓度的增加,掺杂纳米硅薄膜的晶粒尺寸就会减小,晶态比和晶粒密度将增加;而随着掺硼浓度的增加,掺杂纳米硅薄膜的晶粒尺寸却没有变化,晶态比将减小。

当掺硼浓度达到一定程度时,则变成了非晶硅薄膜。

3纳米氧化物材料制备方法的较新工艺
上述制备纳米材料的方法大多是以水做溶剂,同金属离子的均匀分散。

因此,人们又提出其他的改进方法,如硬脂酸法和固相合成法等。

3.1 硬脂酸法
硬脂酸是一种两亲性的有机酸,端基的羧酸基几乎同所有金属离子都有较强的配位作用,其用作表面活性剂已在许多领域得到应用。

由于硬脂酸碱有配合几何表面活性剂的双重作用,各种金属离子在液相可以达到高度均匀稳定的混合。

由于合成过程中不需水的参与,从而防止了金属离子的水解沉淀现象,这大大拓展了该方法的应用范围。

此外,不同于共沉淀法,各金属元素在制备过程中不损失,而且不会引入外来杂质,因此,产物的各组分含量可以通过控制原料的加入来达到精确控制。

采用这种方法,已经成功地制备了一系列六角锥形尖锥石形铁氧体,以及 La2O3,Fe2O3,Y2O3及其混合氧化物的纳米晶材料。

3.2 固相合成法
低加热条件下的固相化学反应,是近几年发展起来的新研究领域。

其研究成果已经被成功地应用到新型配合物、金属簇合物、非线性光学材料等的合成。

以酒石酸和乙二胺四乙酸为原料,分别与醋酸锌进行固相反应制得前驱化合物,进而热分解得到气敏材料氧化锌试验结果表明:用这种方法合成的氧化锌具有粒径小、工作温度低及对乙醇气体灵敏度高的特点。

3.3 热爆分解法
以硝酸锌为原料,用过氧化氢氧化氧化锌得到过氧化锌。

将干燥后的过氧化锌送入已调节好的温度(200 ~ 350 ℃)的马弗炉中热爆分解,待爆炸声停止后,将样品取出,室温冷却制得纳米氧化锌。

用 X 射线粉末衍射及透射电子显微镜方法对它作了表征.纳米氧化锌的大小为(8~20) nm ×(50~100) nm,形状为针棒状。

3.4 回流法
回流法是将反应物体系移入回流装置中,经回流一定时间后,制得前驱物。

经水洗后,在高温下煅烧制得纳米氧化物的方法。

4 纳米材料的应用与展望
纳米科技是21世纪科技产业革命的重要内容,纳米材料的制备是纳米材料研究的重点,是各种学科包括物理学,化学,界面科学,生物医学等学科的交汇。

纳米材料必将在催化领域,生物医学领域,环保领域,国防领域,新能源领域,信息科学技术等领域发挥其独特的作用。

总之,纳米材料的研究方兴未艾,它架起了宏观与微观世界之间的桥粱,使人类对科学的认识更进了一步,必将成为人类改造自然与社会的强有力工具。

参考文献:
[1]吴庆生,郑能武,丁亚平等. 活体生物膜控制合成纳米半导体硫化镉[J]. 高等学校化学学报,2000,21(10):1471.
[2]赵辉,谢红,冯守华. 共沉淀法合成Pb2Nb2O8纳米粉[J]. 高等学校化学学报,2001,22(3):355.。

相关文档
最新文档