七年级数学抽测试题

合集下载

2020-2021学年度北京市西城区学习探究诊断七年级数学上学期全一册测试题

2020-2021学年度北京市西城区学习探究诊断七年级数学上学期全一册测试题

第一章 有理数测试1 正数和负数学习要求了解正数、负数、有理数的概念,会用正数和负数表示相反意义的量.课堂学习检测一、判断题(正确的在括号内画“√”,错误的画“×”)( )1.某仓库运出30吨货记作-30吨,则运进20吨货记作+20吨. ( )2.节约4吨水与浪费4吨水是一对具有相反意义的量.( )3.身高增长1.2cm 和体重减轻1.2kg 是一对具有相反意义的量. ( )4.在小学学过的数前面添上“-”号,得到的就是负数. 二、填空题5.学校在大桥东面9千米处,那么大桥在学校______面-9千米处.6.如果以每月生产180个零件为准,超过的零件数记作正数,不足的零件数记作负数,那么1月生产160个零件记作______个,2月生产200个零件记作______个.7.甲冷库的温度为-6℃,乙冷库的温度比甲冷库低5℃,则乙冷库的温度是______. 8.______既不是正数,也不是负数;它______整数,______有理数(填“是”或“不是”). 9.整数可以看作分母为1的______,有理数包括____________. 10.把下列各数填在相应的大括号内:74,6,0,14.3,5.0,432,14,5.8,51,27----正数集合{_______________________________________________________________…} 负数集合{_______________________________________________________________…} 非负数集合{_____________________________________________________________…} 有理数集合{_____________________________________________________________…}综合、运用、诊断一、填空题11.若把公元2008年记作+2008,那么-2008年表示______.12.潜水艇上浮为正,下潜为负.若潜水艇原先在距水面80米深处,后来两次活动记录的情况是-10米,+20米,则现在潜水艇在距水面______米的深处. 13.是正数而不是整数的有理数是____________________. 14.是整数而不是正数的有理数是____________________. 15.既不是正数,也不是负数的有理数是______________. 16.既不是真分数,也不是零的有理数是______________.17.在下列数中:,31- 11.11111,725.95 95.527,0,+2004,-2π,1.12122122212222,,111-非负有理数有__________________________________________. 二、判断题(正确的在括号里画“√”,错误的画“×”) ( )18.带有正号的数是正数,带有负号的数是负数. ( )19.有理数是正数和小数的统称.( )20.有最小的正整数,但没有最小的正有理数. ( )21.非负数一定是正数.( )22.311-是负分数. 三、解答题23.-3.782( ).(A)是负数,不是分数 (B)不是分数,是有理数 (C)是负数,也是分数 (D)是分数,不是有理数 24.下面说法中正确的是( ).(A)正整数和负整数统称整数 (B)分数不包括整数(C)正分数,负分数,负整数统称有理数 (D)正整数和正分数统称正有理数25.一种零件的长度在图纸上是(10±0.05)毫米,表示这种零件的标准尺寸是10毫米,加工要求最大不超过______毫米,最小不小于______毫米.拓展、探究、思考26.一批螺帽产品的内径要求可以有±0.02 mm 的误差,现抽查5个样品,超过规定的毫米值记为正数,不足值记为负数,检查结果如表.则合乎要求的产品数量为( ).(A)1个(B)2个(C)3个(D)5个测试2 相反数 数轴学习要求掌握一个数的相反数的求法和性质,学习使用数轴,借助数轴理解相反数的几何意义,会借助数轴比较有理数的大小.课堂学习检测一、填空题1.________________的两个数,叫做互为相反数;零的相反数是______.2.0.4与______互为相反数,______与-(-7)互为相反数,a 的相反数是______. 3.规定了______、______和______的______叫数轴. 4.所有的有理数都能用数轴上的______来表示.5.数轴上,表示-3的点到原点的距离是______个单位长,与原点距离为3个单位长的点表示的数是______。

【3套试卷】人教版数学七年级下册第八章《二元一次方程组》能力检测卷

【3套试卷】人教版数学七年级下册第八章《二元一次方程组》能力检测卷

人教版数学七年级下册第八章《二元一次方程组》能力检测卷一、选择题(每小题3分,共30分)1. 二元一次方程组6,32x y x y ì+=ïïíï-=-ïî的解是 ( ) A. 5,1x y ì=ïïíï=ïî B. 4,2x y ì=ïïíï=ïî C. 5,1x y ì=-ïïíï=-ïî D. 4,2x y ì=-ïïíï=-ïî 2. 用加减法解方程组231,328x y x y ì+=ïïíï-=ïî时,要使两个方程中同一未知数的系数相等或相反,有以下四种变形结果:①691,648;x y x y ì+=ïïíï-=ïî②461,968;x y x y ì+=ïïíï-=ïî③693,6416;x y x y ì+=ïïíï-+=-ïî④462,9624.x y x y ì+=ïïíï-=ïî其中变形正 确的是 ( )A. ①②B. ③④C. ①③D. ②④3. 三元一次方程组216,236x y z x y z ì++=ïïíï==ïî的解是 ( ) A. 1,3,5x y z ì=ïïï=íïï=ïïî B.6,3,2x y z ì=ïïï=íïï=ïïî C. 6,4,2x y z ì=ïïï=íïï=ïïî D. 4,5,6x y z ì=ïïï=íïï=ïïî 4. 如果方程x +2y =-4,2x -y =7,y -kx +9=0有公共解,则k 的值是 ( ) A. -3 B. 3 C. 6 D. -65. 若3,2x y ì=-ïïíï=ïî是12x y x y a q q b ìïïíïïî+=,-=-的解,则α,β之间的关系是 ( ) A. β-9α=1 B. 9α+4β=1 C. 3α+2β=1 D. 4β-9α+1=06. 已知2,1x y ì=ïïíï=ïî是二元一次方程组71mx ny nx my ìïïíïïî+=,-=的值为 ( ) A. 3 B. 8 C. 2 D. 27. 已 知 方 程 组23133530.9a b a b ìïïíïïî-=,+=的解是8.31.2a b ìïïíïïî=,=,则方程组22311332()()()(51)30.9x y x y ìïïíïïî+--=,++-=的解是 ( )A. 6.32.2x y ìïïíïïî=,=B. 8.31.2x y ìïïíïïî=,=C. 10.32.2x y ìïïíïïî=,=D. 10.30.2x y ìïïíïïî=,= 8. 一次考试中共有选择题、填空题和解答题三类题型,满分100分.某同学答对了选择题和填空题,而解答题只得了一半分,他的成绩是80分,则试卷中解答题的分值为 ( )A. 30分B. 40分C. 50分D. 60分 9. 为了研究吸烟是否对肺癌有影响,某肿瘤研究所随机地抽查了n 人,并进行统计分析,结果显示:在吸烟者中患肺癌的比例是2.5%,在不吸烟者中患肺癌的比例是0.5%,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人.如果设这n 人中,吸烟者患肺癌的人数为x ,不吸烟者患肝癌的人数为y ,根据题意,下面列出的方程组正确的是 ( )A. 222.50.5x y x y n ìïïí创ïïî-=,%+%= B. 222.5%0.5%x y x y n +=ìïïïíïïïî-=, C. 222.50.5x y x y n ìïïí创ïïî+=,%-%= D. 222.5%0.5%x y x y n -=ìïïïíïïïî-=, 10. 有甲、乙、丙三种商品,如果购甲3件、乙2件、丙1件共需315元钱,购甲1件,乙2件,丙3件共需285元钱,那么购甲、乙、丙三种商品各一件共需 ( )A. 50元B. 100元C. 150元D. 200元二、填空题(每题3分,共24分) 11. 下列方程:①2x -3y =1;②8x +6y =3;③x 2-y 2=4;④5(x +y )=7(x +y );⑤2x 2=3;⑥x +9y=4. 其中是二元一次方程的是 .(填序号) 12. 已知二元一次方程3x -2y +1=0,用含x 的式子表示y ,则y = .13. 已知x ,y 满足方程组2524x y x y ìïïíïïî+=,+=,则x -y 的值为 .14. 如图,AB ⊥BC ,∠ABD 的度数比∠DBC 的度数的两倍少15°.设∠ABD 和∠DBC 的度数分别为x °,y °,那么可以求出这两个角的度数的方程组是..15. 若-14x 2y 3a +b 与4x a -2b y 6是同类项,则a = ,b = . 16. 若点P (x ,y )在第一象限内,且点P 到两坐标轴的距离相等,并满足2x -y =4,则x ,y 的值分别是 .17. 甲、乙两人分别匀速地从相距30km 的A ,B 两地同时相向而行,经过3小时后相距3km ,再经过2小时,甲到B 地所剩路程是乙到A 地所剩路程的2倍,则甲、乙两人的速度分别是 .18. 水果市场批发一种水果,价格如下表.若某水果商店两次共购进50千克这种水果,并且共付264元钱,则两次购进水果的数量分别是 .三、解答题(共66分) 19. (8分)解方程组:(1) 425x y x y ìïïíïïî-=,+=; (2) 12343314312x y x y ìïïïïïíïïïïï++--î=,-=.20. (8分)一个被滴上墨水的方程如下278.x y x y ìïïíïïî■+■=,■-=小刚回忆说:“这个方程组的解是32x y ìïïíïïî=,=-,而我求出的解是22x y ìïïíïïî=-,=,经检验后发现,我的错误是由于看错了第二个方程中的x的系数所致.”请你根据小刚的回忆,把方程组复原出来.21. (9分)已知关于x,y的二元一次方程y=kx+b的解有34xyìïïíïïî=,=和12.xyìïïíïïî=-,=(1)求k,b的值;(2)当x=2时,求y的值;(3)当x为何值时,y=3?22. (9分)对于实数x,y,规定一种运算:x△y=ax+by(a,b是常数).已知2△3=11,5△(-3)=10.(1)求a,b的值;(2)计算(-2)△3 5 .23. (10分)某工程队承包了全长3150米的公路施工任务,甲、乙两个组分别从东、西两端同时施工.已知甲组比乙组平均每天多施工6米,经过5天施工,两组共完成了450米.(1)求甲、乙两个组平均每天各施工多少米?(2)为加快工程进度,通过改进施工技术,在剩余的工程中,甲组平均每天能比原来多施工4米,乙组平均每天能比原来多施工6米.按此施工进度,能够比原来少用多少天完成任务?24. (10分)小明的妈妈在菜市场买回3斤萝卜、2斤排骨,准备做萝卜排骨汤. 妈妈:“今天买这两样菜共花了45元,上月买同重量的这两种菜只要36元.”爸爸:“报纸上说了萝卜的单价上涨了 50%,排骨的单价上涨了20%.”小明:“爸爸、妈妈,我想知道今天买的萝卜和排骨的单价分别是多少?”请你通过列方程(组)求出今天萝卜、排骨的单价(单位:元/斤).25. (12分)在直角坐标系中,已知点A ,B 的坐标是(a ,0),(b ,0),a 、b 满足方程组253211a b a b ìïïíïïî+=-,-=-,C 为y 轴正半轴上一点,且S △ABC =6. (1)求A ,B ,C 三点的坐标.(2)是否存在点P (t ,t ),使S △P AB =13S △ABC ? 若存在,请求出P 点坐标;若不存在,请说明理由.参考答案1. B2. B3. C4. B5. B6. C7. A8. B9. B 10. C 11. ①④12.312x + 13. 114. 90215.x y x y ìïïíïïî+=,=- 15. 2 0 16. 4和417. 4km/h ,5km/h 或513km/h ,523km/h 18. 14千克和36千克19. 解:(1) 31.x y ìïïíïïî=,=- (2) 22.x y ìïïíïïî=,= 20. 解:设方程组为278ax by cx y ìïïíïïî+=,-=,依题意得32237282()22()a b c a b ´ìïïïíïïïïî´+-=,--=,-+=,解得452.a b c ìïïïíïïïïî=,=,=-∴原方程组为452278.x y x y ìïïíïïî+=,--= 21. 解:(1)k =12,b =52. (2)把x =2代入y =12x +52,得y =72.(3)当x =1时,y =3.22. 解:(1)依题意,得23115310a b a b ìïïíïïî+=,-=,解得35.3a b ìïïïíïïïî=,=(2)(-2)△35=3×(-2)+53×35=-6+1=-5. 23. 解:(1)设甲组平均每天施工x 米,乙组平均每天施工y 米. 依题意得:()65450x y x y ìïïíïïî-=,+=,解得4842.x y ìïïíïïî=,= (2)设剩下工程用a 天完成,依题意得[(48+4)+(42+6)]·a =3150-450,a =27. 设剩下工程按原来进度需6天完成,依题意,(48+42)·b =3150-450,b =30. 故b -a =30-27=3. 答:能够比原来少用3天.24. 解:设上月萝卜的单价是x 元/斤,排骨的单价是y 元/斤,依题意得:323631502120())45(x y x y 创ìïïíïïî+=,+%++%=,解得215.x y ìïïíïïî=,=∴萝卜的单价是(1+50%)x =(1+50%)×2=3(元/斤),排骨的单价是(1+20%)y =(1+20%)×15=18(元/斤).人教版七年级数学下册第八章 二元一次方程组复习检测试题一、选择题1.下列各式,属于二元一次方程的个数有( ) ①xy+2x -y=7; ②4x+1=x -y ; ③1x+y=5; ④x=y ; ⑤x 2-y 2=2 ⑥6x -2y ⑦x+y+z=1 ⑧y (y -1)=2y 2-y 2+x A .1 B .2 C .3 D .42.如果方程组⎩⎪⎨⎪⎧x +y =★,2x +y =16的解为⎩⎪⎨⎪⎧x =6,y =■,那么被“★”“■”遮住的两个数分别是( ) A .10,4 B .4,10 C .3,10 D .10,33.已知二元一次方程30x y +=的一个解是x ay b=⎧⎨=⎩,其中0a ≠,那么( )A.0ba> B.0ba= C.0ba< D.以上都不对4.若满足方程组的x 与y 互为相反数,则m 的值为( ) A .1B .﹣1C .﹣11D .115今年学校举行足球联赛,共赛17轮(即每队均需参赛17场),记分办法是:胜1场得3分,平1场得1分,负1场得0分.在这次足球比赛中,小虎足球队得16分,且踢平场数是踢负场数的整数倍,则小虎足球队踢负场数的情况有( ) A .2种 B .3种C .4种D .5 种6.已知方程组5354x y ax y +=⎧⎨+=⎩和2551x y x by -=⎧⎨+=⎩有相同的解,则a ,b 的值为 ( )A.12a b =⎧⎨=⎩B.46a b =-⎧⎨=-⎩ C.62a b =-⎧⎨=⎩D.142a b =⎧⎨=⎩7.某文具店一本练习本和一支水笔的单价合计为3元,小妮在该店买了20本练习本和10支水笔,共花了36元.如果设练习本每本为x 元,水笔每支为y 元,那么根据题意,下列方程组中,正确的是( )A.⎩⎪⎨⎪⎧x -y =320x +10y =36B.⎩⎪⎨⎪⎧x +y =320x +10y =36 C.⎩⎪⎨⎪⎧y -x =320x +10y =36 D.⎩⎪⎨⎪⎧x +y =310x +20y =368.某年级学生共有246人,其中男生人数y比女生人数x的2倍少2人,•则下面所列的方程组中符合题意的有()A.246246216246... 22222222 x y x y x y x yB C Dy x x y y x y x+=+=+=+=⎧⎧⎧⎧⎨⎨⎨⎨=-=+=+=+⎩⎩⎩⎩9.某商店有两进价不同的耳机都卖64元,其中一个盈利60%,另一个亏本20%,在这次买卖中,这家商店()A、赔8元B、赚32元C、不赔不赚D、赚8元10.如图,宽为50cm的长方形图案由10个相同的小长方形拼成,其中一个小长方形的面积为()A.400cm2B.500cm2C.600cm2D.300cm2二、填空题1.将方程3y﹣x=2变形成用含y的代数式表示x,则x=.2.为了开展“阳光体育”活动,某班计划购买甲、乙两种体育用品(每种体育用品都购买),其中甲种体育用品每件20元,乙种体育用品每件30元,共用去150元,请你设计一下,共有____种购买方案.3.已知│x-1│+(2y+1)2=0,且2x-ky=4,则k=_____.4.《孙子算经》是中国古代重要的数学著作,其中有一段文字的大意是:甲、乙两人各有若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的,那么乙也共有钱48文.甲、乙两人原来各有多少钱?设甲原有x文钱,乙原有y文钱,可列方程组是.三、解答题1.解方程组:2.定义一个非零常数的运算,规定:a*b=ax+by,例如:2*3=2x+3y,若1*1=8,4*3=27,求x、y的值.3.甲、乙两位同学在解方程组时,甲把字母a看错了得到方程组的解为;乙把字母b看错了得到方程组的解为.(1)求a,b的正确值;(2)求原方程组的解.4.某工厂第一季度生产甲、乙两种机器共550台,经市场调查决定调整两种机器的产量,计划第二季度生产这两种机器共536台,其中甲种机器产量要比第一季度增产12%,乙种机器产量要比第一季度减产20%.该厂第一季度生产甲、乙两种机器各多少台?5.某校准备去楠溪江某景点春游,旅行社面向学生推出的收费标准如下:已知该校七年级参加春游学生人数多于100人,八年级参加春游学生人数少于100人.经核算,若两个年级分别组团共需花费17700元,若两个年级联合组团只需花费14700元.(1)两个年级参加春游学生人数之和超过200人吗?为什么?(2)两个年级参加春游学生各有多少人?6.某超市第一次用4600元购进甲、乙两种商品,其中甲商品件数的2倍比乙商品件数的3倍少40件,甲、乙两种商品的进价和售价如下表(利润=售价﹣进价):(1)该超市第一次购进甲、乙两种商品的件数分别是多少?(2)该超市将第一次购进的甲、乙两种商品全部卖出后一共可获得多少利润?(3)该超市第二次以同样的进价又购进甲、乙两种商品.其中甲商品件数是第一次的2倍,乙商品的件数不变.甲商品按原价销售,乙商品打折销售.第二次甲、乙两种商品销售完以后获得的利润比第一次获得的利润多280元,则第二次乙商品是按原价打几折销售的?参考答案一.选择题1.B. 2.A.3.B.4.D.5.B.6.B.7.B.8.B.9.C.10.A.二.填空题1.3y﹣2 2.两 3. k=1.4..三.解答题1.解:原方程组可整理得:,②﹣①得:2x=4,解得:x=2,把x=2代入①得:2﹣2y=﹣3,解得:y=,即原方程组的解为:.2.解:∵a*b=ax+by∴1*1=8,即为x+y=8,4*3=27 即为4x+3y=27;解方程组①×3﹣②,得﹣x=﹣3,解得x=3,将x=3代入①,得y=5.3.解:(1)根据题意得:,解得:a=2,b=﹣3,(2)方程组为,解得.4.解:设某工厂第一季度生产甲种机器x台,乙种机器y台,由题意得:,解得:.答:该工厂第一季度生产甲种机器300台,乙种机器250台.5.解:(1)设两个年级参加春游学生人数之和为a人,若a>200,则a=14700÷70=210(人).若100<a≤200,则a=14700÷80=183(不合题意,舍去).则两个年级参加春游学生人数之和等于210人,超过200人.(2)设七年级参加春游学生人数有x人,八年级参加春游学生人数有y人,则①当100<x≤200时,得,解得.②当x>200时,得,解得(不合题意,舍去).则七年级参加春游学生人数有120人,八年级参加春游学生人数有90人.6.解:(1)设第一次购进甲种商品x件,购进乙种商品y件,根据题意得:,解得.答:该超市第一次购进甲种商品100件,购进乙种商品80件.(2)(28﹣22)×100+(40﹣30)×80=1400(元).答:该超市将第一次购进的甲、乙两种商品全部卖出后一共可获得1400元.(3)设第二次乙种商品是按原价打m折销售的,根据题意得:(28﹣22)×100×2+(40×﹣30)×80=1400+280,解得:m=9.答:第二次乙商品是按原价打九折销售.人教版七年级数学下册第八章二元一次方程组单元测试题(有答案)一.选择题1.下列方程中,是二元一次方程的是( )A .3x -2y =4zB .6xy +9=0C.1x +4y =6 D .4x =y -24 2.下列方程组中,是二元一次方程组的是( )A.⎩⎪⎨⎪⎧x +y =42x +3y =7B.⎩⎪⎨⎪⎧2a -3b =115b -4c =6C.⎩⎪⎨⎪⎧x 2=9y =2xD.⎩⎪⎨⎪⎧x +y =8x 2-y =43.方程组的解为( )A .B .C .D .4.夏季来临,某超市试销A 、B 两种型号的风扇,两周内共销售30台,销售收入5300元,A 型风扇每台200元,B 型风扇每台150元,问A 、B 两种型号的风扇分别销售了多少台?若设A 型风扇销售了x 台,B 型风扇销售了y 台,则根据题意列出方程组为( )A .B .C .D .5.小岩打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为( )A .19B .18C .16D .156.某文具店一本练习本和一支水笔的单价合计为3元,小妮在该店买了20本练习本和10支水笔,共花了36元.如果设练习本每本为x 元,水笔每支为y 元,那么根据题意,下列方程组中,正确的是( )A.B.C.D.7.《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设合伙人数为x人,羊价为y线,根据题意,可列方程组为()A.B.C.D.8.某次知识竞赛共有20道题,规定:每答对一道题得+5分,每答错一道题得﹣2分,不答的题得0分,已知圆圆这次竞赛得了60分,设圆圆答对了x道题,答错了y道题,则()A.x﹣y=20 B.x+y=20 C.5x﹣2y=60 D.5x+2y=609.阅读理解:a,b,c,d是实数,我们把符号称为2×2阶行列式,并且规定: =a×d﹣b×c,例如: =3×(﹣2)﹣2×(﹣1)=﹣6+2=﹣4.二元一次方程组的解可以利用2×2阶行列式表示为:;其中D=,D x=,D y=.问题:对于用上面的方法解二元一次方程组时,下面说法错误的是()A.D==﹣7 B.D x=﹣14C.D y=27 D.方程组的解为10.若二元一次联立方程式的解为x=a,y=b,则a+b之值为何?()A.24 B.0 C.﹣4 D.﹣811.为奖励消防演练活动中表现优异的同学,某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有()A.4种B.3种C.2种D.1种12.某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x个,小房间有y个.下列方程正确的是()A. B. C.D.二.填空题1.若关于x、y的二元一次方程3x﹣ay=1有一个解是,则a= .2.六一儿童节,某幼儿园用100元钱给小朋友买了甲、乙两种不同的玩具共30个,单价分别为2元和4元,则该幼儿园购买了甲、乙两种玩具分别为、个.3.对于实数a,b,定义运算“◆”:a◆b=,例如4◆3,因为4>3.所以4◆3==5.若x,y满足方程组,则x◆y=.4.已知x,y满足方程组,则x2﹣4y2的值为.5.我国古代数学著作《九章算术》中有一道阐述“盈不足术”的问题,译文为:“现有几个人共同购买一个物品,每人出8元,则多3元;每人出7元,则差4元.问这个物品的价格是多少元?”该物品的价格是元.6.我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.如果1托为5尺,那么索长为尺,竿子长为尺.7.若二元一次方程组的解为,则a﹣b= .8.已知是关于x,y的二元一次方程组的一组解,则a+b= .9.小强同学生日的月数减去日数为2,月数的两倍和日数相加为31,则小强同学生日的月数和日数的和为.三.解答题1.解方程组:.2.用消元法解方程组3.《九章算术》是中国古代数学专著,在数学上有其独到的成就,不仅最早提到了分数问题,也首先记录了“盈不足”等问题.如有一道阐述“盈不足”的问题,原文如下:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱.问买鸡的人数、鸡的价格各是多少?请解答上述问题.4.某水果店5月份购进甲、乙两种水果共花费1700元,其中甲种水果8元/千克,乙种水果18元/千克.6月份,这两种水果的进价上调为:甲种水果10元千克,乙种水果20元/千克.(1)若该店6月份购进这两种水果的数量与5月份都相同,将多支付货款300元,求该店5月份购进甲、乙两种水果分别是多少千克?(2)若6月份将这两种水果进货总量减少到120千克,且甲种水果不超过乙种水果的3倍,则6月份该店需要支付这两种水果的货款最少应是多少元?5.在端午节来临之际,某商店订购了A型和B型两种粽子,A型粽子28元/千克,B型粽子24元/千克,若B型粽子的数量比A型粽子的2倍少20千克,购进两种粽子共用了2560元,求两种型号粽子各多少千克.6.为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”这批单车分为A,B两种不同款型,其中A型车单价400元,B型车单价320元.(1)今年年初,“共享单车”试点投放在某市中心城区正式启动.投放A,B两种款型的单车共100辆,总价值36800元.试问本次试点投放的A型车与B型车各多少辆?(2)试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开.按照试点投放中A,B两车型的数量比进行投放,且投资总价值不低于184万元.请问城区10万人口平均每100人至少享有A型车与B型车各多少辆?7.为拓宽学生视野,引导学生主动适应社会,促进书本知识和生活经验的深度融合,我市某中学决定组织部分班级去赤壁开展研学旅行活动,在参加此次活动的师生中,若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4个学生.现有甲、乙两种大客车,它们的载客量和租金如表所示.学校计划此次研学旅行活动的租车总费用不超过3100元,为了安全,每辆客车上至少要有2名老师.(1)参加此次研学旅行活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆客车上至少要有2名老师,可知租用客车总数为8 辆;(3)你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.参考答案:一、选择题。

七年级数学抽考测试题

七年级数学抽考测试题

七年级数学抽考试卷班级: 姓名: 考号码:一. 填空题(每空2分,共20分)1. 如图1,直线AB 、CD 相交于点O ,已知∠AOC+∠BOD=90°,则∠BOC= 。

2. 如图2,所示直线AB 、CD 被直线EF 所截,⑴量得∠1=80°,∠2=80°,则判定AB ∥CD ,根据是 ;⑵量得∠3=100°,∠4=100°,也判定AB ∥CD ,根据是 。

3. 如图3,AB ∥DE ,BC ∥FE ,则∠E+∠B= 。

4. 把命题“等角的余角相等”写成“如果……,那么…….”的形式为 。

5.若知P (x ,y ),满足x =3,y =2,且点P 在第四象限,则P 点坐标为 。

6.在同一平面内,两条直线的位置关系有 和 两种; 7.如图,直线AB 与CD 相交于O 点,∠1=40°,则∠2= ∠3= . 8.点M (-1,5)竖直向下平移4个单位得N 点坐标是 . 9. 点P(m +2,m -4)在x 轴上,则P 点的坐标为 .10.点A 位于第二象限,且它的横、纵坐标的积为-8,写出一个满足条件的点的坐标 二. 选择题(每空2分,共20分)11. 下面四个图形中,∠1与∠2是对顶角的图形的个数是( ) A .0 B .1 C .2 D .31212121212. 一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,那么两次拐弯的角度是( )A .第一次右拐50°,第二次左拐130°B .第一次左拐50°,第二次右拐50°C .第一次左拐50°,第二次左拐130°D .第一次右拐50°,第二次右拐50° 13.点M (-3,-2)到y 轴的距离是( ) A .3 B .2 C .-3 D .-214. 如果点P (5,y )在第四象限,则y 的取值范围是( ) A .y <0 B .y >0 C .y ≤0 D .y ≥015.线段CD 是由线段AB 平移得到的,点A (1,4)的对应点为C (4,7),则点 B (4,1)的对应点D 的坐标为( )A .(7,4)B .(1,-3) C .(1,4) D .(7,-3) 16.在平面直角坐标系中,将三角形各点的纵坐标都减去3,横坐标保持不变,所得图形与原图形相比( ) A 、向右平移了3个单位 B 、向左平移了3个单位 C 、向上平移了3个单位 D 、向下平移了3个单位 17.如图AB ∥CD 可以得到( ) A .∠1=∠2 B .∠2=∠3 C .∠1=∠4 D .∠3=∠4 18.下列哪个图形是由左图平移得到的( )A BCD19.两点的横坐标相同,则这两个点所在的直线与x 轴的关系是( ) A.平行B.垂直 C.重合D.无法确定20. 如图4,直线AB 、CD 相交于点O ,OE ⊥AB 于O , 若∠COE=55°,则∠BOD 的度数为( ) A. 40° B. 45° C. 30° D. 35° 三 、解答题21.如图所示,直线AB ∥CD ,∠1=75°,求∠2的度数. (5分)图1A B C D 1 2 3 4 (第17题) O A D C 2 1 3 B21FEDCBA22.读句画图(9分)如图,直线CD 与直线AB 相交于C ,根据下列语句画图 (1)过点P 作PQ ∥CD ,交AB 于点Q (2分) (2)过点P 作PR ⊥CD ,垂足为R (2分) (3)若∠DCB=1200,猜想∠PQC 是多少度?并说明理由 (5分)23.如图,直线AB 、CD 相交于O ,OD 平分∠AOF ,OE ⊥CD 于点O ,∠1=50°,求∠COB 、∠BOF 的度数. (6分)24. (8分) 如图 若∠1=∠2则 ∥ ( )若∠DAB+∠ABC=1800 则 ∥ ( )当 ∥ 时∠ C+∠ABC=1800 ( ) 当 ∥ 时∠3=∠C ( )25.如图,CD AB //,AE 平分BAD ∠,CD 与AE 相交于F ,E CFE ∠=∠.求证:BC AD //.(6分) 26.已知三角形ABC 、点D ,过点D 作三角形ABC 平移后的图形,使得点D 为点A 移动后的点(5分).DCBA27.如图,△ABC 在直角坐标系中, (1)请写出△ABC 各点的坐标.(3分) (2)求出S △ABC. (5分)(3)若把△ABC 向上平移2个单位,再向右平移2个单位得△A ′B ′C ′,在图中画出△ABC 变化位置,并写出A ′、B ′、C ′的坐标. (5分)28.如图中标明了李明家附近的一些地方:(8分)(1).写出学校和邮局的坐标:(2).某星期早晨,李明从家里出发,沿(-1,2)、(1,0)、(2,1)、(2,-2)、(-1,-2)、(0,-1)的路线转了一圈,又回到家里。

七年级下学期数学期末考前必刷卷《专项6:数据的收集、整理与描述》

七年级下学期数学期末考前必刷卷《专项6:数据的收集、整理与描述》

七七七七七七七七七七七七七七七七七6七七七七七七七七七七七七七一、选择题(本大题共10小题,共30.0分)1.为了了解某初中学校学生的视力情况,需要抽取部分学生进行调查.下列抽取学生的方法最合适的是()A. 随机抽取该校一个班级的学生B. 随机抽取该校一个年级的学生C. 随机抽取该校一部分男生D. 分别从该校初一、初二、初三年级中各随机抽取10%的学生2.为了更好地评价学生的数学成绩,某校把学生的数学成绩分成优秀、良好、合格、不合格四个等级,如图是某次数学测验成绩的频数分布图,则这次数学测验中“良好”等级的频率是A. 0.4B. 0.3C. 0.2D. 0.13.某班进行学生课外阅读时间调查,将所得数据分成5组.已知第一组的频率是0.2,第二、三、四小组的频率之和为0.7,则第五组的频率是()A. 0.3B. 0.2C. 0.1D. 不能确定4.某校七年级共720名学生参加数学测试,随机抽取50名学生的成绩进行统计,其中15名学生的成绩达到优秀,估计该校七年级学生在这次数学测试中,达到优秀的学生人数约有()A. 140B. 144C. 210人D. 216人5.一个容量为80的样本,其最大值是133,最小值是51,若确定组距为10,则可以分成A. 10组B. 9组C. 8组D. 7组6.下列调查方式合适的是【】A. 对飞机零件安全性的检查,采用抽样调查的方式B. 为了了解全国中学生的睡眠状况,采用全面调查的方式C. 为了了解某品牌圆珠笔芯的使用寿命,采用全面调查的方式D. 为了了解新乡市卫河水污染的情况,采用抽样调查的方式7.我市某中学为了了解2015年度下学期七年级数学学科期末考试各分数段成绩的分布情况,从全校七年级1200名学生中随机抽取了200名学生的期末数学成绩进行调查,在这次调查中,样本是()A. 1200名学生B. 1200名学生的期末数学成绩C. 200名学生D. 200名学生的期末数学成绩8.下列调查中,最适合采用抽样调查的是()A. 对某地区现有的16名百岁以上老人睡眠时间的调查B. 对“神舟十一号”运载火箭发射前零部件质量情况的调查C. 对某校九年级三班学生视力情况的调查D. 对某市场上某一品牌电脑使用寿命的调查9.下列调查中,最适合采用全面调查(普查)方式的是()A. 对洛宁县辖区内洛河流域水质情况的调查B. 对乘坐飞机的旅客是否携带违禁物品的调查C. 对一个社区每天丢弃塑料袋数量的调查D. 对中央电视台“中国诗词大会”栏目收视率的调查10.下列调查中,适合采用全面调查(普查)方式的是()A. 对长江水质情况的调查B. 对端午节期间市场上粽子质量情况的调查C. 对某通信卫星的零部件的质量情况的调查D. 对某类烟花爆竹燃放安全情况的调查二、填空题(本大题共4小题,共12.0分)11.“No cross,No crown”(译为:不经历风雨,怎么见彩虹)这个句子的所有字母中,字母o出现的频率为________.12.青少年视力水平的下降已经引起了全社会的关注,某学校为了了解该校七年级560名学生的视力情况,从中抽查了50名学生的视力,在这个问题中,样本容量是________.13.如图所示是某班45名同学爱心捐款额的频数分布直方图(每组含前一个边界值,不含后一个边界值),则捐款人数最多的一组是______ .14.一个样本容量为80的样本中,最大值为143,最小值为50,取组距为10,则可以分成组.三、解答题(本大题共7小题,共58.0分)15.已知:如图,为了了解我先某初中学生的身高情况,对该初中同年龄的若干名女生的身高进行了测量,整理数据后画出频数分布直方图.(1)参加这次测试的学生共有______ 人;(2)身高在______ 范围内的学生人数最多,这一范围的学生占______ %;(3)若身高不低于155cm者为良好,则可估计该初中同年龄女学生身高的良好率是______ %.16.为了提高学生书写汉字的能力,增强保护汉字的意识,我市举办了首届“汉字听写大赛”,经选拔后有50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图所示.请结合图表完成下列各题:(1)表中a的值为________;(2)请把频数分布直方图补充完整;(3)若规定测试成绩不低于40分的为优秀,则本次测试的优秀率是多少⋅17.2016年“春节”假期,小翔参加了学校团委组织的一项社会调查活动,了解他所在小区家庭的教育支出情况.调查中,小翔从他所在小区的500户家庭中,随机调查了40个家庭,并将调查结果制成了部分统计图表.根据以上提供的信息,解答下列问题:(1)频数分布表中的a=________,b=________;(2)补全频数分布直方图;(3)请你估计该小区家庭中,教育支出不足1500元的家庭大约有多少户?18.秋季新学期开学时,郑州某中学对七年级新生掌握“中学生日常行为规范”的情况进行了知识测试,测试成绩全部合格,现学校随机选取了部分学生的成绩,整理并制作成了如下不完整的图表:分数段频数频率60≤x<709a70≤x<80360.480≤x<9027b90≤x≤100c0.2请根据上述统计图表,解答下列问题:(1)在表中,a=________,b=________,c=________;(2)补全频数直方图;(3)如果测试成绩不低于80分者为“优秀”等次,请你估计全校七年级的800名学生中,“优秀”等次的学生约有多少人?19.某校举行了一场学生“安全知识”问答竞赛活动,为了解笔试情况,随机抽查了部分学生的得分情况,请根据图表提供的信息,解答下列问题:分数段频数频率60≤x<70300.170≤x<8090n80≤x<90m0.490≤x<100600.2(1)本次调查的样本容量为______ ;(2)在表中,m=______ ,n=______ ;(3)补全频数颁分布直方图;(4)参加比赛成绩80分以上(含80分)为优秀,那么你估计该竞赛项目的优秀率大约为______ .20.某校为了解全校学生上学期参加社区活动的情况,学校随机调查了本校50名学生参加社区活动的次数,并将调查所得的数据整理如下:参加社区活动次数的频数、频率分布表根据以上图表信息,解答下列问题:(1)表中a=,b=,m=;(2)请把频数分布直方图补充完整(画图后请标注相应的数据);(3)若该校共有1200名学生,请估计该校在上学期参加社区活动超过6次的学生有多少人?21.七(1)班同学为了解某小区家庭月均用水情况,随机调查了该小区部分家庭。

七年级数学数据的收集与整理测试题

七年级数学数据的收集与整理测试题

七年级数学数据的收集与整理测试题数据的收集与整理习题精选1.想要调查世界上还幸存着多少只大熊猫,适合作________.2.了解西部地区适龄儿童在校率作_________.3.为了考察七年级500名学生的体育锻炼时间,体育老师从七年级五个班中,每班各抽取10名学生调查中.此题中,总体是____________,样本是____________.4.有一些乒乓球,不知其数,先取6个作了标记,把它们放回袋中,混合均匀后又取了20个,发现含有两个做标记的,可以估计这袋兵乓球有_______个.5.下列调查中的样本缺乏代表性的是( )A.屠宰100头某品种的猪,了解该品种猪的瘦肉率B.某人在一所医院里调查哮喘病在该县的发病率C.从一瓶化妆品中取少量化验其化学成分D.用10台某种型号的新产品红旗轿车作撞击实验,调查该车型在耐冲撞和安全保护措施方面的性能6.某人设计了一个游戏,在一网吧征求了三位游戏迷的意见,就宣传〝本游戏深受游戏迷欢迎〞,这种说法错误的原因是( )A.样本的数量太小B.没有征求专家鉴定C.这三位玩家不具有代表性D.以上都不是7.为了了解某校1500名学生的体重情况,从中抽取了100名学生的体重,就这个问题业说,下面说法正确的是( )A.1500名学生的总体B.1500名学生的体重是总体C.每个学生是个体D.100名学生是所抽取的一个样本8.下列说法中,错误的是( )A.条形统计图能清楚地表示出每个项目的具体数目B.折线统计图能清楚地反映出事物的变化情况C.扇形统计图能清楚地反映出各个部分所占的百分比D.统计图只有以上三种9.指出下列问题中总体.样本.个体分别是什么?(1)为了了解某商店的日营业额,现抽出某月里的6天的营业额进行统计.(2)为了了解某种酱油的质量合格情况,从几大商场的柜台上共购买了30瓶该酱油进行化验.10.下面的图表是某种股票在一天内的变化情况:时间9:3010:3011:302:303:00股价(元)9.809.919.889.949.93第10题通过图表估计这种股票在中午1:30时的股价.11.商场开业第一天,对45位顾客进行问卷调查,以了解商场的服务质量,调查结果如下:A BB C DC C EAB CD B BA D BCC DC C AB B ABB AB C CA B ADD AE A BB C CCA.满意B.较满意C.一般D.不太满意E.不满意请用表格整理上面的数据,并推断顾客对商场的服务质量的满意程度. 12.下面记录了七年级某班男生一次立定跳远的成绩,如下所示(单位:米): 1.62 1.62 1.65 1.75 1.61 1.64 1.64 1.66 1.63 1.681.72 1.67 1.60 1.59 1.65 1.67 1.64 1.58 1.70 1.631.61 1.63 1.66 1.68 1.72 1.59 1.60 1.66 1.64 1.6830名男生立定跳远成绩表成绩(米)划记人数1.58≤_<1.611.61≤_<1.641.64≤_<1.671.67≤_<1.701.70≤_<1.73合计根据这些数据说明这30名男生立定跳远的成绩分布情况.13.下列调查中分别采用了哪些调查方式?并说明这种调查方式有什么优点.(1)学校为了解初三学生做家庭作业的时间,从中抽查了初三(1)班的学生一周内做家庭作业的时间;(2)某企业为了了解员工的身体健康状况,给全体员工做了体检.14.当今,在校学生视力水平的下降已引起了全社会的关注,为了了解实验中学毕业年级300名学生的视力情况,从中检测了一部分学生的视力,进行数据整理如下:分组划记人数百分比3.95~4.2524%4.25~4.55正一612%4.55~4.85正正正正2346%4.85~5.15正正正1836%5.15~5.45一12%合计50(1)这个问题中,总体是____________________________;(2)若视力为4.9.5.0.5.1均属正常,试估计该校毕业年级视力正常的人数约为多少?15.下表是7个城市某天的空气污染指数.先画出一张条形统计图,反映当日这些城市的空气质量,要求以空气污染指数为纵轴,以城市名称为横轴.你能从图表中获得哪些信息?有什么建议?城市北京沈阳南京西安兰州广州乌鲁木齐污染指标1118869102965213216.为了了解某市七年级学生学习数学的出错情况,有关部门准备调研200份数学试卷,现有三种方案:A.调研重点学校中快班200人试卷;B.调研非重点学校中慢班200人试卷;C.在本市的市区和郊县各任选四所中学,在这八所学校的七年级学生中,用抽签的方法每校分别选出25名学生的试卷.为了达到估计本市(初中)七年级学生学习数学的出错情况,你认为哪种方案比较合理?为什么?17.某商店对某天上午卖帽子的情况作了记录:帽子尺寸5455565758顶数21830219(1)帽厂对哪个尺码的帽子最感兴趣?(2)你如果是销售部经理,如何安排进货,说说理由.18.请设计一个调查家庭情况(包括姓名.性别.人口.住房面积.人均收入等)的问卷,对全班同学作调查.收回问卷后,用适当的表格整理数据,看看有什么结论?数据的收集与整理习题精选答案1.全面调查2.抽样调查3.500名学生的体育锻炼时间,被抽取的50名学生的体育锻炼时间4.605.B6.C7.B8.D9.(1)总体是某种酱油的质量合格情况的全体;样本是从几个大商场柜台上购买的30瓶该品牌酱油的质量合格情况;个体是每瓶酱油的质量合格情况.10.略11.项目ABCDE合计人数1014136245结论略12.略13.(1)抽样调查;(2)全面调查优点略14.(1)实验中学300名学生视力的全体;(2)108名提示:300_0.36=10815.略16.采用第三种方案比较合理.因为方案A.B缺乏代表性,C方案比较有代表性.方案A调研的是重点中学快班的学生,出错率显然很低,方案B调研的是非重点校慢班的学生,出错率显然很高,这两种方案都不利于了解学生学习数学的出错情况.只有方案C,既考虑了地域条件,又考虑了公平性,所以调研结果更趋于合理,因此采用这一方案(比较合理).17.(1)56;(2)该商店应该多进尺寸为56的帽子,方能保证供应.18.略。

必考点解析京改版七年级数学下册第五章二元一次方程组定向测试试题(含答案解析)

必考点解析京改版七年级数学下册第五章二元一次方程组定向测试试题(含答案解析)

京改版七年级数学下册第五章二元一次方程组定向测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,用12块形状和大小均相同的小长方形纸片拼成一个宽是60厘米的大长方形,则每个小长方形的周长是()A.60厘米B.80厘米C.100厘米D.120厘米2、一艘缉毒艇去距90海里的地方执行任务,去时顺水用了3小时,任务完成后按原路返回,逆水用了3.6小时,求缉毒艇在静水中的速度及水流速度.设在静水中的速度为x海里/时,水流速度为y海里/时,则下列方程组中正确的是().A.33903.6 3.690x yx y+=⎧⎨+=⎩B.3 3.6903.6390x yy x+=⎧⎨+=⎩C.3()903()90x yx y+=⎧⎨-=⎩D.33903.6 3.690x yx y+=⎧⎨-=⎩3、中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹价值x两,牛每头价值y两,根据题意可列方程组为()A.46483538x yx y+=⎧⎨+=⎩B.46483538x yy x+=⎧⎨+=⎩C.46385348x yx y+=⎧⎨+=⎩D.46383548x yx y+=⎧⎨+=⎩4、某校九年级学生到礼堂开会,若每条长凳坐5人,则少8条长凳;若每条长凳坐6人,则又多余2条长凳.若设学生人数为x,长凳数为y,由题意列方程组为()A.585662x yx y=-⨯⎧⎨=+⨯⎩B.585662x yx y=+⨯⎧⎨=-⨯⎩C.5862x yx y=+⎧⎨=-⎩D.5862x yx y=-⎧⎨=+⎩5、小明在解关于x、y的二元一次方程组331x yx y+⊗=⎧⎨-⊗=⎩时得到了正确结果1xy=⊕⎧⎨=⎩.后来发现⊗、⊕处被墨水污损了,请你帮他计算出⊗、⊕处的值分别是().A.1、1 B.2、1 C.1、2 D.2、26、为奖励期中考试中成绩优异的同学,七(二)班计划用50元购买笔记本和中性笔两种奖品,已知笔记本的价格为7元,中性笔的价格为2元,若两种奖品都买,则购买的方案有几种?()A.2 B.3 C.4 D.57、有铅笔、练习本、圆珠笔三种学习用品,若购铅笔3支,练习本7本,圆珠笔1支共需3.15元;若购铅笔4支,练习本8本,圆珠笔2支共需4.2元,那么,购铅笔、练习本、圆珠笔各1件共需()A.1.2元B.1.05元C.0.95元D.0.9元8、已知23xy=-⎧⎨=⎩是方程22kx y+=-的解,则k的值为()A.﹣2 B.2 C.4 D.﹣49、有一个两位数和一个一位数,它们的和为39,若将两位数放在一位数的前面,得到的三位数比将一位数放在两位数的前面得到的三位数大27,求这两个数.若设两位数是x,一位数是y,则可列方程组为( )A .3927x y xy yx +=⎧⎨-=⎩B .391027100x y x y y x+=⎧⎨++=+⎩ C .39102710x y x y y x +=⎧⎨+-=+⎩ D .3910(100)27x y x y y x +=⎧⎨+-+=⎩ 10、下列方程是二元一次方程的是( )A .x ﹣xy =1B .x 2﹣y ﹣2x =1C .3x ﹣y =1D .1x﹣2y =1 第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知关于x ,y 的方程组21x y k x y +=⎧⎨-=-⎩满足3x y +=,则k =_____. 2、已知12x y =⎧⎨=-⎩是方程5ax by +=的一组解,则24a b --=______. 3、若方程23||22(3)4m n x n y +-++=是关于x ,y 的二元一次方程,则n m =_______.4、已知x 、y 满足方程组52723x y x y +=⎧⎨-=⎩,则x y +的值为__________. 5、已知方程组531x y ax y b -=⎧⎨+=-⎩有无数多个解,则a 、b 的值等于________. 三、解答题(5小题,每小题10分,共计50分)1、(1)若x +1是多项式x 3+ax +1的因式,求a 的值并将多项式x 3+ax +1分解因式.(2)若多项式3x 4+ax 3+bx -34含有因式x +1及x -2,求a +b 的值.2、解方程组:(1)27xy (2)317{31x y x y -=+=- 3、解方程组0.10.3 1.3123x y x y +=⎧⎪⎨-=⎪⎩①② 4、解方程组:3610638x y x y +=⎧⎨+=⎩. 5、解方程组:(1)25528y x x y =-⎧⎨+=⎩ (2)2311243x y y x -=⎧⎪++⎨=⎪⎩---------参考答案-----------一、单选题1、D【分析】设小长方形的长为x ,小长方形的宽为y ,根据题意列出二元一次方程组求解即可;【详解】设小长方形的长为x ,小长方形的宽为y ,根据题意可得:603x y x y+=⎧⎨=⎩,解得:45y ⎨=⎩, ∴每个小长方形的周长是()21545260120cm ⨯+=⨯=;故选D .【点睛】本题主要考查了二元一次方程组的应用,准确计算是解题的关键.2、D【分析】根据等量关系“顺水时间×顺水速度=90、逆水时间×逆水速度=90”以及顺水、逆水速度与静水速度、水流速度的关系即可解答.【详解】解:根据题意可得,顺水速度=x +y ,逆水速度=x -y ,()()3903.690x y x y ⎧+=⎪⎨-=⎪⎩,化简得33903.6 3.690x y x y +=⎧⎨-=⎩. 故选:D .【点睛】考查主要考查了用二元一次方程组解决行程问题,掌握顺水路程及逆水路程的等量关系以及顺水速度=静水速度+水流速度、逆水速度=静水速度一水流速度是解答本题的关键.3、A【分析】直接利用“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两”,分别列出方程即可得出答案.【详解】解:设马每匹价值x 两,牛每头价值y 两,根据题意可列方程组为:46483538x y x y +=⎧⎨+=⎩. 故选:A .【点睛】此题主要考查了二元一次方程组的应用,正确找到等量关系是解题关键.4、B【分析】设学生人数为x ,长凳数为y ,然后根据若每条长凳坐5人,则少8条长凳;若每条长凳坐6人,则又多余2条长凳,列出方程即可.【详解】解:设学生人数为x ,长凳数为y ,由题意得:585626x y x y =+⨯⎧⎨=-⨯⎩, 故选B .【点睛】本题主要考查了从实际问题中抽象出二元一次方程组,解题的关键在于能够准确理解题意.5、B【分析】将方程组的解代入方程求解即可.【详解】将1x y =⊕⎧⎨=⎩代入331x y x y +⊗=⎧⎨-⊗=⎩,得331⊕+⊗=⎧⎨⊕-⊗=⎩,解之得12⊕=⎧⎨⊗=⎩. 故选:B .【点睛】此题考查解二元一次方程组,掌握解二元一次方程组的方法:代入法和加减法,并根据方程组的特点选择恰当的解法是解题的关键.6、B【分析】设可以购进笔记本x 本,中性笔y 支,利用总价=单价×数量,即可得出关于x ,y 的二元一次方程,结合x ,y 均为正整数,即可得出购买方案的个数.【详解】解:设可以购进笔记本x 本,中性笔y 支,依题意得:7250x y += , ∴7252y x =- ,∵x ,y 均为正整数,∴218x y =⎧⎨=⎩ 或411x y =⎧⎨=⎩ 或64x y =⎧⎨=⎩ , ∴共有3种购买方案,故选:B .【点睛】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.7、B【分析】设一支铅笔、一本练习本和一支圆珠笔的单价分别为x 、y 和z 元,根据“购铅笔3支,练习本7本,圆珠笔1支共需3.15元;购铅笔4支,练习本8本,圆珠笔2支共需4.2元”建立三元一次方程组,然后将两个方程联立,即可求得x y z ++的值.【详解】设一支铅笔、一本练习本和一支圆珠笔的单价分别为x 、y 和z 元,根据题意得:37 3.15482 4.2x y z x y z ++=⎧⎨++=⎩①②, ②–①可得: 1.05x y z ++=.故选:B .【点睛】本题考查三元一次方程组的实际应用,解题关键是根据两个等量关系列出方程组,而利用整体思想,把所给两个等式整理为只含x y z ++的等式.8、C【分析】把23x y =-⎧⎨=⎩代入是方程kx +2y =﹣2得到关于k 的方程求解即可. 【详解】解:把23x y =-⎧⎨=⎩代入方程得:﹣2k +6=﹣2, 解得:k =4,故选C .【点睛】本题主要考查二元一次方程的解,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.有解必代是解决此类题目的基本思路.9、D【分析】若设两位数是x ,一位数是y ,则两位数放在一位数的前面,得到的三位数为10x +y ,将一位数放在两位数的前面得到的三位数为100y +x ,再分别根据这两数的和为39和两位数放在一位数的前面得到的三位数比将一位数放在两位数的前面得到的三位数大27,即可得出方程组.【详解】解:设两位数是x ,一位数是y ,则两位数放在一位数的前面,得到的三位数为10x +y ,将一位数放在两位数的前面得到的三位数为100y +x ,依题意得:3910(100)27x y x y y x +=⎧⎨+-+=⎩, 故选D .【点睛】此题主要考查了二元一次方程组的应用,根据已知正确的表示出两个三位数是解题关键.10、C【分析】根据二元一次方程的定义逐个判断即可.含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程.【详解】解:A 、x ﹣xy =1含有两个未知数,但未知数的最高次数是2次,∴x ﹣xy =1不是二元一次方程;B 、x 2﹣y ﹣2x =1含有两个未知数.未知数的最高次数是2次,∴x 2﹣y ﹣2x =1不是二元一次方程;C 、3x ﹣y =1含有两个未知数,未知数的最大次数是1次,∴3x ﹣y =1是二元一次方程;D 、1x ﹣2y =1含有两个未知数,但分母上含有未知数,不是整式方程, ∴1x ﹣2y =1不是二元一次方程.故选:C .【点睛】此题主要考查了二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.二、填空题1、4【解析】【分析】将方程组重新组合31x y x y +=⎧⎨-=-⎩①②,求出关于x 、y 的方程组,再代入求出k 即可. 【详解】解:关于x ,y 的方程组21x y k x y +=⎧⎨-=-⎩满足3x y +=, ∴31x y x y +=⎧⎨-=-⎩①②, ∴①+②得:x =1,把x =1代入①得y =2,12x y =⎧⎨=⎩, ∴2x y k +==4.故答案为:4.【点睛】本题考查了解二元一次方程组的解满足二元一次方程,重新组合能求出x 、y 的值是解此题的关键. 2、1【解析】【分析】把12x y =⎧⎨=-⎩代入方程5ax by +=得出25a b -=,再变形,最后代入求出即可. 【详解】 解:12x y =⎧⎨=-⎩是关于x 、y 的方程5ax by +=的一组解, ∴代入得:25a b -=,24(2)4541a b a b ∴--=--=-=,故答案是:1.【点睛】本题考查了二元一次方程的解和求代数式的值,解题的关键是能够整体代入求值.3、-1【解析】【分析】根据 二元一次方程定义:一个含有两个未知数,并且未知数的都指数是1的整式方程,叫二元一次方程,求出x ,y 的值即可得出答案.【详解】 解:方程23||22(3)4m n x n y +-++=是关于x ,y 的二元一次方程,231,21,30m n n ∴+=-=+≠,1,3m n ∴=-=,3(1)1n m ∴=-=-,故答案为:1-.【点睛】本题考查了二元一次方程的概念以及有理数的乘方运算,根据二元一次方程的概念得出x ,y 的值是解本题的关键.4、1【解析】【分析】利用整体思想直接用方程①-②即可得结果.【详解】解:52723x y x y +=⎧⎨-=⎩①②,①-②得,4x +4y =4,x +y =1,故答案为:1.【点睛】本题考查了二元一次方程组的解,解二元一次方程组,解决本题的关键是掌握整体思想.5、a =﹣3,b =﹣14##b =-14,a =-3【解析】【分析】 根据二元一次方程组有无数多个解的条件得出11531a b -==- ,由此求出a 、b 的值.【详解】解:∵方程组531x y ax y b -=⎧⎨+=-⎩有无数多个解, ∴11531a b -==-, ∴a =−3,b =−14.故答案为:a =﹣3,b =﹣14.【点睛】本题考查了对二元一次方程组的应用,注意:方程组ax by c ex fy g +=⎧⎨+=⎩ 中,当a b c e f g ==时,方程组有无数解.三、解答题1、(1)a =0;(x +1)(x 2-x +1);(2)-31;【分析】 (1)先将x =-1代入x 3+ax +1=0中,得a =0,令x 3+1=(x +1)(x 2+bx +c ),根据等式两边x 同次幂的系数相等确定b 、c 的值,再因式分解多项式;(2)设3x 4+ax 3+bx -34=(x +1)(x -2)•M ,则x =-1,x =2是方程3x 4+ax 3+bx -34=0的解,然后解关于a 、b 的方程组,即可得到答案.【详解】解:(1)∵x +1是多项式x 3+ax +1的因式,∴当x =-1时,x 3+ax +1=0,∴-1-a +1=0,∴a =0,令x 3+1=(x +1)(x 2+bx +c ),而(x+1)(x2+bx+c)=x3+(b+1)x2+(c+b)x+c,∵等式两边x同次幂的系数相等,即x3+(b+1)x2+(c+b)x+c=x3+1,∴101bc+=⎧⎨=⎩,解得:11bc=-⎧⎨=⎩,∴a的值为0,x3+1=(x+1)(x2-x+1);(2)设3x4+ax3+bx-34=(x+1)(x-2)•M(其中M为二次整式),∴x=-1,x=2是方程3x4+ax3+bx-34=0的解,∴3340 31682340a ba b---=⎧⎨⨯++-=⎩∴839ab=⎧⎨=-⎩,∴a+b=8+(-39)=-31;【点睛】本题考查了分解因式,因式分解的应用,解二元一次方程组,解题的关键是掌握因式分解的方法,从而进行解题.2、(1)31xy=⎧⎨=⎩;(2)52xy=⎧⎨=-⎩【分析】(1)利用把两个方程相加先消去y求解,x再求解y,从而可得方程组的解;(2)把方程①乘以3,再与方程②相加消去,y求解,x再求解,y从而可得答案.解:(1)227 x yx y①②①+②得:39,x=解得:3,x=把3x=代入①得:32,y解得:1,y=所以方程组的解是31 xy=⎧⎨=⎩(2)31731 x yx y①②①3⨯得:9351x y③②+③得:1050,x解得:5,x=把5x=代入①得:2,y=-所以原方程组是解是52 xy=⎧⎨=-⎩【点睛】本题考查的是利用加减消元法解二元一次方程组,掌握“加减法解二元一次方程组”是解本题的关键.3、43xy=⎧⎨=⎩.【分析】将①×10,②×6,进而根据加减消元法解二元一次方程组即可解:①×10,②×6,得313, 326,x yx y+=⎧⎨-=⎩③④③×3-④,得11y=33,解得y=3.将y=3代入③,解得x=4.所以原方程组的解为4,3. xy=⎧⎨=⎩【点睛】本题考查了解二元一次方程,先将方程组中未知数的系数化为整数是解题的关键.4、2343 xy⎧=⎪⎪⎨⎪=⎪⎩【分析】方程组利用加减消元法求出解即可.【详解】解:3610638x yx y+=⎧⎨+=⎩①②,①×2﹣②得:9y=12,解得:y=43,把y=43代入②得:6x+4=8,解得:x=23,则方程组的解为2343x y ⎧=⎪⎪⎨⎪=⎪⎩. 【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.5、(1)21x y =⎧⎨=-⎩;(2)373x y =-⎧⎪⎨=-⎪⎩【分析】(1)方程组利用代入消元法求解即可;(2)方程组整理后,方程组利用加减消元法求解即可.【详解】(1)25528y x x y =-⎧⎨+=⎩①②将①代入②得:()52258x x +-=去括号,合并同类项得:9108x -=移项,系数化为1,解得:2x =代入①中,解得:1y =-∴方程组的解为:21x y =⎧⎨=-⎩; (2)2311243x y y x -=⎧⎪⎨++=⎪⎩①② 方程②去分母得:3348y x +=+,整理得:345y x -=③①×2得:462x y -=④③+④得:37y -=,解得:73y =-代入①得:3x =- ∴方程组的解为:373x y =-⎧⎪⎨=-⎪⎩. 【点睛】此题考查了解二元一次方程组,利用了消元的思想,解题的关键是利用代入消元法或加减消元法消去一个未知数.。

最新人教版七年级数学下册第十章数据的收集、整理与描述题测试题及答案(2)

最新人教版七年级数学下册第十章数据的收集、整理与描述题测试题及答案(2)

人教版七年级下册第7章平面直角坐标系水平测试卷第10章数据的收集、整理与描述期末复习测试卷一、选择题(每小题3分,共30分)1.为了了解某校学生对篮球、足球、羽毛球、乒乓球、网球等五类的喜爱,小李采用了抽样调查,在绘制扇形图时,由于时间仓促,还有足球、网球等信息还没有绘制完成,如图所示,根据图中的信息,这批被抽样调查的学生最喜欢足球的人数不可能是()A.100人B.200人C.260人D.400人2.宾馆有100间相同的客房,经过一段时间的经营,发现客房定价与客房的入住率之间有下表所示的关系,按照这个关系,要使客房的收入最高,每间客房的定价应为()3.下列调查中,最适合采用抽样调查(抽查)的是()A.调查“神州十一号飞船”各部分零件情况B.调查旅客随身携带的违禁物品C.调查全国观众对湖南卫视综艺节目“声临其境”的满意情况D.调查某中学九年级某班学生数学暑假作业检测成绩4.下列调查中,调查方式选择不合理的是A.调查我国中小学生观看电影《厉害了,我的国》情况,采用抽样调查的方式B.调查全市居民对“老年餐车进社区”活动的满意程度,采用抽样调查的方式C.调查“神州十一号”运载火箭发射前零部件质量状况,采用全面调查普查的方式D.调查市场上一批LED节能灯的使用寿命,采用全面调查普查的方式5.为了了解某校2000名学生的体重情况,从中抽取了150名学生的体重,就这个问题来说,下面说法正确的是()A.2000名学生的体重是总体B.2000名学生是总体C.每个学生是个体D.150名学生是所抽取的一个样本6.一家鞋店在一段时间内销售了某种女鞋30双,各种尺码的销售量如下表:和最合适...的是()A.20双B.30双C.50双D.80双7.井冈山景区为估计该地区国家保护动物穿山甲的只数,先捕捉20只穿山甲给它们分别作上标志,然后放回,待有标志的穿山甲完全回归山林后,第二次捕捉40只穿山甲,发现其中2只有标志。

从而估计该地区有穿山甲()A.400只B.600只C.800只D.1000只8.一个容量为40的样本最大值为35,最小值为12,取组距为4 ,则可以分为()A.4组B.5组C.6组D.7组9.为积极响应南充市创建“全国卫生城市”的号召,某校1500名学生参加了卫生知识竞赛,成绩记为A、B、C、D四等.从中随机抽取了部分学生成绩进行统计,绘制成如图所示的两幅不完整的统计图,根据图中信息,以下说法不正确的是()A.样本容量是200 B.D等所在扇形的圆心角为15°C.样本中C等所占百分比是10%D.估计全校学生成绩为A等的大约有900人10.如图是某城市6月份1日至7日每天的最高、最低气温的折线统计图,在这7天中,日温差最大的一天是()A.6月1日B.6月2日C.6月3日D.6月5日二、选择题(每小题3分,共30分)11.一组数据分为5组,第一组的频率为0.15,第二组的频率为0.21,第三组的频率为0.29,第四组的频率为0.15,则第五组的频率是______.12.小明同学根据全班同学的血型绘制了如图所示的扇形统计图,已知A型血的有20人,则O型血的有____人.13.一次考试考生有2万人,从中抽取500名考生的成绩进行分析,这个问题的样本是。

达标测试华东师大版七年级数学下册第7章一次方程组综合测评试卷(含答案解析)

达标测试华东师大版七年级数学下册第7章一次方程组综合测评试卷(含答案解析)

七年级数学下册第7章一次方程组综合测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若关于x ,y 的方程()716mx m y ++=是二元一次方程,则m 的值为( ) A .﹣1 B .0 C .1 D .22、下列方程组中,属于二元一次方程组的是( )A .659x y xy +=⎧⎨=⎩B .123230x y x y ⎧+=⎪⎨⎪-=⎩C .3511643x y x y =⎧⎪⎨+=⎪⎩D .3826x y y z -=⎧⎨-=⎩3、方程x +y =6的正整数解有( )A .5个B .6个C .7个D .无数个4、已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩则a b --的值为( ) A .4-B .4C .2-D .2 5、若21x y =-⎧⎨=⎩是方程组17ax by bx ay +=⎧⎨+=⎩的解,则()()a b a b +-的值为( )A .16B .-1C .-16D .16、下列方程是二元一次方程的是( )A .x ﹣xy =1B .x 2﹣y ﹣2x =1C .3x ﹣y =1D .1x﹣2y =1 7、如图,已知长方形ABCD 中,8cm AD =,6cm AB =,点E 为AD 的中点,若点P 在线段AB 上以2cm/s 的速度由点A 向点B 运动.同时,点Q 在线段BC 上由点C 向点B 运动,若AEP △与BPQ 全等,则点Q 的运动速度是( )A .6或83 B .2或6 C .2或23 D .2或838、《孙子算经》记载:“今有三人共车,二车空;二人共车,九人步,问人与车各几何?”大致意思是:今有若干人乘车,若每3人共乘一辆车,最终剩余2辆车;若每2人共乘一辆车,最终剩余9人无车可乘.问共有多少人?有多少辆车?若设有x 人,有y 辆车,根据题意,所列方程组正确的是( )A .()229x x y x y ⎧-=⎨+=⎩B .()3229y x y x ⎧-=⎨+=⎩C .()3229x y y x ⎧-=⎨+=⎩D .()3229y x x y ⎧-=⎨+=⎩ 9、由方程组250x m x y m +=⎧⎨+-=⎩可以得出关于x 和y 的关系式是( ) A .5x y += B .25x y += C .35x y += D .30x y +=10、中国古代人民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人共乘一车,最终剩余2辆车;若每2人共乘一车,最终剩余9个人无车可乘.问有多少人,多少辆车?设共有x 人,y 辆车,可列方程组为( )A .()3229y x x y ⎧-=⎨=-⎩B .()3229y x x y ⎧+=⎨=+⎩C .()3229y x x y ⎧-=⎨=+⎩D .()3229y x x y ⎧+=⎨=-⎩第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若()232565803x y x y -+++-=,则22x xy y -+的值为______. 2、写出二元一次方程组 310x y += 的所有正整数解________________.3、通过“___________”或“___________”进行消元,把“三元”转化为“___________ ”,使解三元一次方程组转化为解___________,进而再转化为解___________.4、为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文a ,b ,c ,d 对应密文2+a b ,2b c +,22c d +,4d .例如,明文1,2,3,4对应密文5,7,14,16.当接收方收到密文9,9,24,28时,则解密得到的明文为 __.5、使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.如果一个二元一次方程的解中两个未知数的绝对值相等,那么我们把这个解称做这个二元一次方程的等模解.二元一次方程2x ﹣5y =7的等模解是____.三、解答题(5小题,每小题10分,共计50分)1、2020年新型冠状病毒肺炎在全球蔓延,口罩成了人们生活中的必备物资,某口罩厂现安排A 、B 两组工人共150人加工口罩,A 组工人每小时可加工口罩50个,B 组工人每小时可加工口罩70个,A 、B 两组工人每小时一共可加工口罩9100个,试问:A 、B 两组工人各多少人?2、对于一个四位正整数n ,如果n 满足:它的千位数字、百位数字、十位数字之和与个位数字的差等于12,那称这个数为“幸运数”.例如:n 1=8455,∵8+4+5﹣5=12,∴8455是“幸运数”;n 2=2021,∵2+0+2﹣1=3≠12,∴2021不是“幸运数”.(1)判断3753,1858是否为“幸运数”?请说明理由.(2)若“幸运数”m =1000a +100b +10c +203(4≤a ≤8,1≤b ≤9,1≤c ≤5且a ,b ,c 均为整数),s 是m 截掉其十位数字和个位数字后的一个两位数,t 是m 截掉其千位数字和百位数字后的一个两位数,若s 与t 的和能被7整除,求m 的值.3、养牛场原有30头大牛和15头小牛,1天约需用饲料675 kg ;一周后又购进12头大牛和5头小牛,这时1天约需用饲料940 kg.饲养员李大叔估计每头大牛1天约需饲料18~20 kg,每头小牛1天约需饲料7 ~8 kg.你能否通过计算检验他的估计?解:设平均每头大牛和每头小牛1天各需用饲料为x kg和y kg;根据题意列方程:3015675 4220940x yx y+=⎧⎨+=⎩,解得:___________所以,每只大牛1天约需饲料20kg,每只小牛1天约需饲料5kg,饲养员李大叔对大牛的食量估计正确,对小牛的食量估计偏高.4、某中学为了表彰在书法比赛中成绩突出的学生,购买了钢笔30支,毛笔20支,共用了1070元,其中每支毛笔比钢笔贵6元.(1)求钢笔和毛笔的单价各为多少元?(2)①学校仍需要购买上面的两种笔共60支(每种笔的单价不变).陈老师做完预算后,向财务处王老师说:“我这次买这两种笔,需支领1322元.”王老师算了一下,说:“如果只买这两种笔,你的帐肯定算错了!”请判断王老师的说法是否正确,并说明理由;②陈老师突然想起,所做的预算中还包括一支签字笔.如果签字笔的单价为不大于10元的整数,请直接写出签字笔的单价5、阅读:一个两位数,若它刚好等于它各位数字之和的整数倍,我们称这个两位数为本原数;把一个本原数的十位数字、个位数字交换后得到一个新的两位数,我们称这个新的两位数为本原数的奇异数.(1)一本原数刚好是组成它的两个数字之和的4倍.请写出符合条件的所有本原数;(2)一本原数刚好等于组成它的数字之和的3倍,它的奇异数刚好是两个数字之和的k倍.请问k的值是多少?(3)一个本原数刚好等于组成它的数字之和的m倍,它的奇异数刚好是这个数的数字之和的n倍,试说明m和n的关系.-参考答案-一、单选题1、C【解析】【分析】 根据二元一次方程的定义得出1m =且10m +≠,再求出答案即可.【详解】解:∵关于x ,y 的方程()716mx m y ++=是二元一次方程, ∴1m =且10m +≠,解得:m =1,故选C .【点睛】本题考查了二元一次方程的定义,能熟记二元一次方程的定义是解此题的关键.2、C【解析】【分析】根据二元一次方程组的基本形式及特点进行判断,即①含有两个二元一次方程,②方程都为整式方程,③未知数的最高次数都为一次.【详解】解:A 、该方程组中的第二个方程的最高次数为2,不是二元一次方程组,故本选项不符合题意; B 、该方程组的第一个方程不是整式方程,不是二元一次方程组,故本选项不符合题意; C 、该方程组符合二元一次方程组的定义,故本选项符合题意;D 、该方程组中含有3个未知数,不是二元一次方程组,故本选项不符合题意;【点睛】本题主要考查二元一次方程组的判定,解题的关键是熟练掌握二元一次方程组的基本形式及特点.3、A【解析】【分析】根据题意求二元一次方程的特殊解,根据解为正整数,分别令1,2,3,4,5x=进而求得对应y的值即可【详解】解:方程的正整数解有15xy=⎧⎨=⎩,24xy=⎧⎨=⎩,33xy=⎧⎨=⎩,42xy=⎧⎨=⎩,51xy=⎧⎨=⎩共5个,故选:A.【点睛】本题考查了求二元一次方程的特殊解,理解解为正整数是解题的关键.4、A【解析】【分析】求出方程组的解得到a与b的值,即可确定出-a-b的值.【详解】解:51234a ba b+=⎧⎨-=⎩①②,①+②×5得:16a=32,即a=2,把a=2代入①得:b=2,故选:A .【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.5、C【解析】【分析】把x 与y 的值代入方程组,求出a +b 与a -b 的值,代入原式计算即可求出值.【详解】解:把21x y =-⎧⎨=⎩代入方程组得2127a b b a -+=⎧⎨-+=⎩, 两式相加得8a b +=-;两式相差得:2a b -=,∴()()16a b a b +-=-,故选C .【点睛】本题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.6、C【解析】【分析】根据二元一次方程的定义逐个判断即可.含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程.【详解】解:A、x﹣xy=1含有两个未知数,但未知数的最高次数是2次,∴x﹣xy=1不是二元一次方程;B、x2﹣y﹣2x=1含有两个未知数.未知数的最高次数是2次,∴x2﹣y﹣2x=1不是二元一次方程;C、3x﹣y=1含有两个未知数,未知数的最大次数是1次,∴3x﹣y=1是二元一次方程;D、1x﹣2y=1含有两个未知数,但分母上含有未知数,不是整式方程,∴1x﹣2y=1不是二元一次方程.故选:C.【点睛】此题主要考查了二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.7、A【解析】【分析】设Q运动的速度为x cm/s,则根据△AEP与△BQP得出AP=BP、AE=BQ或AP=BQ,AE=BP,从而可列出方程组,解出即可得出答案.【详解】解:∵ABCD是长方形,∴∠A=∠B=90°,∵点E为AD的中点,AD=8cm,∴AE=4cm,设点Q 的运动速度为x cm/s ,①经过y 秒后,△AEP ≌△BQP ,则AP =BP ,AE =BQ ,26248y y xy -⎧⎨-⎩==, 解得,3283x y ⎧=⎪⎪⎨⎪=⎪⎩, 即点Q 的运动速度83cm/s 时能使两三角形全等.②经过y 秒后,△AEP ≌△BPQ ,则AP =BQ ,AE =BP ,28462y xy y -⎧⎨-⎩==, 解得:61x y ⎧⎨⎩==, 即点Q 的运动速度6cm/s 时能使两三角形全等.综上所述,点Q 的运动速度83或6cm/s 时能使两三角形全等.故选:A .【点睛】本题考查全等三角形的判定及性质,涉及了动点的问题使本题的难度加大了,解答此类题目时,要注意将动点的运用时间t 和速度的乘积当作线段的长度来看待,这样就能利用几何知识解答代数问题了.8、B【解析】【分析】根据“每3人乘一车,最终剩余2辆空车;若每2人同乘一车,最终剩下9人因无车可乘而步行”,即可得出关于x ,y 的二元一次方程组,此题得解.【详解】依题意,得:()3229y x y x ⎨-+⎧⎩== 故选:B【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.9、C【解析】【分析】分别用x ,y 表示m ,即可得到结果;【详解】由25x m +=,得到52m x =-,由0x y m +-=,得到m x y =+,∴52x x y -=+,∴35x y +=;故选C .【点睛】本题主要考查了二元一次方程组的化简,准确分析计算是解题的关键.10、C【解析】【分析】根据题意,找到关于x 、y 的两组等式关系,即可列出对应的二元一次方程组.【详解】解:由每三人共乘一车,最终剩余2辆车可得:3(2)y x -=.由每2人共乘一车,最终剩余9个人无车可乘可得:29x y =+.∴该二元一次方程组为:()3229y xx y ⎧-=⎨=+⎩.故选:C .【点睛】本题主要是考查了列二元一次方程组,熟练根据题意找到等式关系,这是求解该题的关键.二、填空题1、749##439【解析】【分析】 根据绝对值和平方的非负性,列出方程组,可得132x y ⎧=-⎪⎨⎪=⎩,再代入,即可求解. 【详解】 解:∵()232565803x y x y -+++-=, ∴325036580x y x y -+⎧=⎪⎨⎪+-=⎩ , 解得:132x y ⎧=-⎪⎨⎪=⎩ ,222211127224433939x xy y ⎛⎫⎛⎫=---⨯+=++= ⎪ ⎪⎝⎭⎝⎭-+. 故答案为:749【点睛】本题主要考查了绝对值和平方的非负性,二元一次方程组的应用,求代数式的值,根据绝对值和平方的非负性,列出方程组是解题的关键.2、17x y =⎧⎨=⎩ 24x y =⎧⎨=⎩,, 31x y =⎧⎨=⎩ 【解析】【分析】先把方程3x +y =10变形为 y =10-3x ,再根据整除的特征,逐一尝试即可求解.【详解】解:∵3x +y =10,∴y =10-3x ,∴原方程的所有正整数解是17x y =⎧⎨=⎩,24x y =⎧⎨=⎩,31x y =⎧⎨=⎩, 故答案为:17x y =⎧⎨=⎩,24x y =⎧⎨=⎩,31x y =⎧⎨=⎩. 【点睛】 本题考查了二元一次方程的整数解,求二元一次方程的正整数解,可以先用含一个未知数的代数式表示另一个未知数,再根据整除的特征,逐一尝试即可.3、 代入 加减 二元 二元一次方程组 一元一次方程【解析】略4、5,2,5,7【解析】【分析】设解密得到的明文为a ,b ,c ,d ,加密规则得出方程组,求出a ,b ,c ,d 的值即可.【详解】解:设明文为a ,b ,c ,d ,由题意得:29292224428a b b c c d d +=⎧⎪+=⎪⎨+=⎪⎪=⎩, 解得:5257a b c d =⎧⎪=⎪⎨=⎪⎪=⎩, 则得到的明文为5,2,5,7.故答案为:5,2,5,7.【点睛】本题考查了三元一次方程组的应用,找准等量关系,正确列出三元一次方程组是解题的关键.5、7373x y ⎧=-⎪⎪⎨⎪=-⎪⎩或11x y =⎧⎨=-⎩ 【解析】【详解】解:根据题意得:257x y x y =⎧⎨-=⎩或257x y x y =-⎧⎨-=⎩,解得:7373xy⎧=-⎪⎪⎨⎪=-⎪⎩或11xy=⎧⎨=-⎩,故答案为:7373xy⎧=-⎪⎪⎨⎪=-⎪⎩或11xy=⎧⎨=-⎩.【点睛】本题考查了解二元一次方程组,解题的关键是需要分两种情况解方程组,注意不要漏解.三、解答题1、A组工人有70人, B组工人80人.【解析】【分析】设A组工人有x人,B组工人有y人,根据A、B两组工人共150人,每小时可加工口罩9100个,即可得出关于x,y的二元一次方程组,解之即可得出结论.【详解】解:设A组工人有x人,B组工人有y人,依题意得:150 ********x yx y+=⎧⎨+=⎩,解得:7080xy=⎧⎨=⎩.答:A组工人有70人,B组工人有80人.【点睛】本题考查了二元一次方程组的应用,解题的关键是找准等量关系,正确列出二元一次方程组.2、 (1)3753是幸运数,1858不是幸运数,见解析(2)m的值为8343,7353【解析】【分析】(1)读懂“幸运数”的意思,再根据定义代入3773和1858进行验证;(2)m是一个四位数,s、t分别是两位数,都是可以用字母a、b、c表示,这样就可以用a、b、c 表示s和t.再根据m是满月数,化简得到a+c=12-b.最后s和t的和能被7整除,再代入求出值.(1)解: 3753是幸运数,1858不是幸运数,理由如下:∵3+7+5﹣3=12,1+8+5﹣8=6,∴3753是幸运数,1858不是幸运数.(2)①当1≤b≤7时,∵m=1000a+100b+10c+203=1000a+100(b+2)+10c+3,∴s=10a+b+2,t=10c+3,∴s+t=10a+10c+b+2+3=10(a+c)+b+5.∵m为“幸运数”,∴a+(b+2)+c﹣3=12,∴a+c=13﹣b,∴10(a+c)+b+5=135﹣9b.∵135﹣9b能被7整除,且1≤b≤9,∴b=1,∴a+c=12.∵4≤a≤8,1≤c≤5,∴当a=8时,c=4,m=8×1000+100×(2+1)+10×4+3=8343;当a=7时,c=5,m=7×1000+100(2+1)+10×5+3=7353.②当8≤b≤9时,m=1000(a+1)+100(b﹣8)+10c+3,∴a+1+b﹣8+c﹣3=12,∴a+b+c=22,当b=8时,a+c=14(舍去);当b=9时,则a+c=13,∴85ac=⎧⎨=⎩,∴m=9153,而91+53=146不能被7整除,答:3764是幸运数,2858不是幸运数;m的值为8343,7353.【点睛】本题主要考查了学生的阅读理解能力,根据题目给的新定义去求解,而找到字母之间的关系,用代入消元和整体法消元是解题的关键.3、205 xy=⎧⎨=⎩【解析】略4、 (1)钢笔的单价为19元,毛笔的单价为25元(2)①王老师的说法是正确的,理由见解析;②2元/支或8元/支【解析】【分析】(1)设钢笔的单价为x元,则毛笔的单价为()6x+元,根据买钢笔30支,毛笔20支,共用了1070元建立方程,求出其解即可;(2)①根据第一问的结论设钢笔为y 支,所以毛笔则为()60y -支,求出方程的解不是整数则说明算错了;②设钢笔为y 支,毛笔则为()60y -支,签字笔的单价为a 元,根据条件建立方程求出其解就可以得出结论.(1)设钢笔的单价为x 元,则毛笔的单价为()6x +元,由题意得:()302061070x x ++=,解得:19x =.625x +=,答:钢笔的单价为19元,毛笔的单价为25元;(2)①王老师的说法是正确的.理由:设钢笔为y 支,所以毛笔则为()60y -支.根据题意,得()1925601322y y +-=, 解得893y =(不符合题意), ∴陈老师肯定算错了;②设钢笔为y 支,签字笔的单价为a 元,则根据题意,得()1925601322y y a +-=-,∴6178y a =+,∵a 、y 都是整数,∴178a +应被6整除,∴a 为偶数,∵a 为小于10元的整数,∴a 可能为2、4、6、8,当2a =时,6180y =,30y =,符合题意;当4a =时,6182y =,913y =,不符合题意; 当6a =时,6184y =,923y =,不符合题意; 当8a =时,6186y =,31y =,符合题意,∴签字笔的单价可能2元或8元.【点睛】本题考查了列二元一次方程解实际问题的运用,列一元一次方程解实际问题的运用,在解答时根据题意等量关系建立方程是关键.5、 (1)12,24,36,48;(2)8k(3)11+=m n【解析】【分析】(1)设这个本原数的十位数字为x ,个位数字为y ,有()104x y x y +=+,得x y ,的关系,进而得到答案.(2)设这个本原数的十位数字为x ,个位数字为y ,有()103x y x y +=+,得x y ,的关系,找出满足条件的数,找出奇异数,进行求解即可.(3)设这个本原数的十位数字为x ,个位数字为y .则由题意可列方程组()()1010x y m x y y x n x y ⎧+=+⎪⎨+=+⎪⎩①②,两式相加求解即可.(1)解:设这个本原数的十位数字为x ,个位数字为y .由题意知:()104x y x y +=+解得2y x =∴符合条件的本原数为12,24,36,48;(2)解:设这个本原数的十位数字为x ,个位数字为y .由题意知:()103x y x y +=+解得72x y =∴满足条件的数为27,它的奇异数是72 ∴72872k∴8k;(3)解:设这个本原数的十位数字为x ,个位数字为y .由题意知:()()1010x y m x y y x n x y ⎧+=+⎪⎨+=+⎪⎩①② ①+②得()()()11x y m n x y +=++∴11+=m n【点睛】本题考查了二元一次方程组的应用.解题的关键在于依据题意正确的列方程.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学抽测试题 和顺一中 卢倩文
一、选择题(每题3分)
1、小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,他比修车前加快了骑车速度继续匀速行驶,下面是行驶路程S (米)关于时间t (分)的函数图象,那么符合这个同学行驶情况的图象大致是图中的( )
2、纳米技术是21世纪的新兴技术,纳米是一个长度单位,1纳米等于1米的10亿分之一,关系式是1纳米=10-n 米,N 是( )
A 、10
B 、9
C 、8
D 、-10 3、.如下图,下列条件中,不能判断直线l 1∥l 2的是( )
A 、∠1=∠3
B 、∠2=∠3
C 、∠4=∠5
D 、∠2+∠4=180°
4、下面各语句中,正确的是( )
A 、两条直线被第三条直线所截,同位角相等
B 、垂直于同一条直线的两条直线平行
C 、若a ∥b ,c ∥d ,则a ∥d
D 、同旁内角互补,两直线平行
5、一个盒子里有20个球,其中有18个红球,2个黑球,每个球除颜色外都相同,从中任意取出3个球,则下列结论中,正确的是( )
A 、所取出的3个球中,至少有一个是黑球
B 、所取出的3个球中,至少有2个黑球
C 、所取出的3个球中,至少有1个是红球
D 、所取出的3个球中,至少有2个是红球 6、钥匙藏在9块瓷砖的某一块下面,每块瓷砖除图案外, 其它都相同,则钥匙藏在白色瓷砖下面的概率是( ) A 、1/9 B 、1/6 C 、 2/3 D 、1/3
7、明明从广州给远在上海的爷爷打电话,电话费随着时间的变化而变化,在这个过程中,因变量是( )
A .明明 B.电话费 C. 时间 D.爷爷
8、对于四舍五入得到的近似数4.8×105
,下列说法正确的是( )
A 、有2个有效数字,精确到万位
B 、有2个有效数字,精确到个位
C 、有6个有效数字,精确到万位
D 、有6个有效数字,精确到个位 9、以下各组数据为长度的三条线段,能组成三角形的是( ). A .1,2,3 B .1,4,3 C .5,9,5 D .2,7,3
10、下列正确的是①所有直角都相等,②所有的余角都相等;③等角的余角都相等;④相等的角都是直角( )
A.①和②
B.①和③
C.②和③
D.③和④ 二、填空题(每题2分) 11、用科学记数法表示:0.000000723=__________。

用四舍五入法取近似数:2073(保留两位有效数字),得到的近似数为______________。

12、鞋柜里有3双鞋,任取一只恰为左脚穿的概率是____ 13、已知________,60,172=+==+y x xy y x 2则 14、________________123456790123456788123456789
2
=⨯-
15、如图,在直线DE 与∠O 的两边相交,则∠O
∠8的内错角是 。

∠1的同旁内角是 。

三、计算(每题4分,共16分) 16. ()()
322
3.x x -
17、 ()()()1122
+--+x x x
18、3y)3y)(2x (2x -+ 19、)5z 4y 5z)(3x 3x (4y +--+
20、已知a m =3,a n =4 求a 2m-n 的值(3分)
21已知一个角的补角比这个角的余角的3倍大100,求这个角的度数。

(4分)
四、解答题 22、(4分)甲、乙二人做如下的游戏:从编号为1到20的卡片中任意抽出一张。

(1)若抽到的数字是奇数,则甲获胜,否则乙获胜。

你认为这个游戏对甲、
乙双方公平吗?
(2)若抽到的数字是3的倍数,则甲获胜;若抽到的数字是5的倍数,则
乙获胜,你认为这个游戏对甲、乙双方公平吗?
23、(5分)下图是一辆汽车速度随时间变化而变化的情况.
(1)汽车从出发到最后停止共经过多少时间?它的最高时速是多少? (2)汽车在哪些时间段保持匀速行驶?时速分别是多少? (3)出发后8分到10分之间可能发生了什么情况? 24、(5分)已知AC =BD ,AE =CF ,BE =DF ,问AE ∥CF 吗?
25、(5分)已知:如图 , CE 垂直AB 于E , BF 垂直CD 于F , 且BF=CE . 求证:BE=CF .
26、(5分)已知三角形的两边及其夹角,求作这个三角形.
A C
B
D
E F
27、(5分)如图2所示,已知∠1=60°,∠2=120°,∠3=70°,则∠4的度数为 解°18051=∠+∠ ( )
∴∠=-==∠5180601202°°°
∴l 1//l 2( )
∴∠3=∠ =70°(两直线平行,同位角相等) ∵∠4=∠ =70°( )
28、(5分)如图3—18所示为某个月中不同牌子的私家车的销量统计:
(1)哪个牌子的销量最佳?(1分)
(2)H 牌的销量占总销量的百分比是多少?(1分) (3)利用—象形图表示这些数据.(3分)
29、(3分)我国宋朝数学家杨辉在他的著作《详解九章算法》中提出右表,此表揭示了()n a b +(n 为非负整数)展开式的各项系数的规律.例如:
0()1a b +=,它只有一项,系数为1;
1
()a b a b +=+,它的两项,系数分别为1,1;
222()2a b a ab b +=++,它有三项,系数分别为1,2,1;
33223()33a b a a b ab b +=+++,它有四项,系数分别为1,3,3,1; ……
根据以上规律,4()a b +展开式共有五项,系数分别为 .(1分) 计算:4()a b +(2分)
1 2 1
1
1 1
3 3 1
1
答案:
一、选择题1、C 2、B 3、B 4、D 5、C 6、C 7、B 8、A 9、C 10、B 二、填空题:11、 7.23*10-7 2.1*103 12、1/2 13、169 14、1
15、∠2 和 ∠5;∠2;∠8。

三、计算:
16、()12x - 17、4x+5 18、4x 2-9y 2 19、9x 2-16y 2+40yz-25z
20、9/4 21、 500
四、22、(1)答:游戏公平
因为抽到的数是奇数的概率和抽到不是奇数的概率一样。

(2)游戏不公平
因为抽到3的倍数有3、6、9、12、15、18 P (3的倍数)=6/20=3/10 抽到5的倍数有5、10、15、20、P (5的倍数)=4/20=2/10 因为3/10>2/10 所以不公平。

23、由题意得:(1)汽车从出发到最后停此共经过24分钟,最高时速为:
80千米/时
(2)从2至8分钟,18至24分钟在匀速行驶,分别为30千米/时
和80千米/时
(3)8到10分钟之间可能在等红灯(等等合理就可以) 22、解:答:AE ∥CF ∵AC=BD
∴AC+CB=CB+BD
即 AB=CD
在△ EAB 和△FCD 中 AE=CF AB=CD BE=DF
∴△EAB ≌△FCD ∴∠A=∠FCD ∴AE ∥CF
23、∵CE 垂直AB , BF 垂直CD ∴△BCE 和△CBF 是直角三角形 在△BCE 和△CBF 中
BC=BC
BF=CE
∴△BCE ≌△CBF ∴BE=CF .
26、略 27、邻补角定义;(平角定义)内错角相等,两直线平行;6;6=700;
对顶角相等 25、解:由题意得:(1)T 牌子的销售量最佳 (2)H 牌的销售量为28%(3)略 26、1、4、6、4、1 4322342464)(b ab a b b a a b a ++++=+。

相关文档
最新文档