电导分析法的基本原理

合集下载

第九章 电导分析法和

第九章 电导分析法和

电导池常数
对具有固定电极的电导池, 对具有固定电极的电导池,两极间的距 和电极面积A都是固定值 为常数, 离l和电极面积 都是固定值,l/A为常数, 和电极面积 都是固定值, 为常数 称为电导池常数θ( 称为电导池常数 (cm-1)。
l θ= A
利用电导池常数可以测出不同物质的 电导率。 电导率。
电导池常数的应用 ----测量物质的电导率 ----测量物质的电导率 l θ= κ A θ = =κ ⋅R
1 1 A A G= = =κ R ρ l l
G
θ = κ s ⋅ Rs θ = κ x ⋅ Rx
电导池常数的应用 ----测量物质的电导率 ----测量物质的电导率
θ = κ s ⋅ Rs θ = κ x ⋅ Rx
λm与电解质浓度的关系
λm随着物质浓度逐渐降低,在无限稀释情况 随着物质浓度逐渐降低, 趋于恒定,达到最大值 最大值λ 下,趋于恒定,达到最大值λ0,m 。
(三)无限稀释溶液的摩尔电导率
电解质的导电性有溶液中的正、 电解质的导电性有溶液中的正、负离子共同 产生,所以: 产生,所以:
λ m = n λ m+ + n λ m −
Σλ 0 = Σn + λ 0 + + Σn − λ 0 − m m m
电导率κ 电导率κ的计算
例1 计算25℃时纯水的电导率。 计算25℃时纯水的电导率。 25℃时纯水的电导率 纯水中导电的是水电离生成的H 解:纯水中导电的是水电离生成的 +和OH- 离子,它们的浓度均为10 离子,它们的浓度均为 -7mol/L。查表得, 。查表得, + 的 λ 0 为349.8×10-4,OH-的 λ 0 为 H × m m 198.0×10-4则纯水的电导率为: 则纯水的电导率为: ×

20电化学分析法2

20电化学分析法2

对一定的电导电极,电极面积A与电极间距离L一定, L/A为定值,称为电导池常数,用θ表示
L R 1
A
G
电导和电导率
电解质溶液导电过程是通过离子来进行的,因此电导率 κ与电解质溶液的浓度和性质有关。
(1)在一定范围内,离子的浓度愈大,电导率愈大。 (2)离子的迁移速度愈快,电导率愈大 (3)离子的价数愈高,电导率愈大
conductance(G) 、specific conductance ()
导体分类 第一类导体:电子导体,它是依靠电子的定向流动导电的, 如金属、某些金属氧化物、石墨等都是这一类导体。
第二类导体:离子导体或电解质导体,它是借离子在电极作 用下的定向移动进行导电的,这类导体包括水或非水溶剂的 电解质溶液和固体电解质。
溶液电导的测量
1.电导池 电导池含有两个电导电极 电导电极由两片平行的铂片制成 为了提高测量的灵敏度,常采用铂黑电极,其表面积大, 电流密度小,极化作用也就小,用于测量电导率高的溶 液(κ>10μS·cm-1)。
在测量低电导率的溶液时,铂黑对电解质有强烈的吸附 作用而出现不稳定现象,这时宜用光亮铂电极。
直接电导法
2. 合成氨中一氧化碳与二氧化碳的自控监测
在合成氨的生产流程中,必须监控一氧化碳和二 氧化碳的含量。因为当其超过一定限度时,便会使催 化剂铁中毒而影响生产的进行。在实际生产过程中, 可采用电导法进行监测。
5CO I2O5 105~ 110oCI2 5CO2 CO2 2NaOH Na2CO3 H2O
电导滴定法
注意: 在滴定过程中,由于滴定剂的加入而使溶液不断稀释, 为了减小稀释效应的影响和提高方法的准确度,应使 用浓度较大的滴定剂,一般滴定剂浓度比被滴溶液浓 度大10倍。

第二章 电导分析法

第二章 电导分析法
+ -
在无限稀释的溶液中,离子淌度用UA,0 表 示,称为离子的极限淌度。 在电解质完全电离的情况下,离子淌度和 摩尔电导率的之间有如下关系:
m U U F
,m U F
(F为法拉第常数)

,m U F
---摩尔电导率随浓度的变化,是由离子淌度的 变化引起的; --- 正、负离子摩尔电导率之差,是 由离子淌度的差异引起的。
摩尔电导率为正离子和负离子的摩尔电
导率之和。
即:
o ,
0, m
0 , 0 ,-
式中, 、 分别代表无限稀释的溶液
o ,-
中正离子和负离子的摩尔电导率。
在无限稀释的溶液中,正、负离子的电导率只取决 于离子的本性,不受其他共存离子的影响。
例如:已知离子极限摩尔电导率可计 算弱电解质的λNO3Λ

c G m 22 . 7 10
3
53
4
( 349 . 82 71 . 44 ) 10
28 . 6
mol· -3 m
即c = 0.0286mol· -1 L
例4:在25℃时,用面积为1.11cm2,相距 1.00cm的两个平行的铂黑电极来测定纯 水的电导,其理论值为多少?
解:纯水的极限摩尔电导率; Λm=λH+ +λOH-=547.42×10-4S· 2· -1 m mol 纯水中氢离子、氢氧根离子的浓度均为 10-7mol· -1,即c=10-4mol· -3 L m 由纯水的电导率为k=cΛm=5.4742×10-6S· -1 m 所以纯水电导为G=kA/l=5.4742×10-6×1.11×10-2 =6.08×10-8S

第八章电导分析法库仑分析法

第八章电导分析法库仑分析法
缺点:无选择性 应用:高纯水质分析;酸雨监测;海水或土壤总盐量的
测定;某些物理化学常数测定;离子色谱法检测 器
电导滴定法
是通过测定滴定过程中溶液电导的变化来 确定滴定终点的方法
§1 基本原理
一、电导和电导率
1. 导体及其分类 ➢ 第一类导体:电子导体 ➢第二类导体:离子导体或电解质导体
电子导体的导电能力一般比离子导 体要大得多,为方便起见,第一类导 体采用电阻量度物体的导电能力、第 二类导体采用电阻的倒数(即电导) 来表明其导电能力。
理论分解电压小于实际分解电压的原因是由于超电位的存在,但超电 位是如何产生的呢?
2.极化作用和超电位
平衡电位:电极上无电流通过时。电极处于平衡状态, 与之相应的电极电位称为平衡电位。而当有电流通 过电极时,电极电位不等于平衡电位。
极化:因有电流通过电极,而使电极的实际电极电位 偏离平衡电位的现象。
1. 定义
无限稀释时溶液的摩尔电导,称极限摩尔
电导,用
表示。
0,m
2. 离子独立运动定律
在无限稀释时,所有电解质全部电离,而且离 子间一切相互作用力均可忽略,因此离子在一定 电场作用下的迁移速度只取决于该离子的本性而 与共存的其它离子的性质无关。
几点讨论:
➢ 由于无限稀释时离子间一切作用力均可忽略,所以电 解质的摩尔电导应是正负离子单独对电导所提供的 贡献—离子摩尔电导的简单加和值
➢ 电导滴定过程中,被测溶液的温度要保持恒定。
库仑分析法
Coulometry Analysis
库仑分析 法(coulometry)
▪ 定义:测定电解过程中通过电解池的电量,按法拉利 定律求出待测物质含量的分析方法。是在电解基础 上发展起来的电化学分析方法。

电导分析法

电导分析法

衡量电解质溶液导电能力的物理量,电阻的
倒数。
G=
1 R
=
1 ρ
A L
=
κ
A L
单位:西门子 S,1S=1-1
R=ρ L A
欧姆定律
一定浓度的电解质溶液中插入两个电极,接 上交流电源,则在一定温度下该溶液的电阻
同两电极间的距离成正比,同电极的截面积
成反比,即:

式中R—电阻(Ω)
R=ρ L A
3.在电解质溶液中,离子带有电荷,离子间存在相互作用, 溶液愈浓,作用愈大,离子的运动和导电能力就愈受到 牵愈力制小极,,小ΛΛ,mm此值值时就就Λ愈 愈m小大值;,趋相当于反溶最,液大溶无值液限,愈稀即稀释Λm,时°则,。离离子子之之间间引作力用
4.上面提到的摩尔电导率接近于常数,为什么它仅仅是接 近于常数,而不完全是是常数呢?因为它在一定程度上还 是随着溶液浓度的变化而变化的.
(s/m) 25.13 3.91 0.052 1.288 11.18
一些离子在无限稀释时的摩尔离子电
导率(25C)
阳离子λ°+(×10-4 S·m2·mol-1)阴离子λ°-
H+
349.8
OH-
198.6
Li+
38.7
F-
55.4
Hale Waihona Puke Na+50.1Cl-
76.4
K+
73.5
Br-
78.1
含量的工作曲线,然后再由试样电导值求碳、硫含量。
二、电导滴定法
电导滴定法是在滴定过程中利用溶液电导的 突然变化来指示终点的方法。
NaOH溶液滴定HCl溶液
滴定之前,溶液中存在H+和Cl-离 子, 在滴定过程中,H+离子被中和成 不Na导+离电子的,H其2O电分导子率,比但H同+离时子增的加低了 得多,所以滴定开始以后,溶液的 电导逐渐下降。到达等当点时,H+ 离子浓度已非常小,虽然溶液中有 Na+和Cl-离子,但他们的摩尔离 子电导率很低,所以,此时溶液总 电导达到最低值,过了等物质的量 点后,加入的Na+和OH-离子(特 别是OH-)使电导值迅速上升, 所以在等物质的量点出现一个转折 点。相对应的滴定剂体积即为滴定 终点。

2 电导分析法

2 电导分析法

• 在滴定过程中,由于滴定剂的加入而使溶 液不断稀释,为了减小稀释效应的影响和 提高方法的准确度,应使用浓度较大的滴 定剂,一般是滴定剂浓度比被滴溶液浓度 大10倍。 。
2.弱酸(或弱减)的滴定
• 如NaOH滴定弱酸 • HA + Na+ + OH- = H2O + Na+ + A• 若弱酸的离解常数越小,起始电导值越低,滴定 开始时,由于滴定反应产物A-抑制HA的离解,溶液 电导逐渐降低,随着滴定的进行,非电导的弱酸HA 转变为导电较好的盐(Na+ 、A-)。溶液的电导开始 上升,在化计点以后,NaOH过量,使电导增加迅 速,转折点为溶液终点。 HA→HA余+Na++A- →A-+Na+→A- +Na++ OH滴定前 化计点前 化计点 化计点后
Λm
def
κ Vm =
κ
c
Vm 是含有1 mol电解质的溶液 的体积,单位为 m3 ⋅ mol−1, 是电解 c mol ⋅ m −3 。 质溶液的浓度,单位为
摩尔电导率定义
电导率与浓度的关系
强电解质溶液的电导率随着浓度 的增加而升高。当浓度增加到一定 程度后,解离度下降,离子运动速 率降低,电导率也降低,如 H 2SO 4 和 KOH溶液。 中性盐由于受饱和溶解度的限制, 浓度不能太高,如KCl。 弱电解质溶液电导率随浓度下降。 但变化不显著,因浓度增加使其电 离度下降,粒子数目变化不大,如 醋酸。

NaOH Na++Cl-+ H O NaOH Na+ + Cl- +OH2 化计点 化计点后 摩尔电导率 H+> OH- > Na+

电导分析法的基本原理

电导分析法的基本原理

电导分析法的基本原理**节电导分析法的基本原理一、电解质溶液的导电性能电解质溶液和非电解质溶液的*显著的差别是:前者能够导电,后者不能。

前者能够导电是由于电解质在水溶液中能够电离,生成阳离子和阴离子,在电场作用下它们将向相反方向移动,形成电流,产生导电现象。

因此电解质溶液是一种离子导体。

离子导体还包括熔盐、固体电解质、离子交换树脂膜等,所以电解质泛指有肯定离子导电性的物相。

(1)电导电导是衡量金属导体和电解质溶液导电本领的物理量。

用符号G表示,其SI单位是西门子,符号为S,1S=1Ω—1电导是电阻的倒数,即(2)电导率均匀导体在均匀电场中的电导与导体截面积A成正比,与其长度l成反比。

式中ρ为电阻率,其倒数为电导率,用表示,其SI 单位为S·m—1、是电极距离为1m而两极板面积均为1m2时电解质溶液的电导,故有时亦称为比电导。

的数值与电解质种类、温度、浓度有关.对于强电解质,溶液较稀时,电导率貌似与浓度成正比;浓度很大时,因离子间相互作用,电导率加添缓慢,并经过一个极大值后下降。

对于弱电解质,由于起导电作用的仅是解离的那部分别子,而在浓度加添时,由于解离度减小,离子数量加添不多,所以弱电解质电导率总的来说,不大。

二、电导与溶液浓度的关系虽然电导率已除去了电导池几何结构的影响,但它仍与溶液浓度或单位体积的质点数有关。

因此,无论是比较不同种类的电解质溶液在指定温度下的导电本领,还是比较同一电解质溶液在不同温度下的导电本领,都需要固定被比较溶液所包含的质点数。

这就引入了一个比更有用的物理量,称为摩尔电导率。

式中,c为电解质溶液的物质的量浓度,单位为mol·m—3,κ为电导率,单位为S·m—1,所以Λm的单位为S·m2·mol—1、Λm规定为相距为1m的两个平行板电极之间装有含1mol电解质(基本单元)的溶液所具有的电导。

①在使用摩尔电导率时,应写明物质的基本单元。

电导分析法的原理和应用

电导分析法的原理和应用

电导分析法的原理和应用1. 电导分析法的原理电导分析法是一种常用的分析方法,通过测量电解液中的电导率来进行分析。

它基于电导率与电解质浓度之间的关系,利用电流通过电解质溶液时的导电性质来确定待测物质的浓度。

其原理可以分为以下几个方面:1.1 电解质的离子化电解质在溶液中通常以离子的形式存在。

当电压施加到电解质溶液时,正极吸引阴离子,负极吸引阳离子,使得溶液中的电解质分子离解成离子,形成电导。

1.2 离子的迁移和导电正离子和负离子在电场中移动,并形成离子迁移流。

这些流可以导电,而通过测量电解液中的电导率,可以确定离子浓度和溶液的离子性质。

1.3 电导率与浓度的关系电解质的电导率与其浓度成正比,即电导率越高,浓度越高。

通过测量电导率和已知浓度的标准溶液,可以建立浓度和电导率之间的定量关系,从而利用电导率来确定未知溶液的浓度。

2. 电导分析法的应用电导分析法广泛应用于各个领域,特别是在化学分析和环境监测方面。

以下是几个电导分析法的应用案例:2.1 水质监测电导分析法在水质监测中有着重要的应用。

通过测量水样中的电导率,可以判断水中总溶解固体的含量,从而评估水质的好坏。

常见的水质监测项目包括饮用水、地下水、河流和湖泊等水源的电导率测定。

2.2 化学分析电导分析法在化学分析中也有着广泛的应用。

例如,在药物分析中,可以通过测量药物溶液的电导率来确定药物的纯度;在金属离子测定中,可以通过测量金属盐溶液的电导率来确定其中金属离子的含量。

2.3 土壤检测电导分析法还可以用于土壤检测。

土壤中的电导率与土壤的离子浓度密切相关,可以用来评估土壤中的盐碱化程度和养分含量。

通过测量土壤样品的电导率,可以为农田施肥和土壤改良提供参考依据。

2.4 生化分析电导分析法在生化分析中也有一定的应用。

例如,在酶活性测定中,可以通过测量酶反应产物离子浓度变化的电导率,来确定酶的催化效率和活性。

此外,还可以应用电导分析法来测定血液中的离子浓度和酸碱平衡状态。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电导分析法的基本原理
一、电解质溶液的导电性能
电解质溶液和非电解质溶液的最显著的差别是:前者能够导电,后者不能。

前者能够导电是因为电解质在水溶液中能够电离,生成阳离子和阴离子,在电场作用下他们将向相反方向移动,形成电流,产生导电现象。

因此电解质溶液是一种离子导体。

离子导体还包括熔盐、固体电解质、离子交换树脂膜等,所以电解质泛指有一定离子导电性的物相。

1、调节恒温水浴温度为25.00±0.1℃
2、配制标准溶液要用去离子水或二次蒸馏水。

将电导率仪常数调节器置于电导池常数的相应位置,并将电导仪调至相应的量程档,对该档进行校正,指针能满量程指示。

分别将电导率标准溶液放入恒温在20℃的恒温槽内,用电导率仪直接测量恒温在20℃的电导率标准溶液,重复测量3次。

使用方法:
1、未开电源开关前,观察表针是否指零,如不指零,可调正表头上的螺丝,使表针指零。

2、将校正、测量开关K2扳在“校正”位置。

3、插接电源线,打开电源开关,并预热数分钟(待指针完全稳定下来为止)调节“调正”
调节器使电表指示满度。

4、
电导、电导率、摩尔电导率的概念
(1)电导(conductance)
描述离子导体(电解质溶液等)的导电能力时常采用电阻R的倒数——电导G来描述,即
式中,电导G的单位是S[西门子(siemens)],1S=1Ω-1;R的单位为Ω(欧);l为导体的长度,m;A为导体的截面积,m2;ρ为电阻率,Ω·m。

电导的数值除与电解质溶液的本性有关外还与离子浓度、电极大小、电极距离有关。

(2)电导率(conductivity)
电导率k是电阻率的倒数
K的单位是S/m或1/(Ω·m)。

k是电极距离为1m,且两极板面积均为1 m2时电解质溶液的电导,故k有时亦称为比电导。

K的数值与电解质种类、温度、浓度有关。

若溶液中含有B种电解质时,则该溶液的电导率应为B种电解质的电导率之和,即
(3)摩尔电导率(molar conductivity)
虽然电导率已消除了电导池几何结构的影响,但它仍与溶液浓度或单位体积的质点数有关。

因此无论是比较不同种类的电解质溶液在特定温度下的导电能力,还是比较同一种电解质溶液在不同温度下的导电能力,都需要固定被比较溶液所包含的质点数。

这就引入了一个比k 更实用的物理量Λm
,称为摩尔电导率。

Λm的单位为S·m2/mol。

Λm表示在相距为单位长度的两平行电极之间放有1mol 电解质溶液的电导(图1-18)

实际实验:
样品25mL溶剂中(配
成0.15mol/L的
水溶液)K(μS/cm) 平均k Λ
m
(S·m2/mol)
左旋咪唑(LMS)0.765(g) 34 0.23 抗坏血酸(VC) 0.66(g) 5500 36.67 阿司匹林(ASP) 0.675(g) 37.5 0.25 阿魏酸(FA) 0.7275(g) 25.5 0.17 左旋咪唑抗坏血
酸盐(LMS-VC)
1.425(g)
左旋咪唑阿司匹
1.44(g)
林盐(LMS-ASP)
左旋咪唑阿魏酸
1.4925(g)
盐(LMS-FA)
盐酸左旋咪唑
0.9(g) 24000 160 (LMS-HCl)。

相关文档
最新文档