初二期末数学试卷
初二数学期末试卷带答案解析

初二数学期末试卷带答案解析考试范围:xxx ;考试时间:xxx 分钟;出题人:xxx 姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.设m =20,n=(-3)2,p =,q =()-1,则m 、n 、p 、q 由小到大排列为A .p <m <q <nB .n <q <m <pC .m <p <q <nD .n <p <m <q 2.已知三角形的两边长分别为4cm 和9cm ,则下列长度的四条线段中能作为第三边的是( )A .13cmB .6cmC .5cmD .4cm3.有如下命题: ①负数没有立方根;②一个实数的立方根不是正数就是负数; ③一个正数或负数的立方根与这个数同号;④如果一个数的立方根是这个数本身,那么这个数是1或0. 其中错误的是( )A .①②③B .①②④C .②③④D .①③④ 4.用反证法证明:a ,b 至少有一个为0,应该假设( ) A .a ,b 没有一个为0B .a ,b 只有一个为0C .a ,b 至多一个为0D .a ,b 两个都为05.据统计,2011年十·一期间,我市某风景区接待中外游客的人数为89740人次,将这个数字保留三个有效数字,用科学记数法可表示为 【 】A .8.97×103B .8.97×104C .9.00×103D .8.97×1056.如图,△ABC 中,AC=25cm ,DE 垂直平分AB ,垂足为E ,交AC 于D ,若△DBC 的周长是35cm ,则BC 边的长为( )A .5cmB .10cmC .15cmD .17.5cm7.(2014•威海)已知点P (3﹣m ,m ﹣1)在第二象限,则m 的取值范围在数轴上表示正确的是( ) A .B .C .D .8.某超市购进了一批不同价格的皮鞋,下表是该超市在近几年统计的平均数据.要使该超市销售皮鞋收入最大,该超市应多购( )的皮鞋A .160元B .140元C .120元D .100 9.对于下列各组条件,不能判定的一组是( )A .,,B .,,C .,,D .,,10.下列描述不属于定义的是( )A .两组对边分别平行的四边形叫做平行四边形;B .正三角形是特殊的等腰三角形;C .在同一平面内三条线段首尾顺次连接得到的图形叫做三角形;D .含有未知数的等式叫做方程 二、判断题11.解方程: (1)(2)x 2-5 =4x12.(本题8分)如下图,在△ABC 中,∠ACB =90°,CD ⊥AB 于D (1) 若AB =5 cm ,BC =3 cm ,求CD 的长(2) 若BD =2,AD =4,求CD 的长13.在制作某种零件时,甲做250个零件与乙做200个零件所用的时间相同,已知甲每小时比乙多做10个零件,则甲、乙每小时各做多少个零件? 14.(本题满分10分)某班为了奖励在学校体育运动会中表现突出的同学,班主任派生活委员小明到文具店为获奖的同学买奖品,小明发现,如果买1本笔记本和3支钢笔,则需要19元;如果买2本笔记本和5支钢笔,则需要33元.(1)求购买每本笔记本和每支钢笔各多少元?(2)班主任给小明的班费只有110元,要奖励24名同学每人一件奖品,则小明至少要购买多少本笔记本?15.水平的地面上有两根电线杆,测量两根电线杆之间的距离,只需测这两根电线杆入地点之间的距离即可。
顺德区初二数学期末试卷

一、选择题(每题4分,共40分)1. 下列各数中,属于无理数的是()A. √4B. 0.1010010001…(循环小数)C. 3D. -2.52. 下列各图中,有最小值的是()A.B.C.D.3. 已知a > b,则下列不等式中正确的是()A. a + 2 > b + 2B. a - 2 > b - 2C. a + 2 < b + 2D. a - 2 < b - 24. 下列函数中,为一次函数的是()A. y = 2x^2 + 3B. y = 3x - 4C. y = 4/xD. y = √x5. 下列各式中,正确的是()A. a^2 = aB. (a + b)^2 = a^2 + b^2C. (a - b)^2 = a^2 - b^2D. (a + b)(a - b) = a^2 - b^26. 下列各数中,能被3整除的是()A. 12345B. 2268C. 3456D. 56787. 下列各数中,属于等差数列的是()A. 1, 3, 5, 7, 9B. 2, 4, 8, 16, 32C. 3, 6, 9, 12, 15D. 4, 7, 10, 13, 168. 已知等边三角形ABC的边长为a,则其面积S为()A. √3/4 a^2B. 1/2 a^2C. √3/2 a^2D. 1/4 a^29. 下列各图中,正确表示y = x^2的是()A.B.C.D.10. 已知二次函数y = ax^2 + bx + c的图像开口向上,且顶点坐标为(h,k),则下列说法正确的是()A. a > 0,b > 0,c > 0B. a > 0,b < 0,c > 0C. a < 0,b > 0,c < 0D. a < 0,b < 0,c > 0二、填空题(每题5分,共50分)11. 计算:(-2)^3 × (-1)^4 ÷ (-2)^212. 若一个等差数列的前三项分别为3,5,7,则该数列的公差为______。
黑龙江省牡丹江市2023-2024学年八年级上学期期末考试数学试卷(含解析)

2023-2024学年黑龙江省牡丹江市八年级(上)期末数学试卷一、单项选择题(本题12个小题,每小题3分,共36分)1.(3分)习近平总书记强调,“垃圾分类工作就是新时尚”.下列垃圾分类标识的图形中,轴对称图形个数是( )A.1个B.2个C.3个D.4个2.(3分)下列运算正确的是( )A.a3•a4=a12B.2b+5a=7abC.(a+b)2=a2+b2D.(a2b3)2=a4b63.(3分)2023年9月9日,上海微电子研发的28nm浸没式光刻机的成功问世,标志着我国在光刻机领域迈出了坚实的一步.已知28nm为0.000000028米,数据0.000000028用科学记数法表示为( )A.2.8×10﹣10B.2.8×10﹣8C.2.8×10﹣6D.2.8×10﹣94.(3分)下列各式,,,,,中,最简分式的个数是( )A.4B.3C.2D.15.(3分)将一把直角三角尺和一把直尺按如图所示的位置放置.若∠1=65°,则∠2等于( )A.145°B.150°C.155°D.160°6.(3分)若分式的值是整数,则满足条件的所有正整数m的和等于( )A.9B.8C.7D.57.(3分)如图,在等腰直角三角形ABC中,AB=AC,∠BAC=90°,∠ABC外角平分线交CA延长线于点D,DE⊥BC,垂足是E,若△ABC周长是8,则线段CD的长为( )A.B.9C.8D.78.(3分)如果x2﹣2(m﹣1)x+5﹣2m是一个完全平方式,则满足条件的整数m的个数是( )A.1B.2C.3D.49.(3分)有两个正方形A,B,现将B放在A的内部,得到图①,将A,B并列放置后构成新的正方形,得到图②.若图①和图②中的阴影面积分别是3和8,则正方形A,B的面积之和是( )A.9B.11C.12D.1510.(3分)某地开展建设绿色家园活动,活动期间,计划每天种植相同数量的树木.该活动开始后,实际每天比原计划多植树20棵,实际植树800棵所需时间与原计划植树600棵所需时间相同.设实际每天植树x 棵,则下列方程正确的是( )A.B.C.D.11.(3分)一组按规律排列的式子:,,,,…,第n个式子是(n为正整数)( )A.B.C.D.12.(3分)在以“长方形的折叠”为主题的数学活动课上,某位同学进行了如下操作:第一步:在长方形纸片ABCD的BC边上取一点E,将△ABE沿AE翻折,使点B落在点B'处,边EB'交AD于点F,第二步:将△ECD沿DE翻折,点C的对应点C′恰好落在线段EB'上.根据以上的操作,若BC=6,C'是EB'的中点,则线段AF的长为( )A.B.3C.D.4二、填空题(本题8个小题,每小题3分,共24分)13.(3分)如图,∠CAB=∠DBA,只需补充一个条件 ,就可以根据“ASA”得到△ABC≌△BAD.14.(3分)若分式的值为0,则m的值为 .15.(3分)如图,在△ABC中,AB=AC=8,∠BAC=150°,点P,Q分别在边AB,BC上,则AQ+PQ的最小值为 .16.(3分)若x m=4,x n=6,则x3m﹣n的值为 .17.(3分)如图,网格内每个小正方形的边长都是1个单位长度,A,B,C,D都是格点,AB与CD相交于点P,则∠A+∠D= .18.(3分)关于x的分式方程的解是非负数,则m的取值范围是 .19.(3分)等腰三角形ABC中,高BD与一腰所夹的锐角是40°,则等腰三角形ABC底角的度数为 .20.(3分)如图,在△ABC中,AB=AC,点D在AC边上,点F在AB边上,过点D作DE⊥BC,垂足是E,∠FED=∠B,4∠FDE﹣∠A=180°.下列结论:①2∠CDE=∠A;②BC=BF+CD;③△DEF是等边三角形;④过点D作DM⊥DE,交AB边于点M,若M是AF的中点,DM=3,则BC=9.其中正确的是 .三、解答题(60分)21.(18分)(1)计算:(﹣1)2024+()﹣2﹣(π﹣3)0;(2)计算:(m﹣n)2﹣2m(m﹣n);(3)因式分解:a2(x﹣y)+4(y﹣x);(4)解分式方程:﹣3=.22.(6分)先化简:,再从﹣2,﹣1,﹣6,中选择一个适合的数x代入求值.23.(7分)如图,在平面直角坐标系中,△ABC的顶点A,B,C在格点上.(1)请在图中作出△ABC关于y轴对称的△A′B′C';(2)写出点B',点C'的坐标,以A',B,C′为顶点的三角是 三角形;(3)点P在图中格点上,若△PBC是等腰三角形,则点P的个数是 .24.(9分)在△ABC中,∠BAC=∠BCA,D是平面内一点,∠DAB=∠ABC=90°,点E在AB边所在直线上,CE⊥BD,垂足是F.(1)当点E在线段AB上时,如图①,求证:AE+AD=BC;(2)当点E在线段BA延长线上时,如图②;当点E在线段AB延长线上时,如图③,请猜想并直接写出线段AE,AD,BC的数量关系;(3)如图③,若BF+CF=6,则S四边形ADFC﹣S△BEF= .25.(10分)2024年是中国农历甲辰龙年.元旦前,某商场进货员预测一种“吉祥龙”挂件能畅销市场,就用6000元购进一批这种“吉祥龙”挂件,面市后果然供不应求,商场又用12800元购进了第二批这种“吉祥龙”挂件,所购数量是第一批购进数量的2倍,但每件的进价贵了4元.(1)该商场购进第一批、第二批“吉祥龙”挂件每件的进价分别是多少元?(2)若两批“吉祥龙”挂件按相同的标价销售,要使两批“吉祥龙”挂件全部售完后获利不低于7300(不考虑其他因素),且最后的50件“吉祥龙”挂件按八折优惠售出,那么每件“吉祥龙”挂件的标价至少是多少元?26.(10分)如图,△ABC在平面直角坐标系中,顶点B(m,0),C(n,0)在x轴上,顶点A在y轴的正半轴上,BD⊥AC,垂足是D,BD交AO于点E,∠AED﹣∠BAO=45°,(m+4)2+(n﹣6)2=0.请解答下列问题:(1)求点B、点C的坐标;(2)求线段AE的长;(3)连接CE.若OE=2,在坐标轴上是否存在点F,使S△ACF=S△ACE?若存在,请直接写出点F的个数和其中一个点F的坐标;若不存在,请说明理由.参考答案与解析一、单项选择题(本题12个小题,每小题3分,共36分)1.(3分)习近平总书记强调,“垃圾分类工作就是新时尚”.下列垃圾分类标识的图形中,轴对称图形个数是( )A.1个B.2个C.3个D.4个【解答】解:左起第一、第四个图形不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形.第二、第三这两个图形能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形.故选:B.2.(3分)下列运算正确的是( )A.a3•a4=a12B.2b+5a=7abC.(a+b)2=a2+b2D.(a2b3)2=a4b6【解答】解:A、原式=a7,不符合题意;B、原式不能合并,不符合题意;C、原式=a2+2ab+b2,不符合题意;D、原式=(a2)2•(b3)2=a4b6,符合题意.故选:D.3.(3分)2023年9月9日,上海微电子研发的28nm浸没式光刻机的成功问世,标志着我国在光刻机领域迈出了坚实的一步.已知28nm为0.000000028米,数据0.000000028用科学记数法表示为( )A.2.8×10﹣10B.2.8×10﹣8C.2.8×10﹣6D.2.8×10﹣9【解答】解:0.000000028=2.8×10﹣8.故选:B.4.(3分)下列各式,,,,,中,最简分式的个数是( )A.4B.3C.2D.1【解答】解:==﹣,=5a,=,都不是最简分式,,,是最简分式,故选:B.5.(3分)将一把直角三角尺和一把直尺按如图所示的位置放置.若∠1=65°,则∠2等于( )A.145°B.150°C.155°D.160°【解答】解:∵直尺的两边互相平行,∠1=65°,∴∠3=∠1=65°,∴∠4=∠3=65°,∴∠2=∠4+90°=65°+90°=155°.故选:C.6.(3分)若分式的值是整数,则满足条件的所有正整数m的和等于( )A.9B.8C.7D.5【解答】解:∵分式的值是整数,∴m+1是6的约数,即m+1=1或2或3或6,解得:m=0(舍去)或1或2或5,则满足条件的所有正整数m的和为1+2+5=8.故选:B.7.(3分)如图,在等腰直角三角形ABC中,AB=AC,∠BAC=90°,∠ABC外角平分线交CA延长线于点D,DE⊥BC,垂足是E,若△ABC周长是8,则线段CD的长为( )A.B.9C.8D.7【解答】解:在等腰直角三角形ABC中,AB=AC,∠BAC=90°,设AB=AC=x,则BC=x,∵△ABC周长是8,∴x+x+x=8,∴x=8﹣4,∴AB=AC=8﹣4,BC=(8﹣4)×=8﹣8,∵BD是∠ADE的角平分线,DE⊥BE,AB⊥AD,∴BE=AB=8﹣4,又∵BD=BD,∴Rt△BDE≌Rt△BDA(HL),∴DE=DA,设CD=m,则AD=DE=m﹣8+4,∵S,∴(m﹣8+4)×=(8﹣4)(2m﹣8+4),解得m=8,即CD=8,故选:C.8.(3分)如果x2﹣2(m﹣1)x+5﹣2m是一个完全平方式,则满足条件的整数m的个数是( )A.1B.2C.3D.4【解答】解:∵x2﹣2(m﹣1)x+5﹣2m是一个完全平方式,∴(m﹣1)2=5﹣2m,解得m=±2.故选:B.9.(3分)有两个正方形A,B,现将B放在A的内部,得到图①,将A,B并列放置后构成新的正方形,得到图②.若图①和图②中的阴影面积分别是3和8,则正方形A,B的面积之和是( )A.9B.11C.12D.15【解答】解:设正方形A、B的边长分别是a、b,则正方形A,B的面积之和是a2+b2.根据题意,图①中阴影部分的图形是正方形,边长为(a﹣b),图②中新正方形的边长为(a+b),根据图①和图②中的阴影面积分别是3和8,得,经整理,得,∴a2+b2=11,∴正方形A,B的面积之和是11.故选:B.10.(3分)某地开展建设绿色家园活动,活动期间,计划每天种植相同数量的树木.该活动开始后,实际每天比原计划多植树20棵,实际植树800棵所需时间与原计划植树600棵所需时间相同.设实际每天植树x 棵,则下列方程正确的是( )A.B.C.D.【解答】解:由题意可得:=,故选:B.11.(3分)一组按规律排列的式子:,,,,…,第n个式子是(n为正整数)( )A.B.C.D.【解答】解:∵第奇数个式子的符号为“负”,∴第n个式子的符号可用(﹣1)n表示.∵分母中单项式的系数分别为1,2,3...n,字母a的指数分别是1,2,3...n,∴第n个式子的分母可表示为:na n.∵分子分别是2,5,8,11...(3n﹣1),∴第n个式子的分母是3n﹣1.∴第n个式子为:(﹣1)n.故选:D.12.(3分)在以“长方形的折叠”为主题的数学活动课上,某位同学进行了如下操作:第一步:在长方形纸片ABCD的BC边上取一点E,将△ABE沿AE翻折,使点B落在点B'处,边EB'交AD于点F,第二步:将△ECD沿DE翻折,点C的对应点C′恰好落在线段EB'上.根据以上的操作,若BC=6,C'是EB'的中点,则线段AF的长为( )A.B.3C.D.4【解答】解:∵四边形ABCD是矩形,∴AB=CD,AD=BC=6,∠B=∠C=90°由折叠的性质可得:AB=AB'=CD=C'D,∠B=∠B'=90°=∠C=∠DC'E,BE=B'E,CE=C'E,∵点C'恰好为EB'的中点,∴B'E=2C'E,∴BE=2CE,∴BC=AD=3EC,∴CE=2,BE=4,∵AE2=AB2+BE2,DE2=DC2+CE2,AD2=AE2+DE2,∴AB2+16+8+DC2+4=36,∴AB=CD=2,∵∠B'=∠DC'F=90°,∠AFB'=∠DFC',AB'=C'D=CD=2,∴△AB'F≌△DC'F(AAS),∴AF=DF=AD=3,故选:B.二、填空题(本题8个小题,每小题3分,共24分)13.(3分)如图,∠CAB=∠DBA,只需补充一个条件 AC=BD ,就可以根据“ASA”得到△ABC≌△BAD.【解答】解:补充条件AC=BD.理由:在△ABC和△BAD中,,△ABC≌△BAD(SAS).故答案为:AC=BD.14.(3分)若分式的值为0,则m的值为 1 .【解答】解:由题意得,,解得m=1,故答案为:1.15.(3分)如图,在△ABC中,AB=AC=8,∠BAC=150°,点P,Q分别在边AB,BC上,则AQ+PQ的最小值为 4 .【解答】解:作点A关于直线BC的对称点E,连接EB、AE、PE,作EF⊥AB于点F,∵AB=AC=8,∠BAC=150°,∴∠ABC=∠C=×(180°﹣150°)=15°,∵BC垂直平分AE,∴EB=AB=8,∴∠EBC=∠ABC=15°,∴∠ABE=2∠ABC=30°,∵∠BFE=90°,∴EF=EB=4,∵EQ+PQ≥PE,PE≥EF,且EQ=AQ,∴AQ+PQ≥EF,∴AQ+PQ≥4,∴AQ+PQ的最小值为4,故答案为:4.16.(3分)若x m=4,x n=6,则x3m﹣n的值为 .【解答】解:x3m﹣n=x3m÷x n=43÷6==.故答案为:.17.(3分)如图,网格内每个小正方形的边长都是1个单位长度,A,B,C,D都是格点,AB与CD相交于点P,则∠A+∠D= 135° .【解答】解:如图,过点B作BF∥CD,连接EF,由勾股定理得:BE==,EF=,BF=,∴BE=EF,∵BE2+EF2=BF2,∴∠BEF=90°,∴∠EBF=45°,∴∠APD=∠EBF=45°,∴∠A+∠D=180°﹣45°=135°,故答案为:135°.18.(3分)关于x的分式方程的解是非负数,则m的取值范围是 m≥1且m≠4 .【解答】解:原方程去分母得:m﹣4=x﹣3,解得:x=m﹣1,∵x﹣3≠0,∴x≠3,∴m﹣1≠3,∴m≠4,∵关于x的分式方程的解是非负数,∴x≥0,即m﹣1≥0,解得:m≥1,又∵m≠4,∴m的取值范围是m≥1且m≠4.故答案为:m≥1且m≠4.19.(3分)等腰三角形ABC中,高BD与一腰所夹的锐角是40°,则等腰三角形ABC底角的度数为 50°或65°或25° .【解答】解:依题意有以下两种情况:(1)△ABC为锐角三角形时,此时又有两种情况:①当BD是等腰△ABC底边上的高时,如图1所示:∵BD为等腰三角形底边AC上的高,∴∠ADB=90°,∴∠ABD+∠A=90°,∵高BD与一腰所夹的锐角是40°,∴∠BAD=40°,∴∠A=90°﹣∠BAD=50°;②当BD是等腰△ABC腰上的高时,如图2所示:∵BD为等腰三角形腰AC上的高,∴∠ADB=90°,∴∠A+∠ABD=90°,∵高BD与一腰所夹的锐角是40°,∴∠ABD=40°,∴∠A=90°﹣∠ABD=50°,∵AB=AC,∴∠ABC=∠C=(180°﹣∠A)=(180°﹣50°)=65°.(2)当等腰△ABC为钝角三角形时,则顶角为钝角,此时高BD只能是腰上的高,如图3所示:∵BD为等腰三角形腰AC上的高,∴∠ADB=90°,∴∠DAB+∠ABD=90°,∵高BD与一腰所夹的锐角是40°,∴∠ABD=40°,∴∠DAB=90°﹣∠ABD=50°,∴∠BAC=180°﹣∠DAB=130°,∵AB=AC,∴∠ABC=∠C=(180°﹣∠BAC)=(180°﹣130°)=25°.综上所述:等腰三角形ABC底角的度数为50°或65°或25°.故答案为:50°或65°或25°.20.(3分)如图,在△ABC中,AB=AC,点D在AC边上,点F在AB边上,过点D作DE⊥BC,垂足是E,∠FED=∠B,4∠FDE﹣∠A=180°.下列结论:①2∠CDE=∠A;②BC=BF+CD;③△DEF是等边三角形;④过点D作DM⊥DE,交AB边于点M,若M是AF的中点,DM=3,则BC=9.其中正确的是 ①②④ .【解答】解:①在△ABC中,AB=AC,∴∠B=∠C,∴∠A=180°﹣2∠C,∵DE⊥BC,∠CDE=90°﹣∠C,∴∠CDE=2∠A,故结论①正确;②设∠B=∠C=α,则∠FED=∠B=∠C=α,∴∠A=180°﹣2α,∵4∠FDE﹣∠A=180°,∴4∠FDE﹣(180°﹣2α)=180°,∴∠FDE=90°﹣α,∴∠DFE=180°﹣(FED+∠FDE)=180°﹣(α+90°﹣α)=90°﹣α,∴∠FDE=∠DFE,∴DE=EF,∵DE⊥BC,∴∠CDE+∠C=90°,∠BEF+∠FED=90°,∵∠C=∠FED=α,∴∠CDE=∠BEF,在△CDE和△BEF中,,∴△CDE≌△BEF(AAS),∴CD=BE,CE=BF,∴BC=CE+BE=BF+CD,故结论②正确;③不妨假设△DEF是等边三角形,∴∠FED=60°,∴∠B=∠FED=60°,∴△ABC是等边三角形,根据已知条件,无法判定△ABC是等边三角形,∴假设是错误的.故结论③不正确.④∵DM⊥DE,DE⊥BC,∴DM∥BC,∠MDE=90°,∴∠AMD=∠B,∠ADM=∠C,∠MDF+∠FDE=90°,∵∠B=∠C,∴∠AMD=∠ADM,∴△AMD为等腰三角形,∵△CDE≌△BEF,∴∠DEC=∠EFB=90°,∴∠EFM=90°,即∠MFD+∠EFD=90°,∵∠FDE=∠DFE,∴∠MDF=∠MFD,∴DM=FM=3,∵点M是AF的中点,∴AM=FM=DM=3,∴△AMD为等边三角形,∴∠ADM=∠AMD=∠A=60°,AM=DM=AD=3,∴∠FMD=120°,∴∠MDF=∠MFD=(180°﹣∠FMD)=(180°﹣120°)=30°,∴∠ADF=∠ADM+∠MDF=60°+30°=90°,在Rt△ADF中,AF=AM+FM=6,AD=3,由勾股定理得:FD==,∵∠AMD=∠B=60°,∠ADM=∠C=60°,∴△ABC为等边三角形,∴BC=AB,∵∠FED=∠B=60°,DE=EF,∴△DEF为等边三角形,∴EF=FD=,∵∠EFB=90°,∠B=90°,∴∠BEF=30°,在Rt△BEF中,∠BEF=30°,∴BE=2BF,由勾股定理得:BE2﹣BF2=EF2,即(2BF)2﹣BF2=,∴BF=3,∴AB=AF+BF=6+3=9,∴BC=AB=9.故结论④正确.综上所述:正确的结论是①②④.故答案为:①②④.三、解答题(60分)21.(18分)(1)计算:(﹣1)2024+()﹣2﹣(π﹣3)0;(2)计算:(m﹣n)2﹣2m(m﹣n);(3)因式分解:a2(x﹣y)+4(y﹣x);(4)解分式方程:﹣3=.【解答】解:(1)(﹣1)2024+()﹣2﹣(π﹣3)0=1+9﹣1=9;(2)(m﹣n)2﹣2m(m﹣n)=m2﹣2mn+n2﹣2m2+2mn=n2﹣m2;(3)a2(x﹣y)+4(y﹣x)=a2(x﹣y)﹣4(x﹣y)=(x﹣y)(a2﹣4)=(x﹣y)(a+2)(a﹣2);(4)﹣3=,方程两边都乘x﹣2,得3﹣3(x﹣2)=1﹣x,3﹣3x+6=1﹣x,﹣3x+x=1﹣6﹣3,﹣2x=﹣8,x=4,检验:当x=4时,x﹣2≠0,所以分式方程的解是x=4.22.(6分)先化简:,再从﹣2,﹣1,﹣6,中选择一个适合的数x代入求值.【解答】解:=•===,∵x=﹣1,﹣2时,原分式无意义,∴x可以为﹣6或,当x=﹣6时,原式==2.23.(7分)如图,在平面直角坐标系中,△ABC的顶点A,B,C在格点上.(1)请在图中作出△ABC关于y轴对称的△A′B′C';(2)写出点B',点C'的坐标,以A',B,C′为顶点的三角是 等腰直角 三角形;(3)点P在图中格点上,若△PBC是等腰三角形,则点P的个数是 10个 .【解答】解:(1)如图,△A′B′C'即为所求.(2)由图可得,B'(﹣3,2),C'(﹣2,﹣1).由勾股定理得,A'B==,A'C'==,BC'==,∴A'B=A'C',A'B2+A'C'2=BC'2,∴∠BA'C'=90°,∴△A'BC'为等腰直角三角形.故答案为:等腰直角.(3)如图,点P1,P2,P3,P4,P5,P6,P7,P8,P9,P10均满足题意,∴点P的个数是10个.故答案为:10个.24.(9分)在△ABC中,∠BAC=∠BCA,D是平面内一点,∠DAB=∠ABC=90°,点E在AB边所在直线上,CE⊥BD,垂足是F.(1)当点E在线段AB上时,如图①,求证:AE+AD=BC;(2)当点E在线段BA延长线上时,如图②;当点E在线段AB延长线上时,如图③,请猜想并直接写出线段AE,AD,BC的数量关系;(3)如图③,若BF+CF=6,则S四边形ADFC﹣S△BEF= 18 .【解答】(1)证明:由题意得,△ABC为等腰直角三角形,则AB=BC,∵∠ABD+∠CBF=90°,∠CBF+∠FCB=90°,∴∠ABD=∠BCF,∵∠EBC=∠DBA=90°,AB=BC,∴△EBC≌△DAB(ASA),∴BE=AD,则BC=AB=AE+BE=AE+DA;(2)解:当点E在线段BA延长线上时,BC=AD﹣AE,理由:由(1)同理可得:△EBC≌△DAB(ASA),∴BE=AD,则BC=AB=BE﹣AE=AD﹣AE;当点E在线段AB延长线上时,BC=AE﹣AD,理由:由(1)同理可得:△EBC≌△DAB(ASA),∴BE=AD,则BC=AB=AE﹣BE=AE﹣AD;(3)解:如图③,设EF=a,BF=x,则FC=6﹣x,则BC2=x2+(6﹣x)2,由(1)同理可得:△EBC≌△DAB(ASA),则S△EBC=S△DAB,则S四边形ADFC﹣S△BEF=S△EBC+S△DAB+S△ABC﹣2S△BEF=2S△EBC+S△ABC﹣2S△BEF=(a+6﹣x)x﹣[(6﹣x)2+x2]﹣ax=ax+6x﹣x2+18﹣6x+x2﹣ax=18,故答案为:18.25.(10分)2024年是中国农历甲辰龙年.元旦前,某商场进货员预测一种“吉祥龙”挂件能畅销市场,就用6000元购进一批这种“吉祥龙”挂件,面市后果然供不应求,商场又用12800元购进了第二批这种“吉祥龙”挂件,所购数量是第一批购进数量的2倍,但每件的进价贵了4元.(1)该商场购进第一批、第二批“吉祥龙”挂件每件的进价分别是多少元?(2)若两批“吉祥龙”挂件按相同的标价销售,要使两批“吉祥龙”挂件全部售完后获利不低于7300(不考虑其他因素),且最后的50件“吉祥龙”挂件按八折优惠售出,那么每件“吉祥龙”挂件的标价至少是多少元?【解答】解:(1)设该商场购进第一批“吉祥龙”挂件的进价是x元/件,则第二批“吉祥龙”挂件的进价是(x+4)元,根据题意得:=×2,解得:x=60,经检验,x=60是所列方程的解,且符合题意,∴x+4=60+4=64(元/件).答:该商场购进第一批“吉祥龙”挂件的进价是60元/件,第二批“吉祥龙”挂件的进价是64元;(2)该商场购进第一批“吉祥龙”挂件的数量是6000÷60=100(件),该商场购进第二批“吉祥龙”挂件的数量是12800÷64=200(件).设每件“吉祥龙”挂件的标价是y元,根据题意得:(100+200﹣50)y+50×0.8y﹣6000﹣12800≥7300,解得:y≥90,∴y的最小值为90.答:每件“吉祥龙”挂件的标价至少是90元.26.(10分)如图,△ABC在平面直角坐标系中,顶点B(m,0),C(n,0)在x轴上,顶点A在y轴的正半轴上,BD⊥AC,垂足是D,BD交AO于点E,∠AED﹣∠BAO=45°,(m+4)2+(n﹣6)2=0.请解答下列问题:(1)求点B、点C的坐标;(2)求线段AE的长;(3)连接CE.若OE=2,在坐标轴上是否存在点F,使S△ACF=S△ACE?若存在,请直接写出点F的个数和其中一个点F的坐标;若不存在,请说明理由.【解答】解:(1)∵(m+4)2+(n﹣6)2=0,则m+4=0且n﹣6=0,解得:m=﹣4且n=6,故点B、C的坐标分别为:(﹣4,0)、(6,0);(2)∵BD是△ABC的高,∴BD⊥AC,∴∠BDC=∠BDA=90°,∴∠DAE+∠DEA=90°.∵x轴⊥y轴,∴∠AOB=∠AOC=90°,∴∠DAE+∠ACB=90°,∴∠ACB=∠DEA.∵∠ACB﹣∠BAO=45°,∴∠DEA﹣∠BAO=45°.∵∠DEA﹣∠BAO=∠ABD,∴∠ABD=45°.∵∠BDA=90°,∴∠BAD=90°﹣∠ABD=45°,∴BD=AD.在△DBC和△DAE中,,∴△DBC≌△DAE(AAS),∴AE=BC=6+4=10;(3)由(2)知,AE=10,则点A、E的坐标分别为:(0,12)、(0,2),由点A、C的坐标得,直线AC的表达式为:y=﹣2x+12,∵S△ACF=S△ACE,故取AE的中点N(0,7),过点N作直线n∥AC,取AM=AN,过点M(0,17)作直线m∥AC,则直线m、n和x坐标轴的交点即为点F,故共有4个,为点M、N以及m、n和x轴的交点,∵n∥AC,则直线n的表达式为:y=﹣2x+7,则直线n和坐标轴的交点坐标为:(0,7)、(3.5,0);同理可得直线m和坐标轴的交点坐标为:(0,17)、(8.5,0);综上,符合条件的点F有4个,坐标为:(0,7)或(3.5,0)或(0,17)或(8.5,0).。
2024北京海淀区初二(上)期末数学试卷及答案

2024北京海淀初二(上)期末数 学2024.01学校_____________ 班级______________ 姓名______________第1-8题均有四个选项,符合题意的选项只有一个.1.榫卯拼接木艺是中国建筑的智慧结晶,仅靠木头之间的相互作用力就可以让建筑或家具牢固、美观.下列榫卯拼接截面示意图中,是轴对称图形的是A .B .C .D .2.杭州亚运会主火炬以零碳甲醇作为燃料,在亚运史上首次实现废碳再生、循环内零碳排放.甲醇的密度很小,1 cm 3甲醇的质量约为0.000 79 kg ,将0.000 79用科学记数法表示应为 A .47910−⨯ B .47.910−⨯C .57910−⨯D .30.7910−⨯3.下列运算正确的是A. 235a a a ⋅=B. 235()a a =C. 33(2)2a a −=−D. 933a a a ÷=4.如图,点E ,C ,F ,B 在一条直线上,AB ∥ED ,∠A =∠D ,添加下列条件不能..判定△ABC ≌△DEF 的是 A. AC ∥DF B. AB =DE C. EC =BF D. AC =DF5.若正多边形的一个外角是72°,则该正多边形的边数为 A. 4 B. 5 C. 6 D. 76.如图是折叠凳及其侧面示意图. 若AC =BC=18 cm ,则折叠凳的宽AB 可能为 A .70 cm B .55 cm C .40 cm D .25 cm7.下列各式从左到右变形正确的是A. y y x x−=−− B. 1133x x +=+ C. 22142xxx +=−− D. 221xy x y = 8.如图,在△ABC 中,∠BAC =90°,P 是△ABC 内一点,点D ,E ,F 分别是点P 关于直线AC ,AB ,BC 的对称点,给出下面三个结论:① AE =AD ; ② ∠DPE =90°;③ ∠ADC +∠BFC +∠BEA =270°. 上述结论中,所有正确结论的序号是 A.①② B.①③ C.②③ D. ①②③ 二、填空题(本题共16分,每小题2分) 9.若代数式31x −有意义,则实数x 的取值范围是___________. 10.分解因式:32____________________a ab −=.11.在平面直角坐标系xOy 中,已知点A (-1,-1)关于x 轴的对称点'A 的坐标为____________.12.计算:322(69)3a a a −÷=_____________.13.已知等腰三角形的一个内角为40°,则它的顶角度数为_____________°. 14.如图,在△ABC 中,DE 是BC 边的垂直平分线. 若AB =8,AC =13,则△ABD 的周长为____________.15.把一张长方形纸片沿对角线折叠,使折叠后的图形如图所示.若 ∠BAC =35°,则∠CBD =_____________°.16.请阅读关于“乐数”的知识卡片,并回答问题: 乐 数我们将同时满足下列条件的分数称为“乐数”. a . 分子和分母均为正整数; b . 分子小于分母;c . 分子、分母均为两位数,且分子的个位数字与分母的十位数字相同;d .去掉分子的个位数字与分母的十位数字后,得到的分数与原来的分数相等. 例如:1664去掉相同的数字6之后,得到的分数14恰好与原来的分数相等,则1664是一个“乐数”.(1)判断:1339___________(填“是”或“不是”)“乐数”; (2)写出一个分子的个位数字与分母的十位数字同为9的“乐数”_____________.三、解答题(本题共60分,第17题5分,第18题10分,第19-23题每题5分,第24题6分,第25、26题每题7分)17.计算:12+21(3)(2024)2π−⎛⎫−+ ⎪⎝−−−⎭.18.(1)已知2220x x +−=,求代数式2(2)(3)−++x x x 的值.(2)计算: 21121121x x x x x ⎛⎫+÷ ⎪−+−+⎝⎭. 19.小明用自制工具测量花瓶内底的宽.他将两根木条AC ,BD 的中点连在一起(即AO =CO ,BO =DO ),如图所示放入花瓶内底. 此时,只需测量点 与点 之间的距离,即为该花瓶内底的宽,请证明你的结论.20.如图,在△ABC 中,∠C =90°,∠A =30°.在线段AC 上求作一点D ,使得CD =12AD .小明发现作∠ABC 的平分线交AC 于点D ,点D 即为所求. (1)使用直尺和圆规,依小明的思路作出点D (保留作图痕迹); (2)完成下面的证明.证明:∵∠A =30°,∠C =90°, ∴∠ABC =_________°.∵BD 平分∠ABC ,∴∠ABD =∠CBD =12∠ABC =30°. ∴∠ABD =∠A .∴AD=_________.在Rt △BCD 中,∠CBD =30°,∴CD =12BD (____________________________________________)(填推理依据).∴CD =12AD .21. 如图所示的4×4网格是正方形网格,顶点是网格线交点的三角形称为格点三角形. 如图 1,△ABC 为格点三角形. (1)∠ABC =__________°;(2)在图2和图3中分别画出一个以点1C ,2C 为顶点,与△ABC 全等,且位置互不相同的格点三角形.22.列方程解应用题无人配送以其高效、安全、低成本等优势,正在成为物流运输行业的新趋势.某物流园区使用1辆无人配送车平均每天配送的包裹数量是1名快递员平均每天配送包裹数量的5倍.要配送6 000件包裹,使用1辆无人配送车所需时间比4名快递员同时配送所需时间少2天,求1名快递员平均每天可配送包裹多少件? 23.如图,四边形ABCD 中,AB =AC ,∠D =90°,BE ⊥AC 于点F ,交CD 于点E ,连接EA ,EA 平分∠DEF .(1)求证:AF=AD;(2)若BF=7, DE=3,求CE的长.24.小明设计了一个净水装置,将杂质含量为n的水用m单位量的净水材料过滤一次后,水中的杂质含量为1nm+. 利用此净水装置,小明进行了进一步的探究:现有杂质含量为1的水.(1)用2单位量的净水材料将水过滤一次后,水中杂质含量为_______;(2)小明共准备了6a单位量的净水材料,设计了如下的三种方案:方案A是将6a单位量的净水材料一次性使用,对水进行过滤;方案B和方案C均为将6a单位量的净水材料分成两份,对水先后进行两次过滤. 三种方案的具体操作及相关数据如下表所示:①②通过计算回答:在这三种方案中,哪种方案的最终过滤效果最好?(3)当净水材料总量为6a单位量不变时,为了使两次过滤后水中的杂质含量最少,小明应将第一次净水材料用量定为________________(用含a的式子表示).25.如图,在△ABC中,∠ACB=90°,AB=BC,作直线AP,使得45°<∠P AC<90°.过点B作BD⊥AP于D,在DA的延长线上取点E,使DE=BD. 连接BE,CE.(1)依题意补全图形;(2)若∠ABD=α,求∠CBE(用含α的式子表示);(3)用等式表示线段AE,CE,DE之间的数量关系,并证明.26.在平面直角坐标系xOy中,直线l过原点且经过第三、第一象限,l与x轴所夹锐角为n°. 对于点P和x 轴上的两点M,N,给出如下定义:记点P关于直线l的对称点为Q,若点Q的纵坐标为正数,且△MNQ 为等边三角形,则称点P为M,N的n°点.(1)如图1,若点M(2,0),N(4,0),点P为M,N的45°点,连接OP,OQ.①∠POQ=________________°;②求点P的纵坐标;(2)已知点M(m,0),N(m+t,0).①当t=2时,点P为M,N的60°点,且点P的横坐标为-2,则m=____________________;②当m=-2时,点P为M,N的30°点,且点P的横坐标为2,则t=___________________.参考答案一、选择题 (共24分,每小题3分)二、填空题(共16分,每小题2分) 9. 1x ≠; 10. ()()a a b a b +−; 11. (1,1)−; 12. 23a −; 13. 40或100; 14. 21; 15. 20; 16.(1)不是;(2)1995(答案不唯一). 三、解答题(本题共60分,第17题5分,第18题10分,第19-23题每题5分,第24题6分,第25、26题每题7分) 17.(本题满分5分)解:原式=9122−++ ………………………………………………………………4分=12 . …………………………………………………………………………5分18.(1)(本题满分5分)解:原式=22269x x x x −+++ ………………………………………………………2分 =2249x x ++. ………………………………………………………………3分∵2220x x +−=,∴222x x +=. ………………………………………………………………4分 ∴2244x x +=.∴原式=4913+=. 5分(2)(本题满分5分)解:原式=211(1)(1)(1)(1)(1)2x x x x x x xx ⎡⎤+−−+⋅⎢⎥−+−+⎣⎦ ……………………………………3分 =22(1)(1)(1)2x x x x x−⋅−+ …………………………………………………4分 =11x x −+. ………………………………………………………………5分19.(本题满分5分)解:C , D ; …………………………………………………………………………1分 理由如下:连接CD .在△COD 和△AOB 中,AD,,,OC OA COD AOB OD OB =⎧⎪∠=∠⎨⎪=⎩∴△COD ≌△AOB (SAS ). …………………………………………………4分 ∴CD AB =.∴点C 与点D 的距离为该花瓶内底的宽. …………………………………5分20.(本题满分5分)解:(1)…………………………………………………2分∴点D 即为所求.(2)60; ……………………………………………………………………………3分BD ; …………………………………………………………………………4分在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.…………………………………………………………………5分21.(本题满分5分)解:(1)90; …………………………………………………………………………2分 (2)答案不唯一.…………………………………………5分22.(本题满分5分)解:设1名快递员平均每天配送包裹x 件. ……………………………………………1分依题意,得60006000254x x+=. ………………………………………………………3分 解得 150x =. …………………………………………………………4分 经检验,150x =是原分式方程的解且符合题意.答:1名快递员平均每天可配送包裹150件.…………………………………………5分23.(本题满分5分)(1)证明:∵∠D =90°, ∴AD ⊥ED .∵BE ⊥AC 于点F , EA 平分∠DEF , ∴AF =AD . …………………2分(2)解:∵BE ⊥AC 于点F ,B∴∠AFB =90°.在Rt △AFB 和Rt △ADC 中,,,AB AC AF AD =⎧⎨=⎩∴△AFB ≌△ADC (HL ). ………………………………………………3分 ∴BF =CD .∵BF =7,∴CD =7. ………………………………………………………………4分 ∵DE =3,∴CE =CD −DE =7−3=4. …………………………………………………5分24.(本题满分6分)(1)13; …………………………………………………………………………………1分(2)①114a +,()()11412a a ++; ……………………………………………………3分 ② 解:116a −+()()1151a a ++=()()()2516151a a a a +++. ∵0a >,∴250a >,()()()16151a a a +++0>.∴()()()2516151a a a a +++0>. ∴116a +>()()1151a a ++. 同理,可得()()1151a a ++>()()11412a a ++. ∴()()11412a a ++<()()1151a a ++<116a+. ∴方案C 的最终过滤效果最好. ………………………………………………5分 (3)3a. …………………………………………………………………………………6分 25.(本题满分7分) (1)依题意补全图形…………………………………………………………1分(2)解:∵BD ⊥AP 于D ,∴∠BDE =90°. ∵BD =DE ,∴∠DBE =∠DEB =45°. ∵∠ABD =α,∴∠ABE =∠DBE −∠ABD =45°−α. ∵∠ABC =90°,∴∠CBE =∠ABC −∠ABE =45°+α.…………………………………………………3分 (3)AE+CE=2DE . ……………………………………………………………………4分 证明:如图,在AD 延长线上取点F ,使DF=AD ,连接BF . ∵BD ⊥AP ,AD=DF , ∴BA=BF . ∴∠FBD =∠ABD =α. ∵∠DBE =45°, ∴∠EBF =∠DBE+∠DBF =45°+α. ∴∠EBF =∠CBE . ∵AB=BC , ∴BF=BC . ∵BE=BE ,∴△BEF ≌△BEC (SAS ). ∴FE =CE.∵AE =DE −AD , CE =FE =DE+DF , AD =DF ,∴AE+CE =2DE. ………………………………………………………………………7分 26.(本题满分7分)(1)①∠POQ =30°; ………………………………………………………………………1分 ②解:过点P 作P A ⊥y 轴于A ,过点Q 作QB ⊥x 轴于B , ∴∠P AO =∠QBO =90°.∵点P 为线段MN 的45°点,∴PO =QO ,∠AOC =∠BOC =45°,∠POC =∠QOC . ∴∠AOP =∠BOQ . 在△OP A 和△OQB 中,PAO QBO AOP BOQ OP OQ ∠=∠⎧⎪∠=∠⎨⎪=⎩,,, ∴△OP A ≌△OQB (AAS ). ∴AO =BO .E DCBAPBAC .E FDB A P∵△MNQ是等边三角形,点M(2,0),点N(4,0),∴OM=MN=2.∵QB⊥MN,∴112BM MN==.∴AO=BO=3.∴P点纵坐标为3. ………………………………………………………………………4分(2)①m=6;………………………………………………………………………5分②t=3或t=-6.………………………………………………………………………7分。
人教版八年级上册数学期末考试试卷及答案

人教版八年级上册数学期末考试试题一、单选题1.下列文字中,是轴对称图形的是()A .我B .爱C .中D .国2.用科学记数法表示0.0000003是()A .60.310-⨯B .70.310-⨯C .6310-⨯D .7310-⨯3.等腰三角形的两边长为2cm ,5cm ,则该等腰三角形的周长为()A .9cmB .12cmC .9cm 或12cmD .6cm 或12cm4.下列各式运算正确的是()A .326a a a ⨯=B .()428=a aC .()220a a -+=D .()23622a a =5.点A (-2,3)向右平移3个单位后得到点B ,那么点B 关于x 轴对称的点的坐标是A .(1,-3)B .(1,3)C .(-1,3)D .(-1,-3)6.如图,在△ABC 与△ADC 中,若BAC DAC ∠=∠,则下列条件不能判定△ABC 与△ADC 全等的是()A .B D∠=∠B .BCA DCA ∠=∠C .BC DC =D .AB AD =7.已知()()222x m x x x +-=--,那么m 的值是()A .1B .-1C .2D .-28.如图,在Rt △ABC 中,90C = ∠,AD 平分∠BAC ,交BC 于点D ,若20AB =,△ABD 的面积为60,则CD 长()A .12B .10C .6D .49.如图,在△ABC 中,AB AC =,BD CD =,边AB 的垂直平分线交AC 于点E ,连接BE ,交AD 于点F ,若66C ∠=︒,则∠AFE 的度数为()A .60B .62°C .66D .7210.如图,数轴上点A 、B 、C 、D 分别表示数0、1、2、3,若x 为整数(0x ≠),则分式21x x -表示的点落在哪条线段上?()A .ACB .BC C .BD D .CD11.如图,把一块等腰直角三角尺放在直角坐标系中,直角顶点A 落在第二象限,锐角顶点B 、C 分别落在x 轴、y 轴上,已知点A (-2,2)、C (0,-3),则点B 的坐标为()A .(-4,0)B .(-5,0)C .(-7,0)D .(-8,0)12.如图,有10个形状大小一样的小长方形①,将其中的3个小长方形①放入正方形②中,剩余的7个小长方形①放入长方形③中,其中正方形②中的阴影部分面积为21,长方形③中的阴影部分面积为93,那么一个小长方形①的面积为()A .5B .6C .9D .10二、填空题13.分解因式26m m +=_________.14.计算:3242a b ab ÷=______.15.已知:26910a a b -+++=,那么22a b +=______.16.当=a ___________时,关于x 的方程12325x a x a +-=-+的解为零.17.如图,点D 、A 、B 、C 是正十边形依次相邻的顶点,分别连接AC 、BD 相交于点P ,则∠DPC =______度.18.等腰直角三角形ABC 中,AB AC =,90BAC ∠= ,且△ABC 的面积为16,过点B 作直线EF AC ∥,点G 是直线EF 上的一个动点,连接AG ,将AG 绕点A 顺时针旋转90 ,得到线段AH ,连接BH ,则线段BH 的最小值为______.19.如图,已知AE =BE ,DE 是AB 的垂线,F 为DE 上一点,BF =11cm ,CF =3cm ,则AC =_______.20.如图,在等腰△ABC 中,AB=AC=13,BC=10,D 是BC 边上的中点,M 、N 分别是AD 和AB 上的动点.则BM+MN 的最小值是_________________.三、解答题21.计算:(1)02312020222--++⨯(2)()()()22a b a b a b +--+22.化简求值:2222m n mn n m m m ⎛⎫--÷- ⎪⎝⎭,其中3,1m n ==-.23.解分式方程:2231022x x x x-=+-24.如图,四边形ABED 中,90B E ACD ∠=∠=∠= ,BC DE =.(1)求证:ABC CED ∆=∆.(2)发现:若AB a =,BC b =,AC c =,请用两种方法计算四边形ABCD 的面积,并探究a 、b 、c 之间有什么数量关系?(3)应用:①根据(2)中的发现,当8AB =,6BC =时,AC 的长为___;②如图,若30P ∠= ,4PM =,7PN =,点F 在PN 上,点G 在射线PM 上连接FM 、FG 、NG ,求MF FG GN ++的最小值.25.为了进一步丰富校园文体活动,学校准备购进一批篮球和足球,已知每个篮球的进价比每个足球的进价多20元,用1800元购进篮球的数量是用700元购进足球的数量的2倍,求每个篮球和足球的进价各是多少元?26.如图,90ACB ∠=︒,AC BC =,AD CE ⊥,BE CE ⊥,垂足分别为D ,E .(1)求证:ACD CBE △△≌;(2)试探究线段AD ,DE ,BE 之间有什么样的数量关系,请说明理由.27.如图,Rt △ABC 与Rt △DEF 中,点B 、E 、C 、F 在一条直线上,AC 与DE 相交于点O ,90BAC EDF ∠=∠=︒,AB DE =,BE CF =,则:(1)求证:AC DE ⊥;(2)连接AD 、AE 、DC ,若12,5AC AB ==,求四边形AECD 的面积.28.如图是33⨯的网格,网格中每个小正方形的顶点叫做格点,当三角形的三个顶点是格点时,这个三角形叫做格点三角形,图中阴影部分的三角形就是格点三角形.(1)请在图一、图二中分别作出与阴影部分成轴对称的格点三角形,要求所作格点三角形在33⨯的网格内且位置不同;(2)思考:在33⨯的网格内一共可以作___个符合(1)中要求的格点三角形.参考答案1.C2.D3.B4.B5.A6.C7.A8.C9.D10.C11.C12.Am m+13.(6)14.22a b15.1016.1517.144【详解】解:∵DAB ∠和ABC ∠是正十边形的两个内角,∴(102)18014410DAB ABC -⨯︒∠=∠==︒,DA AB BC ==,∴180********,22DAB ABD ︒-∠︒-︒∠===︒1801801441822ABC BCA ︒-∠︒-︒∠===︒,∴14418126PBC ABC ABD ∠=∠-∠=︒-︒=︒,∴12618144DPC PBC PCB ∠=∠+∠=︒+︒=︒,故答案为:144【点睛】可不是主要考查了正多边形内角和问题,解题的关键是熟练掌握基本知识.18.【分析】如图所示:连接CG .由旋转的性质可知AG AH =,90GAH ∠=︒,再由90BAC ∠=︒,可知HAB CAG ∠=∠.可证ABH ACG ≅ .可得BH CG =.BH 最小转化成求CG 最小.只需CG BG ⊥就可以了.由此可得四边形ABGC 是正方形.由ABC 的面积是16,可求BH 的值为【详解】如图所示:连接CG .由旋转的性质可知:AG AH =,90GAH ∠=︒.∵90BAC ∠=︒∴BAC BAG GAH BAG ∠-∠=∠-∠,即HAB CAH ∠=∠.在ABH 和ACG 中,AB AC HAB CAH AH AG =⎧⎪∠=∠⎨⎪=⎩ABH ACG≅ ∴BH CG=要让BH 最小,也就是要CG 最小,∴CG BG ⊥时,CG 最小.∵EF AC ∥,90BAC ∠=︒,∴90ABG BAC ∠=∠=︒∵CG BG⊥∴四边形ABGC 时矩形,∵AB AC=∴矩形ABGC 是正方形.∴AB BG CG AC ===.∵△ABC 的面积为16,∴•162AB AC =,解得:AB AC ==.∴AB AC CG BH ====故答案为:【点睛】本题考查了全等三角形的性质和判定定理、矩形的性质和判定定理、正方形的性质和判定定理、等腰直角三角形的性质等知识.证得三角形全等,由求BH 转化成求CG ,和让CG BG ⊥时,CG 最短是解决本题的关键.19.14cm【分析】由AE =BE ,DE 是AB 的垂线得出DE 是AB 的中线,进而可得DE 是AB 的垂直平分线,由此即可得到AF =BF ,再根据线段的和差即可得解.【详解】解:∵AE =BE ,DE 是AB 的垂线,∴DE 是AB 的中线,∴DE是AB的垂直平分线,∵F为DE上一点,∴AF=BF,∴AC=AF+CF=BF+CF,∵BF=11cm,CF=3cm,∴AC=14cm,故答案为:14cm.【点睛】此题考查了等腰三角形的三线合一以及垂直平分线的性质,熟练掌握等腰三角形的三线合一以及垂直平分线的性质是解此题的关键.20.120 13【分析】作BH⊥AC,垂足为H,交AD于M′点,过M′点作M′N′⊥AB,垂足为N′,然后根据轴对称的性质可知BM′+M′N′为所求的最小值.【详解】解:如图,作BH⊥AC,垂足为H,交AD于M′点,过M′点作M′N′⊥AB,垂足为N′,则BM′+M′N′为所求的最小值.∵AB=AC,D是BC边上的中点,∴AD是∠BAC的平分线,∴M′H=M′N′,∴BH是点B到直线AC的最短距离(垂线段最短),∵AB=AC=13,BC=10,D是BC边上的中点,∴AD⊥BC,∴AD=12,∵S△ABC=12AC×BH=12BC×AD,∴13×BH=10×12,解得:BH=120 13;故答案为12013.21.(1)2(2)233ab b --【分析】(1)根据零次幂、负指数幂可进行求解;(2)根据完全平方公式及多项式乘以多项式可进行求解.(1)解:原式=111428++⨯11122=++=2;(2)解:原式=()222222a ab b a ab b ---++=222222a ab b a ab b -----=233ab b --.22.2m n -;12【分析】先根据分式混合运算法则进行化简,然后再代入求值即可.【详解】解:原式22222m n m mn n m m m ⎛⎫--=÷- ⎝⎭22222m n m mn n m m--+=÷()()22m n mm m n -=⋅-2m n=-把m=3,n=−1代入得:原式()231=--231=+24=12=23.4x =【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】2231022x x x x-=+-解:方程可变为:()()31022x x x x -=+-,方程两边同乘以x (x+2)(x ﹣2)得:3(x ﹣2)﹣(x+2)=0,解得,x =4,检验:当x =4时,x (x+2)(x ﹣2)≠0,所以,原分式方程的解为x =4.24.(1)见解析;(2)第一种方法:S 四边形ABCD=2ab +22c ,第二种方法:22222a b ab ++;a 、b 、c 之间的数量关系是222+=a b c ;(3)①10【分析】(1)根据BAC ECD ∠=∠,B E ∠=∠,BC ED =即可证明两个三角形全等;(2)第一种面积求法直接是S △ABC+S △ACD ,代入表示即可;第二种面积表示用S 梯形ABED-S △CED 来表示,就可以得到a 、b 、c 之间的数量关系;(3)①根据(2)中的结论,代入数值即可计算;②作点M 关于PN 的对称点1M ,作点N 关于PM 的对称点1N ,连接11M N ,线段11M N 与PN 的交点即为F ,与PM 的交点即为点G ,连接P 1M ,P 1N ,此时MF FG GN ++的值最小,代入(2)中的结论,即可算出这个最小值;【详解】(1)∵∠B=∠E=∠ACD=90°,∴∠DCE+∠ACB=90°,∠ACB+∠BAC=90°,∴∠BAC=∠DCE ,在△ABC 和△CED 中,BAC ECD B E BC ED ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△CED ;(2)第一种方法:S 四边形ABCD=S △ABC+S △ACD=2ab +22c ,第二种方法:由(1)可知,△ABC ≌△CED ,∴CD=c ,DE=b ,CE=a ,S 四边形ABCD =S 梯形ABED-S △CED=22a b a b ab ++-()(),=22222a b ab ++,∴2ab +22c =22222a b ab ++,∴222+=a b c ,即a 、b 、c 之间的数量关系是222+=a b c ;(3)①∵AB=8,BC=6,∴22268AC =+=100,∴AC=10,②作点M 关于PN 的对称点1M ,作点N 关于PM 的对称点1N ,连接11M N ,线段11M N 与PN 的交点即为F ,与PM 的交点即为点G ,连接P 1M ,P 1N ,此时MF FG GN ++的值最小;如图所示:∵点M 与1M 关于PN 对称,点N 与1N 关于PM 对称,∴1M F=MF ,PM=P 1M =4,∴GN=G 1N ,PN=P 1N =7,∠1M PF=∠FPM=∠MP 1N =30°,∴∠11M PN =3×30°=90°∴MF+FG+GN=M 1F+FG+N 1G≥M 1N 1,当点M 1、F 、G 、N 1四点共线时最短,在△11M PN 中,∠11M PN =90°,PM=4,P 1N =7,∴由(2)可知,211M N =2247+=65,∴11M N∴MF FG GN ++25.每个足球的进价是70元,每个篮球的进价是90元【详解】解:设每个足球的进价是x 元,则每个篮球的进价是()20x +元.由题意得:1800700220x x=⨯+.解得:70x =.检验:当70x =时,()200x x +≠,所以,原方程的解为70x =.∴2090x +=.答:每个足球的进价是70元,每个篮球的进价是90元.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.26.(1)见解析(2)BE DE AD +=,见解析【分析】(1)由“AAS”可证ACD CBE △△≌;(2)由全等三角形的性质可得CD BE =,AD CE =,即可求解.【详解】(1)证明:∵AD CE ⊥,BE CE ⊥,∴90E ADC ∠=∠=︒,∴1290∠+∠=︒,∵90ACB ∠=︒,∴3290∠+∠=︒,∴13∠=∠,在ACD 和CBE △中,13ADC E AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ACD CBE △△≌(AAS ).(2)解:BE DE AD +=,理由如下:∵ACD CBE △△≌,∴CD BE =,AD CE =.∵CD DE CE +=,∴BE DE AD +=.27.(1)见详解(2)四边形AECD 的面积为30【分析】(1)由题意易得BC EF =,然后根据“HL”可证ABC DEF ≌△△,则有//AB DE ,进而问题可求证;(2)由(1)可知△DEF 是由△ABC 向右平移所得到,则根据平移的性质可得AD=BE ,然后根据勾股定理可得BC=13,进而问题可求解.(1)证明:∵BE CF =,∴BE EC CF EC +=+,即BC EF =,∵90BAC EDF ∠=∠=︒,AB DE =,∴ABC DEF ≌△△(HL ),∴B DEF ∠=∠,∴//AB DE ,∴90EOC A ∠=∠=︒,∴AC DE ⊥;(2)解:由(1)可知△DEF 是由△ABC 向右平移所得到,则根据平移的性质可得AD=BE ,//AD EC ,∴四边形AECD 是梯形,∵12,5AC AB ==,90BAC ∠=︒,∴13BC ==,设△ABC 边BC 上的高为h ,∴6013AB AC h BC ⋅==,∴()()1111601330222213AECD S AD EC h BE EC h BC h =+=+=⋅=⨯⨯=四边形.【点睛】本题主要考查勾股定理、平移的性质及全等三角形的性质与判定,勾股定理、平移的性质及全等三角形的性质与判定是解题的关键.28.(1)见解析(2)3【分析】(1)根据轴对称图形的性质作出轴对称图形即可;(2)作出所有轴对称图形即可得到答案.(1)如图一、二,即为所作图形,(虚线为对称轴)(2)可以作出3个符合(1)中要求的格点三角形.第3个如图所示,故答案为:3。
初二上册数学期末考试试卷

初二上册数学期末考试试卷一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 2.5B. πC. 0.333...D. √42. 如果一个角的补角是120°,那么这个角的度数是多少?A. 60°B. 30°C. 90°D. 120°3. 以下哪个选项表示的是一次函数?A. y = 2x + 3B. y = x^2 + 1C. y = 1/xD. y = √x4. 一个等腰三角形的两边长分别为5和8,那么第三边的长度是多少?A. 3B. 5C. 8D. 105. 一个数的平方根是它本身的数有几个?A. 0个C. 2个D. 3个6. 已知一个圆的半径为3,那么这个圆的面积是多少?A. 9πB. 18πC. 27πD. 36π7. 一个数的绝对值是它本身,这个数是正数还是负数?A. 正数B. 负数C. 非负数D. 非正数8. 一个数的相反数是-5,那么这个数是多少?A. 5B. -5C. 0D. 109. 以下哪个选项是不等式?A. 2x + 3 = 7B. 2x + 3 > 7C. 2x + 3 < 7D. 2x + 3 ≤ 710. 一个数的立方根是它本身,这个数是以下哪个?A. 0B. 1D. 8二、填空题(每题2分,共20分)11. 一个角的余角是45°,那么这个角的度数是________。
12. 一个数的平方是25,那么这个数是________或________。
13. 一个直角三角形的两个锐角的度数之和是________。
14. 一个数的绝对值是5,那么这个数是________或________。
15. 一个数的立方是-8,那么这个数是________。
16. 一个数的倒数是1/3,那么这个数是________。
17. 一个等腰三角形的底角是40°,那么顶角的度数是________。
18. 一个圆的周长是2πr,那么这个圆的半径是________。
八年级数学(上册)期末试卷及答案(A4打印版)

八年级数学(上册)期末试卷及答案(A4打印版) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.一次函数()224y k x k =++-的图象经过原点,则k 的值为( )A .2B .2-C .2或2-D .3 2.若a b c d ,,,满足a b c d b c d a ===,则2222ab bc cd da a b c d ++++++的值为( ) A .1或0 B .1- 或0 C .1或2- D .1或1-3.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x 名工人生产螺钉,则下面所列方程正确的是( )A .2×1000(26﹣x )=800xB .1000(13﹣x )=800xC .1000(26﹣x )=2×800xD .1000(26﹣x )=800x4.下列结论中,矩形具有而菱形不一定具有的性质是( )A .内角和为360°B .对角线互相平分C .对角线相等D .对角线互相垂直5.如图,已知菱形的两条对角线分别为6cm 和8cm ,则这个菱形的高DE 为( )A .2.4cmB .4.8cmC .5cmD .9.6cm6.一元二次方程(1)(1)23x x x +-=+的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根7.下面是一位同学做的四道题:①222()a b a b +=+;②224(2)4a a -=-;③532a a a ÷=;④3412a a a ⋅=,其中做对的一道题的序号是( )A .①B .②C .③D .④8.下列关于一次函数()0,0y kx b k b =+<>的说法,错误的是( )A .图象经过第一、二、四象限B .y 随x 的增大而减小C .图象与y 轴交于点()0,bD .当b x k >-时,0y > 9.如图,下列条件:13241804523623∠=∠∠+∠=∠=∠∠=∠∠=∠+∠①,②,③,④,⑤中能判断直线12l l 的有( )A .5个B .4个C .3个D .2个10.如图,AD ,CE 分别是△ABC 的中线和角平分线.若AB=AC ,∠CAD=20°,则∠ACE 的度数是( )A .20°B .35°C .40°D .70°二、填空题(本大题共6小题,每小题3分,共18分)1.已知a 、b 为两个连续的整数,且11a b <<,则a b +=__________.2.已知菱形ABCD 的面积是12cm 2,对角线AC =4cm ,则菱形的边长是______cm .3.若m+1m =3,则m 2+21m=________. 4.如图,将周长为8的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD 的周长为_____________.5.如图,依据尺规作图的痕迹,计算∠α=_______°.6.如图,在平面直角坐标系中,将矩形AOCD 沿直线AE 折叠(点E 在边DC 上),折叠后顶点D 恰好落在边OC 上的点F 处.若点D 的坐标为(10,8),则点E 的坐标为 . 三、解答题(本大题共6小题,共72分)1.解方程:(1)12111x x x -=-- (2)31523162x x -=--2.先化简,再求值:22169211x x x x x ⎛⎫-++-÷ ⎪+-⎝⎭,其中2x =.3.已知:12x =-,12y =+,求2222x y xy x y +--+的值.4.如图,在△ABC 中,∠B=40°,∠C=80°,AD 是BC 边上的高,AE 平分∠BAC ,(1)求∠BAE 的度数;(2)求∠DAE 的度数.5.如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.(1)求证:AB=DC;(2)试判断△OEF的形状,并说明理由.6.某学校为改善办学条件,计划采购A、B两种型号的空调,已知采购3台A 型空调和2台B型空调,需费用39000元;4台A型空调比5台B型空调的费用多6000元.(1)求A型空调和B型空调每台各需多少元;(2)若学校计划采购A、B两种型号空调共30台,且A型空调的台数不少于B 型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、C4、C5、B6、A7、C8、D9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、723、74、10.5、56.6、(10,3)三、解答题(本大题共6小题,共72分)1、(1)2x3=;(2)10x9=.2、13xx-+;15.3、4、(1) ∠BAE=30 °;(2) ∠EAD=20°.5、(1)略(2)等腰三角形,理由略6、(1)A型空调和B型空调每台各需9000元、6000元;(2)共有三种采购方案,方案一:采购A型空调10台,B型空调20台,方案二:采购A型空调11台,B型空调19台,案三:采购A型空调12台,B型空调18台;(3)采购A型空调10台,B型空调20台可使总费用最低,最低费用是210000元.。
初二期末数学试卷附答案

一、选择题(每题4分,共20分)1. 下列各数中,有理数是()A. √3B. πC. -3/4D. 2.5答案:C2. 下列各数中,无理数是()A. 1/2B. √4C. √9D. √-1答案:D3. 若a、b为实数,且a + b = 0,则下列等式中正确的是()A. a = bB. a = -bC. ab = 0D. a² = b²答案:B4. 已知函数f(x) = 2x - 1,则f(3)的值为()A. 5B. 4C. 3答案:A5. 在直角坐标系中,点A(2, 3)关于y轴的对称点坐标是()A. (-2, 3)B. (2, -3)C. (-2, -3)D. (2, 3)答案:A二、填空题(每题4分,共20分)6. 已知x² - 5x + 6 = 0,则x的值为______。
答案:2,37. 若|a| = 5,则a的值为______。
答案:±58. 下列函数中,奇函数是______。
答案:f(x) = x³9. 若∠ABC = 90°,AB = 3,BC = 4,则AC的长度为______。
答案:510. 已知等差数列{an}中,a₁ = 3,公差d = 2,则aₙ =______。
答案:3 + 2(n - 1)三、解答题(共60分)11. (12分)解下列方程:(1) 2x² - 5x + 2 = 0(2) 3(x - 1)² - 4 = 0(1) x₁ = 1,x₂ = 2(2) x₁ = 1/3,x₂ = 112. (12分)已知函数f(x) = 2x² - 3x + 1,求:(1) 函数的对称轴(2) 函数的顶点坐标答案:(1) 对称轴为x = 3/4(2) 顶点坐标为(3/4, -1/8)13. (12分)在直角坐标系中,已知点A(2, 3),B(4, 5),C(6, 7),求:(1) 线段AB的长度(2) 线段AC的斜率答案:(1) 线段AB的长度为√2(2) 线段AC的斜率为114. (12分)已知等差数列{an}中,a₁ = 3,公差d = 2,求:(1) 第10项的值(2) 前n项和Sₙ的表达式答案:(1) 第10项的值为21(2) Sₙ = n(3 + 21(n - 1))/215. (12分)已知函数f(x) = |x - 2| + 1,求:(1) 函数的图像(2) 函数的最小值答案:(1) 函数的图像为V形,顶点坐标为(2, 1)(2) 函数的最小值为1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
育才家教培训中心摸底考试
初二数学
(本卷满分:100分; 考试时间:100分钟)
亲爱的同学:在展示你学习成果时,希望你能沉着应答,发挥出自己的最好水平.祝你成功! 一、选择题(本大题共8小题,每小题3分,共24分,每小题仅有一个答案正确) 1.下列图形中,既是轴对称图形,又是中心对称图形的是 ( )
A .等腰梯形
B .平行四边形
C .正三角形
D .矩形
2.在实数1
2、-
3、-3.14,0,π中,无理数有( ) A .1个 B .2个 C .3个 D .4个
3.若数据2,x ,4,8的平均数是4,则这组数据的众数和中位数是( ) A .3和2 B .2和3 C .2和2 D .2和4 4.在等腰三角形中,有一个角是50°,它的一条腰上的高与底边的夹角是( ) A .25° B .40°或30° C .25°或40° D .50°
5.在四边形ABCD 中,E 、F 、G 、H 分别是四条边的中点,要使四边形EFGH 为矩形,四边形ABCD 应具备的条件是 ( )
A .一组对边平行而另一组对边不平行
B .对角线相等
C .对角线互相垂直
D .对角线互相平分 6.直线y =kx +b 经过一、二、四象限,则k 、b 应满足 ( )
A .k >0, b <0
B .k >0,b >0
C .k <0, b <0
D .k <0,b >0 7.如图,平行四边形ABCD 中,∠C =108°,B
E 平分∠ABC ,则∠AEB = ( ) A .18° B .36° C .72° D .108° 8.如图(1),在直角梯形ABCD 中,AB ∥CD ,∠ABC =90º,动点P 从点B 出发,沿BC ,CD 运动至点D 停止.设点P 运动的路程为x ,△ ABP 的面积为y ,如果y 关于x 的函数图象如图(2)所示,则△BCD 的面积是 ( ) A .3 B .4 C .5 D .6
二、填空题(本大题有12小题,每空2分,共24分) 9.函数y =x -3中自变量x 的取值范围是___________.
10.若点A 的坐标),(y x 满足条件0|2|)3(2=++-y x ,则点A 在第________象限.
11.我国目前严重缺水,大家都应加倍珍惜水资源,节约用水.据测试,拧不紧的水龙头每秒钟滴下2滴水,每滴水约0.05毫升,小明同学洗手时,没有把水龙头拧紧,当小明离开x 秒后,水龙头滴y 毫升的水,试写出y 关于x 的函数关系式 . 12.若点(-4,y 1)、(2,y 2)都在直线y =-3x +5上,则y 1 y 2(填“>”、“=”或“<”). 13.在北京奥运会国家体育场的“鸟巢”钢结构工程施工中,首次使用了我国科研人员自主研制的强度为4.581
亿帕的钢材.4.581亿帕用科学计数法表示为____________帕.(保留两个有效数字). 14.如图,□ABCD 中, ∠B =110°,延长AD 至F ,延长CD 至E ,连接EF ,则∠E +∠F =____°.
E C
B
A D
(第7题)
(第8题)
⑴
P
15.如果平行四边形的四个内角的平分线能围成一个四边形,那么这个四边形一定是_________. 16.已知梯形的中位线长为6cm ,高为4cm ,则此梯形的面积为_________cm 2.
17.若菱形的一个内角为120°,且平分这个内角的对角线长为8cm ,则此菱形的周长为_______cm .
18.如图,已知点D 是△ABC 的边BC (不含点B ,C )上的一点,DE //AB 交AC 于点E ,DF //AC 交AB 于点
F . 要使四边形AFDE 是矩形,则在△ABC 中要增加的一个条件是: .
19.如图,在Rt △ABC 中,∠ABC =90°,AB =BC =8,点M 在BC 上,且BM =2,N 是AC 上一动点,则BN
+MN 的最小值为___________.
20.一个质点在第一象限及x 轴、y 轴上运动,在第一秒钟,它从原点运动到(1,0),然后接着按图中箭头
所示方向运动,即:(0,0)→(1,0)→(1,1)→(0,1)→……,且每秒移动一个单位........,那么第35秒时质点所在位置的坐标是 .
三、解答题(本大题共6小题,共52分) 21.(本题共两小题,每题4分,共8分)
(1)已知:(x +5)2=16,求x ; (2)计算:25-3
-27+14
.
22.(本题满分8分) 耐克运动鞋专卖店在2010年元旦假期三天内销售的运动鞋尺码如下:
(1) 请你写出销售的运动鞋尺码的平均数 、众数 和中位数 ; (2) 如果你是经理,在下次进货时应当根据(1)中的哪个数据多进哪种尺码的运动鞋?为什么?
23.(本题满分6分)如图,在等腰梯形ABCD 中,AD ∥BC ,AB =AE .四边形AECD 是平行四边形吗?
为什么?
A B
C
E D
(第14题) F
E C
B A D (第18题) F E
C B A
D (第20题)
(第19题)
C B A N M
24.(本题满分7分)如图的方格纸上画有AB 、CD 两条线段,按下列要求作图(不保留作图痕迹,不要求写
出作法)
(1)请你在图(1)中画出线段AB 、CD 关于点E 成中心对称的图形; (2)请你在图(2)中画出线段AB 关于CD 所在直线成轴对称的图形;
(3)请你在图(3)中添上一条线段,使图中的3条线段组成一个轴对称图形,请画出所有情形.
25.(本题满分7分)如图,直线l 1的解析表达式为y =1
2
x +1,且l 1与x 轴交于点D ,直线l 2经过定点A ,B ,
直线l 1与l 2交于点C . (1)求直线l 2的函数关系式; (2)求△ADC 的面积;
(3)在直线l 2
上存在异于点C 的另一点P ,使得△ADP
与△ADC 的面积相等,请直接..
写出点P 的坐标.
26.(本题满分8分)
(1)观察与发现:将矩形纸片AOCB 折叠,使点C 与点A 重合,点B 落在点B ′ 处(如图1),折痕为EF .小明发现△ AEF 为等腰三角形,你同
意吗?请说明理由.
(2)实践与应用:以点O 为坐标原点,分别以矩形的边OC 、OA 为x 轴、y 轴建立如图所示的直角坐标系,若顶点B 的坐标为(9,
3),请求出
A B C D E
A B C D
E
(1)
(2)
(3)
A
B
O C
E
F
B ′
折痕EF 的长及EF 所在直线的函 数关系式.
27.(本题满分8分) 一位同学拿了两块45º三角尺△MNK 和△ACB 做了一个探究活动:将△MNK 的直角顶点
M 放在△ABC 的斜边AB 的中点处,设AC =BC =4.
(1)如图1,两三角尺的重叠部分为△ACM ,则重叠部分的面积为______,周长为______.
(2)将图1中的△MNK 绕顶点M 逆时针旋转45º,得到图2,此时重叠部分的面积为____________,周
长为____________.
(3)如果将△MNK 绕M 旋转到不同于图1和图2的图形,如图(3),请你猜想此时重叠部分的面积为
___________.
(4)在图3的情况下,若AD =1,求出重叠部分图形的周长.
B
图2
图3
图1。