运筹学各章的作业题答案
运筹学习题及答案

当 0,目标函数在B点有最大值;
当 0,目标函数在原点最大值。
k 0时, , 同号。
当 0时,目标函数在A点有最大值
当 0时,目标函数在原点最大值。
k 0时, , 异号。
当 0, 0时,目标函数在A点有最大值;
当 0, 0时,目标函数在C点最大值。
k= 时, , 同号
当 0时,目标函数在AB线断上任一点有最大值
+ + 2000
化成标准形:
Max =-2 -3 - +0 +0 -M -M
S.T.
+4 +2 - + =4
3 +2 - + =6
, , , , , , 0
(单纯性表计算略)
线性规划最优解X=(4/5,9/5,0,0,0,0
目标函数最优值min z=7
非基变量 的检验数 =0,所以有无穷多最优解。
两阶段法:
第一阶段最优解X=(4/5,9/5,0,0,0,0 是基本可行解,min w=0
(1)min z=-3 +4 -2 +5
4 - +2 - =-2
+ +3 - 14
-2 +3 - +2 2
, , 0, 无约束
(2)max
0 (i=1…n; k=1,…,m)
(1)解:设z=- , = - , , 0
标准型:
Max =3 -4 +2 -5( - )+0 +0 -M -M
s. t .
-4 + -2 + - + =2
最大值为 =117/5;最优解 =(34/5,0,0,7/5 。
(完整版)运筹学》习题答案运筹学答案

《运筹学》习题答案一、单选题1.用动态规划求解工程线路问题时,什么样的网络问题可以转化为定步数问题求解()BA.任意网络B.无回路有向网络C.混合网络D.容量网络2.通过什么方法或者技巧可以把工程线路问题转化为动态规划问题?()BA.非线性问题的线性化技巧B.静态问题的动态处理C.引入虚拟产地或者销地D.引入人工变量3.静态问题的动态处理最常用的方法是?BA.非线性问题的线性化技巧B.人为的引入时段C.引入虚拟产地或者销地D.网络建模4.串联系统可靠性问题动态规划模型的特点是()DA.状态变量的选取B.决策变量的选取C.有虚拟产地或者销地D.目标函数取乘积形式5.在网络计划技术中,进行时间与成本优化时,一般地说,随着施工周期的缩短,直接费用是( )。
CA.降低的B.不增不减的C.增加的D.难以估计的6.最小枝权树算法是从已接接点出发,把( )的接点连接上CA.最远B.较远C.最近D.较近7.在箭线式网络固中,( )的说法是错误的。
DA.结点不占用时间也不消耗资源B.结点表示前接活动的完成和后续活动的开始C.箭线代表活动D.结点的最早出现时间和最迟出现时间是同一个时间8.如图所示,在锅炉房与各车间之间铺设暖气管最小的管道总长度是( )。
CA.1200B.1400C.1300D.17009.在求最短路线问题中,已知起点到A,B,C三相邻结点的距离分别为15km,20km,25km,则()。
DA.最短路线—定通过A点B.最短路线一定通过B点C.最短路线一定通过C点D.不能判断最短路线通过哪一点10.在一棵树中,如果在某两点间加上条边,则图一定( )AA.存在一个圈B.存在两个圈C.存在三个圈D.不含圈11.网络图关键线路的长度( )工程完工期。
CA.大于B.小于C.等于D.不一定等于12.在计算最大流量时,我们选中的每一条路线( )。
CA.一定是一条最短的路线B.一定不是一条最短的路线C.是使某一条支线流量饱和的路线D.是任一条支路流量都不饱和的路线13.从甲市到乙市之间有—公路网络,为了尽快从甲市驱车赶到乙市,应借用()CA.树的逐步生成法B.求最小技校树法C.求最短路线法D.求最大流量法14.为了在各住宅之间安装一个供水管道.若要求用材料最省,则应使用( )。
运筹学部分课后习题解答

运筹学部分课后习题解答P47 1.1 用图解法求解线性规划问题a)12121212min z=23466 ..424,0x xx xs t x xx x++≥⎧⎪+≥⎨⎪≥⎩解:由图1可知,该问题的可行域为凸集MABCN,且可知线段BA上的点都为最优解,即该问题有无穷多最优解,这时的最优值为min 3z=23032⨯+⨯= P47 1.3 用图解法和单纯形法求解线性规划问题a)12121212max z=10x5x349 ..528,0x xs t x xx x++≤⎧⎪+≤⎨⎪≥⎩解:由图1可知,该问题的可行域为凸集OABCO,且可知B点为最优值点,即112122134935282xx xx x x=⎧+=⎧⎪⇒⎨⎨+==⎩⎪⎩,即最优解为*31,2Tx⎛⎫= ⎪⎝⎭这时的最优值为max335z=101522⨯+⨯=单纯形法: 原问题化成标准型为121231241234max z=10x 5x 349..528,,,0x x x s t x x x x x x x +++=⎧⎪++=⎨⎪≥⎩ j c →10 5B CB Xb 1x2x3x4x0 3x 9 3 4 1 0 04x8[5] 2 0 1 j j C Z -105 0 0 0 3x 21/5 0 [14/5] 1 -3/5 101x8/51 2/5 0 1/5 j j C Z -1 0 -2 5 2x 3/2 0 1 5/14 -3/14 101x11 0 -1/72/7j j C Z --5/14 -25/14所以有*max 33351,,1015222Tx z ⎛⎫==⨯+⨯= ⎪⎝⎭P78 2.4 已知线性规划问题:1234124122341231234max24382669,,,0z x x x x x x x x x x x x x x x x x x x =+++++≤⎧⎪+≤⎪⎪++≤⎨⎪++≤⎪≥⎪⎩求: (1) 写出其对偶问题;(2)已知原问题最优解为)0,4,2,2(*=X ,试根据对偶理论,直接求出对偶问题的最优解。
运筹学课后习题答案

第一章 线性规划1、由图可得:最优解为2、用图解法求解线性规划: Min z=2x 1+x 2⎪⎪⎩⎪⎪⎨⎧≥≤≤≥+≤+-01058244212121x x x x x x解:由图可得:最优解x=1.6,y=6.4Max z=5x 1+6x 2⎪⎩⎪⎨⎧≥≤+-≥-0,23222212121x x x x x x解:由图可得:最优解Max z=5x 1+6x 2, Max z= +∞Maxz = 2x 1 +x 2⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤0,5242261552121211x x x x x x x由图可得:最大值⎪⎩⎪⎨⎧==+35121x x x , 所以⎪⎩⎪⎨⎧==2321x xmax Z = 8.1212125.max 23284164120,1,2maxZ .jZ x x x x x x x j =+⎧+≤⎪≤⎪⎨≤⎪⎪≥=⎩如图所示,在(4,2)这一点达到最大值为26将线性规划模型化成标准形式:Min z=x 1-2x 2+3x 3⎪⎪⎩⎪⎪⎨⎧≥≥-=++-≥+-≤++无约束321321321321,0,052327x x x x x x x x x x x x解:令Z ’=-Z,引进松弛变量x 4≥0,引入剩余变量x 5≥0,并令x 3=x 3’-x 3’’,其中x 3’≥0,x 3’’≥0Max z ’=-x 1+2x 2-3x 3’+3x 3’’⎪⎪⎩⎪⎪⎨⎧≥≥≥≥≥≥-=++-=--+-=+-++0,0,0'',0',0,05232'''7'''5433213215332143321x x x x x x x x x x x x x x x x x x x7将线性规划模型化为标准形式Min Z =x 1+2x 2+3x 3⎪⎪⎩⎪⎪⎨⎧≥≤-=--≥++-≤++无约束,321321321321,00632442392-x x x x x x x x x x x x解:令Z ’ = -z ,引进松弛变量x 4≥0,引进剩余变量x 5≥0,得到一下等价的标准形式。
管理运筹学作业答案(韩大卫)MBA

第1章 线性规划基本性质P47 1—1(2)解:设每天从i 煤矿()2,1=i 运往j 城市()3,2,1=j 的煤为ij x 吨,该问题的LP 模型为:()⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧==≥=+=+=+=++=+++++++==∑∑==3,2,1;2,10200150100250200..85.681079min 2313221221112322211312112322211312112131j i x x x x x x x x x x x x x t s x x x x x x x c ij i j ij ij ωP48 1—2(2)⎪⎩⎪⎨⎧≥-≤-≥-+=0,)2(33)1(0..max 21212121x x x x x x t s x x z解:Φ=21R R ,则该LP 问题无可行解。
P48 1—2(3)⎪⎩⎪⎨⎧≥-≥-≥--=0,)2(55)1(0..102min 21212121x x x x x x t s x x z解:目标函数等值线与函数约束(2)的边界线平行,由图可知则该LP 问题为多重解(无穷多最优解)。
⎪⎩⎪⎨⎧==⇒⎩⎨⎧-=-=-4545550212121x x x x x x则10,45,45**1-=⎪⎭⎫⎝⎛=z X T(射线QP 上所有点均为最优点)P48 1—2(4)⎪⎪⎩⎪⎪⎨⎧≥≤-≤+≤+--=0,)3(22)2(825)1(1043..1110min 2121212121x x x x x x x x t s x x z解:由图可知Q 点为最优点。
⎪⎩⎪⎨⎧==⇒⎩⎨⎧=+=+713768251043212121x x x x x x则29,713,76**-=⎪⎭⎫⎝⎛=z X TP48 1—3(2)⎪⎪⎩⎪⎪⎨⎧≥≥-=++--≥++≤+++++=0,1466473..243min 2143213213214321x x x x x x x x x x x x t s x x x x z ⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧≥=-=+-+-+=--++=+-+++-+---=-=-=≥0,,,,,,,,14666473..2243max ,1765//4/4//3/32171//4/4//3/3216//3/3215//3/321//4/4//3/321//4/44//3/331x x x x x x x x x x x x x x x x x x x x x x x x x x x t s x x x x x x z x x x x x x x 令自由变量看作一函数约束解:把P49 1—5解:可行域的极点与基本可行解是一一对应的。
运筹学习题参考答案

习题参考答案第二章 习 题1.线性规划模型为:⎪⎪⎩⎪⎪⎨⎧≥≤++≤++≤++++0,,1800231200214002..453max 321321321321321x x x x x x x x x x x x t s x x x 2. 标准形式为:⎪⎪⎩⎪⎪⎨⎧≥=-++-=++=++---+-0,,,,,,1002333800120035.15.1..322min 87654328325473262543254x x x x x x x x x x x x x x x x x x x t s x x x x 3.(1)最优解为(2,2),最优值为8.(2)根据等式约束得:213--6x x x =代入规划等价于:⎪⎩⎪⎨⎧≥≥+≤+++0,3-6..62max 21212121x x x x x x t s x x 先用图解法求线性规划⎪⎩⎪⎨⎧≥≥+≤++0,3-6..2max 21212121x x x x x x t s x x 得最优解为(0,6)代入原规划可得最优解为(0,6,0)最优值为18.4.(1)以21,x x 为基变量可得基可行解(3,1,0),对应的基阵为:⎪⎪⎭⎫⎝⎛1101 以31,x x 为基变量可得基可行解(2,0,1),对应的基阵为:⎪⎪⎭⎫ ⎝⎛2111 (2)规划转化为标准形式:⎪⎩⎪⎨⎧≥=++=++--0,,,55623..34min 432142132121x x x x x x x x x x t s x x 以32,x x 为基变量可得基可行解(0,1,4,0),对应的基阵为:⎪⎪⎭⎫⎝⎛0512 5. 以432,,x x x 为基变量可得基可行解(0,2,3,9),对应的典式为:32192231412=+=+=x x x x x 非基变量1x 的检验数为21-。
6. (1) a=0,b=3,c=1,d=0;(2) 基可行解为(0,0,1,6,2) (3)最优值为3.7.(1)最优解为(1.6,0,1.2),最优值为-4.4;(2)令11-=x y ,则0≥y ,11+=y x ,在规划中用1+y 替代1x ,并化标准形式。
运筹学基础及应用课后习题答案(第一二章习题解答)

运筹学基础及应用课后习题答案(第一二章习题解答)第一章:线性规划一、选择题1. 线性规划问题中,目标函数可以是()A. 最大化B. 最小化C. A和B都对D. A和B都不对答案:C解析:线性规划问题中,目标函数可以是最大化也可以是最小化,关键在于问题的实际背景。
2. 在线性规划问题中,约束条件通常表示为()A. 等式B. 不等式C. A和B都对D. A和B都不对答案:C解析:线性规划问题中的约束条件通常包括等式和不等式两种形式。
二、填空题1. 线性规划问题的基本假设是______。
答案:线性性2. 线性规划问题中,若决策变量个数和约束条件个数相等,则该问题称为______。
答案:标准型线性规划问题三、计算题1. 求解以下线性规划问题:Maximize Z = 2x + 3ySubject to:x + 2y ≤ 83x + 4y ≤ 12x, y ≥ 0答案:最优解为 x = 4, y = 2,最大值为 Z = 14。
解析:画出约束条件的图形,找到可行域,再求目标函数的最大值。
具体步骤如下:1) 将约束条件化为等式,画出直线;2) 找到可行域的顶点;3) 将顶点代入目标函数,求解最大值。
第二章:非线性规划一、选择题1. 以下哪个方法适用于求解非线性规划问题()A. 单纯形法B. 拉格朗日乘数法C. 柯西-拉格朗日乘数法D. A和B都对答案:B解析:非线性规划问题通常采用拉格朗日乘数法求解,单纯形法适用于线性规划问题。
2. 非线性规划问题中,以下哪个条件不是K-T条件的必要条件()A. 梯度条件B. 正则性条件C. 互补松弛条件D. 目标函数为凸函数答案:D解析:K-T条件包括梯度条件、正则性条件和互补松弛条件,与目标函数是否为凸函数无关。
二、填空题1. 非线性规划问题中,若目标函数和约束条件都是凸函数,则该问题称为______。
答案:凸非线性规划问题2. 非线性规划问题中,K-T条件是求解______的必要条件。
运筹学1至6章习题参考答案

运筹学1至6章习题参考答案第1章 线性规划1.1 工厂每月生产A 、B 、C 三种产品 ,单件产品的原材料消耗量、设备台时的消耗量、资源限量及单件产品利润如表1-23所示.310和130.试建立该问题的数学模型,使每月利润最大.【解】设x 1、x 2、x 3分别为产品A 、B 、C 的产量,则数学模型为123123123123123max 1014121.5 1.2425003 1.6 1.21400150250260310120130,,0Z x x x x x x x x x x x x x x x =++++≤⎧⎪++≤⎪⎪≤≤⎪⎨≤≤⎪⎪≤≤⎪≥⎪⎩ 1.2 建筑公司需要用5m 长的塑钢材料制作A 、B 两种型号的窗架.两种窗架所需材料规格及数量如表1-24所示:【解设x j (j =1,2,…,10)为第j 种方案使用原材料的根数,则 (1)用料最少数学模型为10112342567368947910min 28002120026002239000,1,2,,10jj j Z x x x x x x x x x x x x x x x x x x j ==⎧+++≥⎪+++≥⎪⎪+++≥⎨⎪+++≥⎪⎪≥=⎩∑ (2)余料最少数学模型为2345681012342567368947910min 0.50.50.52800212002*********0,1,2,,10j Z x x x x x x x x x x x x x x x x x x x x x x x x j =++++++⎧+++≥⎪+++≥⎪⎪+++≥⎨⎪+++≥⎪⎪≥=⎩1.3某企业需要制定1~6月份产品A 的生产与销售计划。
已知产品A 每月底交货,市场需求没有限制,由于仓库容量有限,仓库最多库存产品A1000件,1月初仓库库存200件。
1~6月份产品A 的单件成本与售价如表1-25所示。
(2)当1月初库存量为零并且要求6月底需要库存200件时,模型如何变化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《管理运筹学》各章的作业----复习思考题及作业题第一章绪论复习思考题1、从运筹学产生的背景认识本学科研究的内容和意义。
2、了解运筹学的内容和特点,结合自己的理解思考学习的方法和途径。
3、体会运筹学的学习特征和应用领域。
第二章线性规划建模及单纯形法复习思考题1、线性规划问题的一般形式有何特征?2、建立一个实际问题的数学模型一般要几步?3、两个变量的线性规划问题的图解法的一般步骤是什么?4、求解线性规划问题时可能出现几种结果,那种结果反映建模时有错误?5、什么是线性规划的标准型,如何把一个非标准形式的线性规划问题转化成标准形式。
6、试述线性规划问题的可行解、基础解、基础可行解、最优解、最优基础解的概念及它们之间的相互关系。
7、试述单纯形法的计算步骤,如何在单纯形表上判别问题具有唯一最优解、有无穷多个最优解、无界解或无可行解。
8、在什么样的情况下采用人工变量法,人工变量法包括哪两种解法?9、大M 法中,M 的作用是什么?对最小化问题,在目标函数中人工变量的系数取什么?最大化问题呢?10、什么是单纯形法的两阶段法?两阶段法的第一段是为了解决什么问题?在怎样的情况下,继续第二阶段?作业题:1、把以下线性规划问题化为标准形式:(1) max z= x1-2x2+x3s.t. x1+x2+x3≤122x1+x2-x3≥ 6-x1+3x2=9x1, x2, x3≥0(2) min z= -2x1-x2+3x3-5x4s.t x1+2x2+4x3-x4≥ 62x1+3x2-x3+x4=12x1+x3+x4≤ 4x1, x2, x4≥0(3) max z= x1+3x2+4x3s.t. 3x1+2x2≤13x2+3x3≤172x1+x2+x3=13x1, x3≥02、用图解法求解以下线性规划问题(1) max z= x1+3x2s.t. x1+x2≤10-2x1+2x2≤12x1≤7x1, x2≥0(2) min z= x1-3x2s.t. 2x1-x2≤4x1+x2 ≥3x2≤5x1≤4x1, x2≥03、在以下问题中,列出所有的基,指出其中的可行基,基础可行解以及最优解。
max z= 2x1+x2-x3s.t. x1+ x2+2x3≤6x1+4x2-x3≤4x1, x2, x3≥04、用单纯形表求解以下线性规划问题(1) max z= x1-2x2+x3s.t. x1+x2+x3≤122x1+x2-x3≤ 6-x1+3x2≤9x1, x2, x3≥0(2) min z= -2x1-x2+3x3-5x4s.t x1+2x2+4x3-x4≤ 62x1+3x2-x3+x4≤12x1+x3+x4≤ 4x1, x2, x3, x4≥05、用大M法和两阶段法求解以下线性规划问题(1) Max z= x1+3x2+4x3s.t. 3x1+2x2≤13x2+3x3≤172x1+x2+x3=13x1, x2, x3≥0(2) max z= 2x1-x2+x3s.t. x1+x2-2x3≤84x1-x2+x3≤22x1+3x2-x3≥4x1, x2, x3≥06、某饲养场饲养动物,设每头动物每天至少需要700克蛋白质、30克矿物质、100毫克维生素。
现有五种饲料可供选用,各种饲料每公斤营养成分含量及单价如下表所示:7、某工厂生产Ⅰ、Ⅱ、Ⅲ、Ⅳ四种产品,产品Ⅰ需依次经过A、B两种机器加工,产品Ⅱ需依次经过A、C两种机器加工,产品Ⅲ需依次经过B、C两种机器加工,产品Ⅳ需依次经过A、B机器加工。
有关数据如表所示,请为该厂制定一个最优生产计划。
第三章线性规划问题的对偶及灵敏度分析复习思考题1、对偶问题和它的经济意义是什么?2、简述对偶单纯形法的计算步骤。
它与单纯形法的异同之处是什么?3、什么是资源的影子价格?它和相应的市场价格之间有什么区别?4、如何根据原问题和对偶问题之间的对应关系,找出两个问题变量之间、解及检验数之间的关系?5、利用对偶单纯形法计算时,如何判断原问题有最优解或无可行解?6、在线性规划的最优单纯形表中,松弛变量(或剩余变量)0>+k n x ,其经济意义是什么?7、在线性规划的最优单纯形表中,松弛变量k n x +的检验数0>+k n σ,其经济意义是什么? 8、关于i j j i b c a ,,单个变化对线性规划问题的最优方案及有关因素将会产生什么影响?有多少种不同情况?如何去处理?9、线性规划问题增加一个变量,对它原问题的最优方案及有关因素将会产生什么影响?如何去处理?10、线性规划问题增加一个约束,对它原问题的最优方案及有关因素将会产生什么影响?如何去处理?作业题1、写出以下问题的对偶问题(1) min z= 2x 1 +3x 2 +5x 3 +6x 4 s.t. x 1 +2x 2 +3x 3 +x 4 ≥2 -2x 1 -x 2 -x 3 +3x 4 ≤-3x 1, x 2, x 3, x 4 ≥0(2) min z= 2x 1 +3x 2 -5x 3s.t. x 1 +x 2 -x 3 +x 4 ≥5 2x 1 +x 3 ≤4x 2 +x 3 +x 4 =6x 1≤0, x 2≥0, x 3≥0, x 4无符号限制2、已知如下线性规划问题Max z= 6x 1 -2x 2 +10x 3 s.t. x 2 + 2x 3 ≤5 3x 1 -x 2 + x 3 ≤10x 1,x 2,x 3≥0其最优单纯形表为(1)写出原始问题的最优解、最优值、最优基 B 及其逆 B -1。
(2)写出原始问题的对偶问题,并从上表中直接求出对偶问题的最优解。
3、用对偶单纯形法求解以下问题(1) min z= 4x1+6x2+18x3s.t. x1+3x3≥3x2+2x3≥5x1, x2, x3≥0(2) min z= 10x1+6x2s.t. x1+x2≥22x1-x2≥6x1, x2≥04、已知以下线性规划问题max z= 2x1+x2-x3s.t. x1+2x2+x3≤8-x1+x2-2x3≤4x1, x2, x3≥0及其最优单纯形表如下:(1) 求使最优基保持不变的c2=1的变化范围。
如果c2从1变成5,最优基是否变化,如果变化,求出新的最优基和最优解。
(2) 对c1=2进行灵敏度分析,求出c1由2变为4时的最优基和最优解。
(3) 对第二个约束中的右端项b2 = 4 进行灵敏度分析,求出b2 从4 变为1 时新的最优基和最优解。
(4) 增加一个新的变量x6,它在目标函数中的系数c6 = 4,在约束条件中的系数向量为a612=⎡⎣⎢⎤⎦⎥,求新的最优基和最优解。
(5) 增加一个新的约束x2+x3≥2,求新的最优基和最优解。
5、某工厂用甲、乙、丙三种原料生产A 、B 、C 、D 四种产品,每种产品消耗原料定额以及三种原料的数量如下表所示:(1)求使总利润最大的生产计划和按最优生产计划生产时三种原料的耗用量和剩余量。
(2)求四种产品的利润在什么范围内变化,最优生产计划不会变化。
(3)求三种原料的影子价格。
(4)在最优生产计划下,哪一种原料更为紧缺?如果甲原料增加120吨,这时紧缺程度是否有变化?第四章 运输问题复习思考题1、运输问题的数学模型具有什么特征?为什么其约束方程的系数矩阵的秩最多等于1-+n m ?2、用西北角法确定运输问题的初始基本可行解的基本步骤是什么?3、最小元素法的基本思想是什么?为什么在一般情况下不可能用它直接得到运输问题的最优方案?4、试述用闭回路法检验给定的调运方案是否最优的原理,其检验数的经济意义是什么?5、用闭回路法检验给定的调运方案时,如何从任意空格出发去寻找一条闭回路?这闭回路是否是唯一的?6、试述用位势法求检验数的原理、步骤和方法。
7、试给出运输问题的对偶问题(对产销平衡问题)。
8、如何把一个产销不平衡的运输问题(产大于销或销大于产)转化为产销平衡的运输问题。
9、一般线性规划问题应具备什么特征才可以转化为运输问题的数学模型?作业题1、求解下列产销平衡的运输问题,下表中列出的为产地到销地之间的运价。
(1) 用西北角法、最小元素法求初始基本可行解;(2) 由上面所得的初始方案出发,应用表上作业法求最优方案,并比较初始方案2、用表上作业法求下列产销平衡的运输问题的最优解:(表上数字为产地到销地的运价,M 为任意大的正数,表示不可能有运输通道)(1)(2)3、用表上作业法求下列产销不平衡的运输问题的最优解:(表上数字为产地到销地的里程,M为任意大的正数,表示不可能有运输通道)。
(1)4、某农民承包了5块土地共206亩,打算小麦、玉米和蔬菜三种农作物,各种农作物的计划播种面积(亩)以及每块土地种植各种不同的农作物的亩产数量(公斤)见1200)减去每一个亩产量,得到新的求最小的运输表,再进行计算。
得到求解的结果后,再通过逆运算得到原问题的解。
(想一想为什么?)第五章动态规划思考题主要概念及内容:多阶段决策过程;阶段及阶段变量;状态、状态变量及可能的状态集合;决策、决策变量及允许的决策集合;策略、策略集合及最优策略;状态转移方程;K-子过程;阶段指标函数、过程指标函数及最优值函数;边界条件、递推方程及动态规划基本方程;最优性原理;逆序法、顺序法。
复习思考题:1、试述动态规划的“最优化原理”及它同动态规划基本方程之间的关系。
2、动态规划的阶段如何划分?3、试述用动态规划求解最短路问题的方法和步骤。
4、试解释状态、决策、策略、最优策略、状态转移方程、指标函数、最优值函数、边界条件等概念。
5、试述建立动态规划模型的基本方法。
6、试述动态规划方法的基本思想、动态规划的基本方程的结构及正确写出动态规划基本方程的关键步骤。
作业题1、用动态规划求解以下网络从A到G的最短路径。
ABBBCCDDDEEF 12312123125216437333254271089711912132、某公司有5台设备,分配给所属A,B,C 三个工厂。
各工厂获得不同的设备台数所能产生效益(万元)的情况如下表。
求最优分配方案,使总效益最大。
3、用动态规划求解以下非线性规划问题: max z = x 1 • 2 x 2 ·3 x 3 s.t. x 1+3x 2+2x 3 ≤12 x 1 , x 2 , x 3 ≥04、某企业生产某种产品,每月月初按订货单发货,生产的产品随时入库,由于空间的限制,仓库最多能够贮存产品90000件。
在上半年(1至6月)其生产成本(万元/千件)和产品订单的需求数量情况如下表:已知上一年底库存量为40千件,要求6月底库存量仍能够保持40千件。
问:如何安排这6个月的生产量,使既能满足各月的定单需求,同时生产成本最低。
第六章 排队论复习思考题1、排队论主要研究的问题是什么?2、试述排队模型的种类及各部分的特征;3、Kendall 符号C B A Z Y X /////中的各字母分别代表什么意义;4、理解平均到达率、平均离去率、平均服务时间和顾客到达间隔时间等概念;5、分别写出泊松分布、负指数分布的密度函数,说明这些分布的主要性质;6、试述队长和排队长;等待时间和逗留时间;忙期和闲期等概念及他们之间的联系与区别。