《三角形的内角和》教学反思.

合集下载

《三角形的内角和》教学反思(通用多篇)

《三角形的内角和》教学反思(通用多篇)

《三角形的内角和》教学反思(通用多篇)《三角形的内角和》教学反思(通用6篇)《三角形的内角和》教学反思1在教学中我关注到学生的情绪状态,想法设法调动学生的积极性,维持他们学习的兴趣和注意力,环节设计松紧有度。

看来,要上好一节课,教育心理学方面的知识是不可缺少的。

自己在教学理念上的转变。

以前自上课总不放心让学生自主探索,总希望在有限的时间内多灌输一点,提高课堂“效率”。

课堂中,我成了“职业灌输器”,学生充当了“专业接收站”,造成了老师累,学生烦的局面。

这次我思想开放了,课堂上做到了“三活”——“学生活中的”,“在活动中学”,“灵活地学”,总之“活”贯穿于整个课堂。

整节课,学生是在老师的引导下,以小组为单位自主探索、自主总结归纳。

比以前的满堂灌强多了。

所以说,放心让学生探索,精心引导学生是成功的关键。

在练习的时候,由于形式多样,所以学生的兴趣非常高涨,效果很好。

总体来说这节课还有不足之处。

学生在折纸验证三角形的内角和后汇报时,我引导小结不够。

在练习时基本练习题太少。

1、在学生小组合作学习的时候,老师应该干什么?我们经常会看到,学生小组合作学习时,老师会边走边不停地提示学生应该干什么、怎么干。

其实,这个时候老师的提示对学生而言往往是没有任何价值的,不仅影响学生的思路,还会干扰学生的思维。

我想,这个时候教师应该做的是快速浏览每个小组,看看每个小组的问题所在,帮助每个小组排除学习的障碍。

然后找到最需要帮助的小组,介入到这个小组的学习中,了解学生的状态,为后面的交流做好准备。

因为在几分钟的交流时间内,老师不可能每个小组都照顾到,但是一定要做到心中有数,帮助每个小组找到解决问题的思路。

2、当学生的认知和原有的经验发生冲突时怎么办?在新课程理念下,就是让学生去研究和探索,然后获得结论。

但是,在实际的课堂情境中往往会有很多情况出现。

如果我这样做了,我的教学任务就完不成了;如果我那样做了,就可能会偏离我的教学设计,学生的问题可能会让我不知所措。

《三角形内角和》的教学反思(精选10篇)

《三角形内角和》的教学反思(精选10篇)

《三角形内角和》的教学反思《三角形内角和》的教学反思(精选10篇)在快速变化和不断变革的新时代,我们的工作之一就是教学,所谓反思就是能够迅速从一个场景和事态中抽身出来,看自己在前一个场景和事态中自己的表现。

反思应该怎么写呢?以下是小编为大家收集的《三角形内角和》的教学反思,欢迎阅读与收藏。

《三角形内角和》的教学反思篇1课程将探究式学习作为学生学习的主要方式之一,着重点放在让学生在主动参与的过程中进行学习,在探究问题的活动中获取知识并主动建构新的认知结构,了解获取知识的途径和技巧。

这节课我设计了以“观察—猜想—验证—应用”为主线,让学生在自主学习中“不知不觉”学习到新的知识。

在学生猜测三角形内角和是多少度的基础上,引导学生通过探究活动来验证自己的观点是否正确,激发求知的渴望和学习的热情,最后达成共识。

这节课我创设了学生喜欢的情境:“三个三角形的争吵”入手,让学生自己动手探索三角形的内角和。

让学生“量一量”、“剪—拼”、贴近了学生的生活,降低了学习难度,注重学生们的动手实践,亲生去体验去感悟。

在操作反馈的过程中我提出了两个问题:第一,你选用什么三角形,采用什么方法来验证;第二,经过操作得到什么结论。

学生分小组对大小不一的三角形进行验证,经历量、剪、拼一系列操作活动,从而得出“三角形内角和是180°”这一结论。

本节课不足之处:1、学生在还没学习三角形的特性和三角形三边的关系及三角形的内角和的基础上进行学习三角形内角和。

就无法复习三角形的有关知识。

2、在解决三角形内角和是什么这个问题,说的不够透彻,课后我改成这样,先让两个学生说,说完让一个学生指出来,让他用黑色水笔画出来。

为验证三角形内是180度做铺垫。

3、学生在介绍剪拼的方法时,可以让介绍的学生先上台演示是如何把内角拼在一起,这样学生在动手操作的时候就可以节省时间。

而且由于内角和这个概念没有讲清楚,学生在这一环节花了一定的时间。

4、在学生汇报方法时,还应该用尺子比一下拼后的三个角是在一条直线上,更直观的说明三个角形成一个平角,三角形的内角和是180°。

《三角形的内角和》教学反思

《三角形的内角和》教学反思

《三角形的内角和》教学反思《三角形的内角和》教学反思1在教学中我关注到学生的情绪状态,想法设法调动学生的积极性,维持他们学习的兴趣和注意力,环节设计松紧有度。

看来,要上好一节课,教育心理学方面的知识是不可缺少的。

自己在教学理念上的转变。

以前自上课总不放心让学生自主探索,总希望在有限的时间内多灌输一点,提高课堂“效率”。

课堂中,我成了“职业灌输器”,学生充当了“专业接收站”,造成了老师累,学生烦的局面。

这次我思想开放了,课堂上做到了“三活”——“学生活中的”,“在活动中学”,“灵活地学”,总之“活”贯穿于整个课堂。

整节课,学生是在老师的引导下,以小组为单位自主探索、自主总结归纳。

比以前的满堂灌强多了。

所以说,放心让学生探索,精心引导学生是成功的关键。

在练习的时候,由于形式多样,所以学生的兴趣非常高涨,效果很好。

总体来说这节课还有不足之处。

学生在折纸验证三角形的内角和后汇报时,我引导小结不够。

在练习时基本练习题太少。

1.在学生小组合作学习的时候,老师应该干什么?我们经常会看到,学生小组合作学习时,老师会边走边不停地提示学生应该干什么、怎么干。

其实,这个时候老师的提示对学生而言往往是没有任何价值的,不仅影响学生的思路,还会干扰学生的思维。

我想,这个时候教师应该做的是快速浏览每个小组,看看每个小组的问题所在,帮助每个小组排除学习的障碍。

然后找到最需要帮助的小组,介入到这个小组的学习中,了解学生的状态,为后面的交流做好准备。

因为在几分钟的交流时间内,老师不可能每个小组都照顾到,但是一定要做到心中有数,帮助每个小组找到解决问题的思路。

2.当学生的认知和原有的经验发生冲突时怎么办?在新课程理念下,就是让学生去研究和探索,然后获得结论。

但是,在实际的课堂情境中往往会有很多情况出现。

如果我这样做了,我的教学任务就完不成了;如果我那样做了,就可能会偏离我的教学设计,学生的问题可能会让我不知所措。

其实,在课堂中,这是进行探究性教学的最好契机,抓住学生最核心的问题,重组我们的课堂思路,留给学生思考的空间,让学生去探讨问题。

《三角形的内角和》教学反思15篇

《三角形的内角和》教学反思15篇

《三角形的内角和》教学反思15篇身为一名刚到岗的老师,我们的工作之一就是教学,借助教学反思我们可以学习到许多讲课技巧,那么你有了解过教学反思吗?以下是我整理的《三角形的内角和》教学反思,仅供参考,欢迎大家阅读。

《三角形的内角和》教学反思1新课标把三角形的内角和作为四班级下册中三角形的一个紧要构成部分,它是同学学习三角形内角关系和其它多边形内角和的基础。

即使在以前没有这部分内容,大部分老师在课后也会告知同学三角形的内角和是180度,同学简单记住。

因此让同学经过讨论的过程成了本节课的重点。

既让同学经过“再制造”本身去发觉、讨论并制造出来。

老师的任务不是把现成的东西灌输给同学,而是引导和帮忙同学去进行这种“再制造”的工作,最大限度调动其积极性并发挥同学能动作用,从而完成对新学问的构建和制造。

本节课我基本达到了要求,实在表现在以下2个方面。

1、为同学营造了探究的情境。

学习学问的最佳途径是由同学本身去发觉,由于通过同学本身发觉的学问,同学理解的最深刻,最简单把握。

因此,在数学教学中,老师应供给给同学一种自我探究、自我思索、自我制造、自我表现和自我实现的实践机会,使同学最大限度的投入到察看、思索、操作、探究的活动中。

上述教学中,我在引出课题后,引导同学本身提出问题并理解内角与内角和的概念。

在同学猜想的基础上,再引导同学通过探究活动来验证本身的观点是否正确。

当同学有困难时,老师也参加同学的讨论,适当进行点拨。

并充分进行交流反馈。

给同学制造了一个宽松和谐的探究氛围。

2、充分调动各种感官动手操作,享受数学学习的欢乐。

在验证三角形的内角和是180度的过程当中,大部份同学都是用度量的方法,此时,我引导同学:180度是什么角?我们能否把三个内角转化一下呢?经过这么一提示,显现了许多种方法,有的是把三个角剪下来拼成一个平角。

有的用两个大小相等的直角三角形拼成一个正方形,还有的是用折纸的方法,极大地调动了大脑,就连平常对数学不感爱好的同学也置身其中。

三角形内角和教学反思 《三角形的内角和》的教学反思(优秀10篇)

三角形内角和教学反思 《三角形的内角和》的教学反思(优秀10篇)

三角形内角和教学反思《三角形的内角和》的教学反思(优秀10篇)《三角形的内角和》教学反思篇一《三角形的内角和》教材是先让学生通过计算三角尺得个内角的度数和,激发学生好奇心,进而引发学生猜想:其他三角形的内角和也是180度吗?再通过组织操作活动验证猜想,得出结论。

根据这样的教材安排,本课的重点也就应放在“三角形内角和是180度”的探索上,让学生在探索中深入理解得出过程。

针对教材的如此安排,我也设计了如下的开放的课堂预设:验证过程1、要知道我们猜测的是否正确,你有什么办法验证呢?先独立思考,有想法了在小组里交流。

学生交流想法:生一:我们组根据刚才三角板的内角和是三个角的度数加起来得出的,所以,我们就用量角器量出了三个角的度数,再加起来。

学生说出了测量的度数相加,虽然不是很精确180度,量的过程中有点误差,得到了在180度左右。

生二:我们组是把锐角三角形的三个角跟书上一样去折,折在一起发现正好是个平角,所以我们发现锐角三角形内角和也是180度。

(及时表扬了能主动预习的好习惯。

)生三:我们组把钝角三角形跟刚才一组一样,折在一起,发现也能拼成一个平角,所以钝角三角形的内角和也是180度。

生四:我们组研究的是直角三角形,跟上面两组的同学一样折在一起,三个角拼起来也是一个平角,所以直角三角形的内角和也是180度。

生五:我们也是折的,但我们没有把三个角折在一起,而是把两个小的角折到直角那里发现两个锐角合起来正好与直角三角形的直角重合,图形也就成了一个长方形,两个锐角的和是90度再加个直角也就是180度。

也有同学提出了采用了减下角再拼的方法。

以上这个小片段,虽然在孩子们表述中没这么流利,完整,但却是他们最真实的发现,这堂课上下来,感觉收获很大。

自己感觉这节课的设计上把握了学生学习起点与心理,遵循了教材让学生先猜想再验证的思路,从学生已有的知识背景出发,为他们提供了重复粉从事数学活动的时间和交流机会。

学生思考着,讨论着,交流着,感悟着,在这一过程中,学生不仅掌握了知识,寻求到了解决问题的方法,更重要的是在交流中,学生的语言表达能力也得到了很大的增强。

《三角形的内角和》教学反思

《三角形的内角和》教学反思

《三角形的内角和》教学反思《三角形的内角和》教学反思1背景:最近,张店区教研室举行了“青年教师优质课”评选,我们学校有位刚毕业一年的年轻教师参加。

经过大家共同选教材、研究商量后,确定参评课题为“三角形的内角和”。

这是新实验教材四年级下册的内容,从教材上看,教学内容比较简单,就是让学生亲自动手,通过量、剪、拼、折等方法推导出三角形内角和是180°,会应用这一规律进行计算。

很显然,许多学生肯定有这样的知识经验,每个班都有部分学生已经能说出这一知识点。

根据这样的现状我们让年轻教师根据自己的理解先备课、设计教学思路,随后我们进行了跟踪听课。

试讲教学片断:创设情境,引入新知:教师先出示色彩鲜艳,用卡纸制作的学具:钝角三角形、锐角三角形、直角三角形等,让学生分辨,复习上节课的内容。

学生回答的轻车熟路,感觉非常简单。

继而教师拿出直角三角形,说道:“请大家画出一个直角三角形。

”很快,学生便大功告成,举起画完的作品让老师看。

老师边点头边露出赞许的微笑。

接着提出第二个问题:“聪明的同学们,能不能画出有‘两个’直角的三角形呢?画画试试。

”没出5秒钟,反应快的学生便脱口而出:“老师,画不出来!”老师紧接追问:“为什么呢?”学生:“因为三角形的内角和是180°,两个直角就是180°了,画不出第三个角了。

所以画不成三角形。

”学生说得太好了,老师赶紧接过了话题:“这位同学说三角形的内角和是180°,你们知道吗?”其他学生似乎还没明白怎么回事,只好连忙点头说知道。

教师肯定的说:“是的,三角形的内角和就是180°,我们怎么想办法验证一下呢?请大家想想办法。

”学生经过很长时间的合作、探究,得出了三种办法,全班交流汇报。

练习分为基本练习和综合练习两个层次。

学生计算的没多大问题。

最后一题是思维拓展练习:研究一下四边形的内角和?五边形、六边形的内角和呢?多边形呢?因时间的关系,无一人能够想出策略。

《三角形的内角和》教学反思(精选4篇)

《三角形的内角和》教学反思(精选4篇)

《三角形的内角和》教学反思(精选4篇)《三角形的内角和》教学反思(精选4篇)《三角形的内角和》教学反思篇1二学期几何里一个重要的知识点——三角形内角和,是在学生认识了三角形的特点和分类的基础上这一节课进一步对三角形内角之间的关系的学习和探究。

本课设计的出发点在于运用先进的多媒体手段让学生直观感知三角形内角和的特点。

这节课上完之后,我在课后进行了小结,也听取了经验丰富的教师的分析,收获很大,授课过程中有讲得好的环节也有处理得不好的环节,下面从几个方面小结:1.在本次授课中,引入是比较恰当的。

我是从学生原有的对图形的认识的感性知识进行引入的,先出示一个长方形,让学生说出它的内角和是多少度,学生用之前学过的知识都知道,长方形有四个直角,那么加起来就是360°,然后又用正方形,由于正方形和长方形有一个同样的特征,所以学生也很容易就能回答出来它的内角和是多少。

再将正方形沿着对边剪开,分成两个三角形,这个时候问学生:你们能猜出三角形的内角和是多少吗?这样的引入和从旧知到新知的过渡,非常地自然,学生也较容易进行猜想。

2.利用多媒体手段让学生直观感知三角形内角和的特点。

用动画演示撕角拼一拼,折角,让学生可以非常直观地认识三角形内角和的特点,印象非常深刻,也给学生在进行动手操作时以正确的指引。

3.小组合作,自主探究。

整一节课都很注重学生自主探究,动手实验的过程,我只是一个主导者,组织好课堂教学,放手让学生去实验、讨论、归纳,没有像之前上课那样由本人我讲完整节课而学生只是听。

4.在学生进行猜想之后,让学生开始动手实验,测量三角形的三个内角的度数并填表,这个环节在处理的时候不是很得当,因为量角在学生来说,本来就是一个难点,没有很好的掌握量角的技巧导致没能准确地量角,而且在本节课中,要进行量角实验的三角形个数较多,学生不能很好地进行小组分工,所以在这个地方花费了不少的时间,而结果量出来的度数也不是很精确,虽说在测量中允许有误差,但是这与一开始的教学设计出发点有出入,达不到很好验证猜想的效果。

新人教版八年级数学上册《三角形的内角和》教学反思(精选篇)

新人教版八年级数学上册《三角形的内角和》教学反思(精选篇)

新人教版八年级数学上册《三角形的内角和》教学反思新人教版八年级数学上册《三角形的内角和》教学反思新人教版八年级数学上册《三角形的内角和》教学反思本节课是在学生学习了与三角形有关的概念、边、角之间的关系的基础上,让学生动手操作,通过拼图说出“三角形的内角和等于180°”成立的理由,由浅入深,循序渐进,引导学生观察、实验、猜测,逐步培养学生]的逻辑推理能力爱因斯坦说过:“问题的提出往往比本节课是在学生学习了与三角形有关的概念、边、角之间的关系的基础上,让学生动手操作,通过拼图说出“三角形的内角和等于180°”成立的理由,由浅入深,循序渐进,引导学生观察、实验、猜测,逐步培养学生]的逻辑推理能力爱因斯坦说过:“问题的提出往往比解答问题更重要”,上课开始,我通过提问三角板中每个角的度数以及每块三角板的内角和,初步让学生感知直角三角形的内角和是180,然后质疑:,这仅仅是一副三角板的内角和,而且也是直角三角形,那是不是所有的三角形中的三个内角的都是180呢?这个问题一抛出去马上激发学生的学习热情。

其实三角形内角和是多少?大部分的学生已经知道了这一知识,所以很轻松地就可以答出。

但是只是“知其然而不知其所以然”,所以我觉得本课的重点就是要让他们知道“知其所以然”,因此接着就让学生分讨论:有什么办法可以验证得出这样的结论。

学生会提出度量、折一折的方法,然后让学生拿出课前准备的锐角三角形、直角三角形、钝角三角形以小组为单位有选择的用度量的方法(2-3组)或者用折一折的方法(4-5组),通过小组合作交流,让学生各抒已见,畅所欲言,鼓励学生倾听他人的方法,从中获益,增加了学生的合作探究精神,有意识地培养学生]的说理能力,逻辑推理能力,增强了语言表达能力,培养学生]的一题多思,一题多解的创新精神,让学生体会数学辅助线的桥梁作用,在潜移默化中渗透了初中阶段一个重要数学思想―――转化思想,为学好初中数学打下坚实的基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《三角形的内角和》教学反思
2017-05-10
《三角形的内角和》教学反思
今天我讲了《三角形的内角和》一课,课前我分析:学生已经掌握了三角形的概念、分类,熟悉了钝角、锐角、平角这些角的知识。

对于三角形的内角和是多少度,学生是不陌生的,因为学生有以前认识角、用量角器量三角板三个角的度数以及三角形的分类的基础,学生也有提前预习的习惯,很多孩子都能回答出三角形的内角和是180度,但是他们却不知道怎样才能得出三角形的内角和是180度。

另外,经过三年多的学习,学生们已具备了初步的动手操作能力、主动探究能力以及小组合作的能力。

根据学情我设置了以下教学目标:
1、结合具体图形能描述出三角形的内角、内角和的含义。

2、在教师的引导下,通过猜测和计算能说出三角形的内角和是180°。

3、在小组合作交流中,通过动手操作,实验、验证、总结三角形的内角和是180°,同时发展动手动脑及分析推理能力。

4、能运用三角形的内角和是180°这一规律,求三角形中未知角的度数。

本节课的教学重点是:探索和发现三角形的内角和是180°。

教学难点是充分发挥学生的主体作用,自主探索和发现三角形的内角和是180°。

为突破重难点,我在教学过程中设计了创设情境,生成问题,认识三角形的'内角及内角和,引导学生猜测三角形的内角和是180度,让学生通过“量――拼――折”的方法分类验证了三角形的内角和是180度,最后利用三角形内角和是180度解决问题。

本节课导入环节比较成功,学生很感兴趣。

随后的小组合作秩序也比较好,能够通过自己制作的三角形学具动手操作探究出总结三角形的内角和是180°。

而在后面的练习中也能运用三角形的内角和是180°这一规律,求三角形中未知角的度数。

而学生在本节课中的交流环节中不够积极,语言表达也有所欠缺。

我要在以后的课堂中采用良好的激励手段,同时多加肯定与鼓励;也要继续引导学生说规范的数学语言。

相关文档
最新文档