大数据 可视化大数据 活用散点图 漏斗图 仪表盘
大数据时代下的数据可视化方法

大数据时代下的数据可视化方法在大数据时代,数据可视化成为了一种重要的方式,帮助人们更好地理解和分析海量的数据。
数据可视化是将数据以图表、图形等形式展示出来,通过视觉化的方式帮助人们发现数据中的模式、趋势和关联。
下面将介绍几种常见的数据可视化方法。
1. 折线图折线图是最常见的数据可视化方法之一。
它通过绘制折线来表示数据的变化趋势。
横轴通常表示时间或者其他连续的变量,纵轴表示数据的值。
折线图适用于展示时间序列数据,可以清晰地显示出数据的趋势和周期性。
例如,我们可以使用折线图来展示某个城市每年的降雨量变化情况。
横轴表示年份,纵轴表示降雨量,每条折线表示一个年份的降雨量变化。
通过观察折线的走势,我们可以判断出该城市的降雨量是否呈现增加或减少的趋势。
2. 柱状图柱状图是另一种常见的数据可视化方法,它通过绘制矩形柱来表示数据的大小。
横轴通常表示不同的类别或者变量,纵轴表示数据的值。
柱状图适用于展示不同类别之间的比较。
例如,我们可以使用柱状图来展示某个公司不同部门的销售额。
横轴表示不同的部门,纵轴表示销售额,每个柱子的高度表示该部门的销售额。
通过比较不同部门的柱子高度,我们可以了解到各个部门的销售情况。
3. 散点图散点图是用来表示两个变量之间关系的一种图表。
它将数据以点的形式展示在二维坐标系中,横轴表示一个变量,纵轴表示另一个变量。
散点图适用于展示变量之间的相关性和分布情况。
例如,我们可以使用散点图来展示学生的身高和体重之间的关系。
横轴表示身高,纵轴表示体重,每个点表示一个学生的身高和体重。
通过观察散点的分布情况,我们可以判断出身高和体重之间是否存在正相关或负相关关系。
4. 饼图饼图是一种常用的数据可视化方法,它通过绘制圆形的扇区来表示数据的比例关系。
每个扇区的面积大小表示该数据所占的比例。
饼图适用于展示不同类别之间的比例关系。
例如,我们可以使用饼图来展示某个国家各个行业的就业人数比例。
每个扇区表示一个行业,扇区的面积大小表示该行业的就业人数占总人数的比例。
大数据时代下的数据可视化方法

大数据时代下的数据可视化方法在大数据时代,数据的规模和复杂性不断增加,如何有效地理解和分析海量数据成为了一个重要的挑战。
数据可视化作为一种强大的工具,可以匡助人们更好地理解和发现数据中的模式、趋势和关联。
本文将介绍大数据时代下常用的数据可视化方法,并详细阐述其原理和应用。
一、折线图折线图是最常用的数据可视化方法之一,它通过连接数据点的线段来展示数据的变化趋势。
折线图适合于展示时间序列数据或者不同变量之间的关系。
例如,可以使用折线图来展示某个城市每天的气温变化,或者不同产品的销售量随时间的变化情况。
二、柱状图柱状图是另一种常见的数据可视化方法,它通过不同长度的竖条来表示数据的大小。
柱状图适合于展示不同类别之间的比较。
例如,可以使用柱状图来展示不同国家的GDP大小,或者不同部门的销售额对照情况。
三、饼图饼图是用来展示数据占比的一种图表形式,它将整个数据集分成不同的扇形,每一个扇形的角度表示该数据占总体的比例。
饼图适合于展示不同类别的数据在总体中的占比情况。
例如,可以使用饼图来展示某个城市的人口构成,或者不同产品的市场份额。
四、散点图散点图用于展示两个变量之间的关系,其中每一个数据点代表一个观测值,横轴和纵轴分别表示两个变量的取值。
散点图适合于发现变量之间的相关性或者异常值。
例如,可以使用散点图来展示学生的身高和体重之间的关系,或者销售额和广告投入之间的关系。
五、热力图热力图是一种二维图表,通过颜色的深浅来表示数据的大小。
热力图适合于展示数据在空偶尔者时间上的分布情况。
例如,可以使用热力图来展示某个城市各个区域的人口密度,或者不同时间段的网站访问量。
六、雷达图雷达图也称为蜘蛛图,它以多边形的形式展示多个变量的取值,并通过不同的边长来表示数据的大小。
雷达图适合于展示多个指标之间的比较。
例如,可以使用雷达图来展示不同球队在得分、篮板、助攻等指标上的表现。
七、树状图树状图是一种层级结构的图表形式,它通过树状的分支来展示数据的组织结构。
大数据可视化之基础图表

2018-7-23
20
(13)气泡图
• 气泡图与散点图相似, 不同之处在于:气泡图 允许在图表中额外加入 一个表示大小的变量进 行对比。
2018-7-23
21
(14)时间类
时间类图表也是应用较为广泛的 图表。一般按周分布。
Ø
每页显示一日信息的叫日历。
Ø
每页显示一个月信息的叫月历
Ø
每页显示全年信息的叫年历。
2018-7-23
22
(15)漏斗图
漏斗图形如漏斗,一般分层设计, 可以根据各层之间的变化情况进 行分析,发现该层次的问题,予 以改进。
2018-7-23
23
谢谢!
2018-7-23
24
• 指标值用指针形式展示, 落在相应的区域中。
2018-7-23
18
(11)热力图
• 热力图采用特殊高亮的 形式显示出高密度、高 数值等焦点区域,从而 引导阅读者的视觉访问。
2018-7-23
19
(12)K线图
• K线图形态可分为反转形态、整理形 态及缺口和趋向线等。K线图因其细 腻独到的标画方式而被引入到股市 及期货市场。股市及期货市场中的K 线图的画法包含四个数据,即开盘 价、最高价、最低价、收盘价,所 有的k线都是围绕这四个数据展开, 反映大势的状况和价格信息。
• 散点图将序列显示为一组点。值由 点在图表中的位置表示。
• 类别由图表中的不同标记表示。 • 散点图通常用于比较跨类别的聚合
数据。
2018-7-23
11
(5)面积图
• 面积图强调数量随时间而变化的程 度,也可用于引起人们对总值趋势 的注意。
大数据时代下的数据可视化方法

大数据时代下的数据可视化方法在大数据时代,数据可视化方法成为了一种重要的工具,匡助人们更好地理解和分析海量的数据。
数据可视化是将数据转化为可视化图形或者图表的过程,通过直观的可视化展示,使人们能够更容易地发现数据中的模式、趋势和关联关系。
在数据可视化方法中,有许多常用的技术和工具。
下面将介绍几种常见的数据可视化方法。
1. 折线图:折线图是一种常用的数据可视化方法,用于显示数据随时间变化的趋势。
通过将数据点连接起来,可以清晰地展示数据的变化情况。
例如,可以使用折线图来展示销售额随时间的变化,以便分析销售业绩的趋势。
2. 柱状图:柱状图也是一种常见的数据可视化方法,用于比较不同类别或者组之间的数据。
柱状图通过不同长度的柱子来表示数据的大小,可以直观地比较不同类别的数据。
例如,可以使用柱状图来比较不同产品的销售量,以便找出最畅销的产品。
3. 饼图:饼图是一种用于显示数据占比的方法。
饼图将整个数据集表示为一个圆形,将不同类别的数据表示为不同大小的扇形。
通过比较扇形的面积,可以直观地看出每一个类别的数据占比。
例如,可以使用饼图来展示不同地区的销售额占比,以便分析销售业绩的地区分布情况。
4. 散点图:散点图用于显示两个变量之间的关系。
散点图将数据点绘制在坐标系中,横轴表示一个变量,纵轴表示另一个变量。
通过观察数据点的分布情况,可以分析两个变量之间的相关性。
例如,可以使用散点图来研究身高和体重之间的关系,以便找出身高和体重之间的规律。
5. 热力图:热力图用于显示数据的密度分布情况。
热力图通过不同颜色的方块或者圆点来表示数据的密度,颜色越深表示数据越密集。
通过观察热力图,可以直观地了解数据的分布情况。
例如,可以使用热力图来展示城市人口密度,以便分析城市人口分布的热点区域。
除了以上几种常见的数据可视化方法,还有许多其他的方法和工具,如雷达图、树状图、网络图等。
选择合适的数据可视化方法需要根据数据的类型和分析目的来决定。
大数据可视化之基础图表

2018-7-23 3
2018-7-23
13
(6)雷达图
• 雷达图(Radar Chart),又可 称为戴布拉图、蜘蛛网图 (Spider Chart),将多项指标画 在一个圆形的图标上,从而了解 指标情况及变动情况。 • 一般雷达图示为多维度的。 • 指标一般不建议超过8个。 • 也可以采用一组雷达图显示信息。
2018-7-23
横向条形图
• 可以理解为柱状图的旋转了 90度。 • 但是例如表征长度时一般用 横向条形图。
2018-7-23
4
直方图
• 直方图是一种统计图形。 • 需要注意的是,直方图和柱状 图之间的差别在于长方形之间 没有空隙。
2018-7-23
5
多维度条形图
• 簇状条形图 • 堆积条形图 • 百分比堆积条形图
2018-7-23
20
(13)气泡图
• 气泡图与散点图相似, 不同之处在于:气泡图 允许在图表中额外加入 一个表示大小的变量进 行对比。
2018-7-23
21
(14)时间类
时间类图表也是应用较为广泛的 图表。一般按周分布。 Ø
Ø Ø 每页显示一日信息的叫日历。 每页显示一个月信息的叫月历 每页显示全年信息的叫年历。
2018-7-23
8
复合饼图
2018-7-23
9
(3)折线图
• 折线图可以显示随时间(根据 常用比例设置)而变化的连续 数据,因此非常适用于显示在 相等时间间隔下数据的趋势。 • 在折线图中,类别数据沿水平 轴均匀分布,所有值数据沿垂 直轴均匀分布。
数据可视化与仪表盘:通过图表和仪表盘展示数据

数据可视化与仪表盘:通过图表和仪表盘展示数据数据可视化是将复杂的数据转化为更容易理解和解释的视觉表示形式的过程。
通过图表和仪表盘展示数据,可以使数据更具有可读性和可解释性,提供有助于决策和洞察力的信息。
一、数据可视化的重要性1.数据可视化提供了一种直观的方式来展示数据,帮助人们更快速、更准确地了解数据所传达的信息。
2.通过数据可视化,可以发现数据中隐藏的模式、趋势和关联关系,帮助人们做出更明智的决策。
3.数据可视化可以减少信息的过载,使人们能够从大量的数据中快速提取关键信息。
4.数据可视化还可以增加数据报告和分析的影响力,提高数据沟通的效率。
二、常见的数据可视化工具和技术1.图表:包括折线图、柱状图、饼图、散点图等,可以用来展示数据的趋势、分布和比例等。
2.仪表盘:是一个综合的数据可视化工具,通常由多个图表组成,以集中展示关键指标和业务绩效。
3.地图:可以用来展示地理数据和分布情况,帮助人们更好地理解地理位置与数据之间的关系。
4.热图:可以用来展示数据的密度和分布情况,通过颜色的变化来表示数据的大小和水平。
5.树状图和网络图:可以用来展示数据的层次结构和关联关系,帮助人们更好地理解复杂的数据关系。
三、如何设计有效的数据可视化1.确定目标:首先需要明确数据可视化的目标是什么,想要传达什么样的信息给观众,以便设计出最合适的可视化形式。
2.选择合适的图表类型:根据数据的类型和目标信息,选择合适的图表类型,以展示数据的特点和趋势。
3.简化和聚焦:避免过多的图表元素和无关的细节,保持图表的简洁和聚焦,使信息更加突出和易于理解。
4.使用适当的颜色和图形元素:选择适当的颜色和图形元素,以强调重要的数据和关键信息。
5.层次和交互:根据数据的层次结构和分析需求,设计具有交互功能的可视化工具,使用户能够更深入地探索和理解数据。
6.提供清晰的标签和标题:为图表和仪表盘提供清晰的标签和标题,以便读者可以快速理解数据和信息。
数据可视化中的表类型选择指南

数据可视化中的表类型选择指南数据可视化是现代数据分析和展示的重要工具之一,它能够将庞大的数据转化为直观、易于理解的图表和图形。
而在进行数据可视化时,选择适合的表类型是至关重要的,它会影响到数据传达的效果和观众的理解。
本文将为您介绍数据可视化中常用的表类型,并提供选择指南,帮助您在数据可视化项目中做出明智的决策。
一、柱状图(Bar Chart)柱状图是最常见的数据可视化表类型之一。
它用于比较不同类别的数据,将数据以长方形柱子的形式展示出来。
柱状图适合用于展示离散的数据,比如不同产品的销售额或不同城市的人口数量。
您可以选择垂直或水平的柱状图,具体取决于数据的呈现方式和可读性要求。
二、折线图(Line Chart)折线图常用于展示数据随时间变化的趋势。
它通过将数据点连接起来形成一条折线,清楚地展示出数据的趋势和波动。
折线图适合于展示连续的数据,比如股票价格的变化或气温的波动。
使用折线图可以使观众更好地理解数据的变化趋势,并更准确地预测未来的发展。
三、散点图(Scatter Plot)散点图用于展示两个变量之间的关系。
它通过在平面上绘制出多个数据点,其中横轴代表一个变量,纵轴代表另一个变量。
散点图适合用于探索数据之间的相关性和趋势。
例如,您可以使用散点图来展示身高与体重之间的关系,以及收入与教育程度之间的关系。
通过观察散点图,您可以发现数据之间的关联关系,帮助您做出相应的决策。
四、饼图(Pie Chart)饼图适用于展示数据的相对比例和构成。
它通过将数据分割成不同大小的扇形区域,表示不同类别的数据占据整体的比例。
饼图常用于展示销售份额、人口组成和资源分配等方面。
然而,饼图在表示大量数据时可能不够清晰明了,因此在选择时需要考虑数据的复杂性和可读性。
五、热力图(Heatmap)热力图用颜色的变化来展示数据的密度和分布情况。
它可以同时展示两个变量之间的关系和随时间的变化。
热力图常用于展示地理数据、生物数据、金融数据等多维数据。
大数据可视化常用方法

大数据可视化常用方法
大数据可视化常用方法包括以下几种:
1. 折线图:用于展示数据随时间变化的趋势,可以通过折线的形状来观察数据的波动情况。
2. 柱状图:用于比较不同类别之间的数据,可以直观地显示不同类别的数据大小。
3. 散点图:用于展示两个变量之间的关系,可以观察数据的分布情况以及变量之间的相关性。
4. 饼图:用于展示数据的占比关系,可以直观地显示不同类别的数据占总体的比例。
5. 热力图:用于展示数据在空间或时间上的分布情况,可以通过颜色的变化来展示数据的密度或强度。
6. 桑基图:用于展示数据的流动或转换关系,可以通过线条的宽度或颜色的深浅来展示数据的大小或强度。
7. 树状图:用于展示数据的层次结构,可以通过树状的形式来展示数据的组织
关系。
8. 地图:用于展示数据在地理空间上的分布情况,可以通过地图的颜色或标记来展示不同地区的数据差异。
以上仅为常用的大数据可视化方法,根据具体的数据类型和展示需求,还可以使用其他更具特色的可视化方法。
同时,借助大数据可视化工具和技术,可以进一步提高可视化效果和交互性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2. 结果
Car 情报局
任务1 活用散点图
3. 参数解析
add(name,x_axis,y_axis,symbol_size=10,extra_data=None,) name:图例名称。 x_axis:x 坐标轴数据。需为类目轴,也就是不能是数值。 y_axis:y 坐标轴数据。需为类目轴,也就是不能是数值。 extra_data:第三维度数据,x 轴为第一个维度,y 轴为第二个维度。(可在 visualmap 中将视图元素映射到第三维度) symbol_size:标记图形大小。
title_pos='best')
#best会自动显示最好的位置
funnel.add(
"商品",
attTrue,
label_pos="inside",
label_text_color="#fff",
funnel_sort="ascending",
funnel_gap=5,
Car 情报局
任务2 活用漏斗图
2. 基本代码
3. 结果
from pyecharts import Funnel
attr = ["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"]
value = [20, 40, 60, 80, 100, 120]
funnel = Funnel("漏斗图示例", width=600, height=400,
es.add( "",[30], [30], symbol_size=30, effect_scale=5.5, effect_period=5, symbol="roundRect",
) es.add(
"",[40], [40], symbol_size=10, effect_scale=6.5, effect_brushtype="fill", symbol="diamond", )
任务1 活用散点图
Car 情报局
任务2 活用漏斗图
1. 漏斗图参数解析
funnel = Funnel("漏斗图示例",width=600,height=400,#设置宽度高度 title_pos='center')#标题所在的位置 add (name, attr, value,funnel_sort="ascending", funnel_gap=0, **kwargs)
Car 情报局
es.add( "", [50],[50], symbol_size=16, effect_scale=5.5, effect_period=3, symbol="arrow",
) es.add(
"",[60],[60], symbol_size=6, effect_scale=2.5, effect_period=3, symbol="triangle", ) es.render()
Car 情报局
任务1 活用散点图
4. 动态散点的各种图形实例
es = EffectScatter("动态散点图各种图形示例") es.add(
"",[10],[10], symbol_size=20, effect_scale=3.5, effect_period=3, symbol="pin", ) es.add( "",[20],[20], symbol_size=12, effect_scale=4.5, effect_period=4, symbol="rect", )
)
funnel.render()
Car 情报局
任务3 活用仪表盘
1. 仪表盘参数解析
2. 基本代码
Car 情报局
add(name, attr,value,scale_range=None,angle_range =None) name:图例名称。 attr:属性名称。 value:属性对应的值。 scale_range:仪表盘数据范围,默认为 [0,100]。 angle_range:仪表盘角度范围,默认为[255,45]。
Car 情报局
《大数据平台应用》
项目7 可视化大数据 之活用散点图 漏斗图 仪表盘
教学环节
1 任务1 活用散点图 2 任务2 活用漏斗图 3 任务3 活用仪表盘
Car 情报局
任务1 活用散点图
1. 基本代码
from pyecharts import EffectScatter v1 = [10, 20, 30, 40, 50, 60] v2 = [25, 20, 15, 10, 60, 33] es = EffectScatter("动态散点图示例") es.add("effectScatter", v1, v2) es.render()
from pyecharts import Gauge gauge=Gauge("仪表盘示例") gauge.add("业务指标","完成率",66.66) gauge.render()
任务3 活用仪表盘
Car 情报局
Car 情报局
THANK YOU!
name:图例名称。 attr:属性名称。 value:属性所对应的值。 funnel_sort:数据排序。 可选参数:ascending,descending,none funnel_gap:数据图形之间的间距,默认为0。 标签的显示: 标签显示在内部:is_label_show=True,label_pos="inside", label_text_color="#fff",#标签文字颜色 标签显示在外部:is_label_show=True,label_pos="outside", legend_orient="vertical",legend_pos="left",#图例所在的位置