重庆市巴蜀中学2017-2018学年八年级下学期期末考试模拟数学试题三(图片版 无答案)

合集下载

重庆巴蜀中学 2017-2018学年 八年级下 期末测试卷

重庆巴蜀中学 2017-2018学年 八年级下 期末测试卷

巴蜀中学2017-2018学年度第二学期期末考试初2019届(二下)数学试题卷(全卷共三个大题,满分150分,考试时间120分钟)一、选择题(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡...上对应题目的正确答案标号涂黑. 1.下列方程中,是一元二次方程的是( )A .221x xy += B .12++x x C .24x = D .2113x x -=2.如图,水平的讲台上放置的圆柱体笔筒和正方体粉笔盒,其左视图是( )A .B .C .D .3.已知△ABC ∽△DEF ,相似比为1:4,△ABC 的周长为4,则△DEF 的周长为( ) A .2 B .4 C .8D .164.在一个不透明的袋子里装有若干个白球和5个红球,这些球除颜色不同外其余均相同,每次从袋子中摸出一个球记录下颜色后再放回,经过很多次重复试验,发现红球摸到的频率稳定在0.25,则袋中白球有( )A .15个B .20个C .10个D .25个5.如图,平行四边形ABCD 中,E 为CD 延长线上一点,连接BE 交AD 于F ,则图中与 △DEF 相似(不包括本身)的三角形共有( ) A .1个 B .2个 C .3个 D .4个6.某企业今年一月工业产值达20亿元,第一季度总产值达90亿元,问二、三月份的月平均增长率是多少?设月平均增长率的百分数为x ,则由题意可得方程( ) A. 220(1)90x +=B. 22020(1)90x ++=C. 220(1)20(1)90x x ++++= D. 22020(1)20(1)90x x ++++=7.如图,在平行四边形ABCD 中,AE 、CF 分别是∠BAD 和∠BCD 的平分线,添加一个条件,仍无法判断四边形AECF 为菱形的是( )A. AE =AFB. EF ⊥ACC. ∠B =600D. AC 是∠EAF 的平分线第7题图 第5题图 第2题图8.如图,已知矩形ABCD 中,AC 与BD 相交于O ,DE 平分∠ADC 交BC 于E ,∠BDE=15°,则 ∠COE 的度数为( ) A .75°B .85°C .90°D .65°9.如图,正方形ABCD 的对角线AC ,BD 相交于点O ,DE 平分∠ODA 交OA 于点E ,若AB=4,则线段OE 的长为( ) A .423B .422-C .2D .22-10.如图,在菱形ABCD 中,E 、F 分别是AB 、BC 边的中点,EP ⊥CD 于点P ,∠BAD=110°,则 ∠FPC 的度数是( ) A. 35° B. 45° C. 50° D. 55°11.将三角形纸片(△ABC )按如图所示的方式折叠,使点C 落在AB 边上的点D ,折痕为EF .已知AB=AC=3,BC=4,若以点B 、D 、F 为顶点的三角形与△ABC 相似,那么CF 的长度是( ) A .2 B .127或2 C .127 D .125或2 12.如图,在矩形ABCD 中,AD=2AB ,∠BAD 的平分线交BC 于点E ,DH ⊥AE 于点H ,连接BH 并延长交CD 于点F ,连接DE 交BF 于点O ,下列结论:①∠AED=∠CED ;②OE=OD ;③BH=HF ;④BC ﹣CF=2HE ;⑤AB=HF , 其中正确的有( ) A .①②③ B .①②④ C .②③④ D .①②③④二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡...中对应的横线上.13.若1x =是一元二次方程230x kx +-=的一个根,则k 的值为14.太阳光线与地面成60°的角,照射在地面上的一只皮球上,皮球在地面上的投影长是103cm ,则皮球的直径是 cm第8题图 第11题图第14题图第9题图 第10题图 OHEA 第12题图15.如图 ,D 为AB 边上一点,AD ∶DB =3∶4,DE ∥AC 交BC 于点E ,则S △BDE ∶S △AEC等于16.如图,△ABC 中,AB=AC ,以AC 为斜边作Rt △ADC ,使∠ADC=90°,∠CAD=∠CAB=26°,E 、F 分别是BC 、AC 的中点,则∠EDF 等于 度 17.一个盒子里有完全相同的三个小球,球上分别标有数字-2,1,4.随机摸出一个小球(不放回),其数字为p ,随机摸出另一个小球,其数字记为q ,则满足关于x 的方程02=++q px x 有实数根的概率是18.如图,垂直于地面放置的正方形框架ABCD ,边长AB 为30cm ,在其正上方有一灯泡,在灯泡的照射下,正方形框架的部分影子A′B ,D′C 的长度和为6cm .那么灯泡离地面的高度为 cm19.如图,在矩形ABCD 中,AD =4,M 是AD 的中点,点E 是线段AB 上一动点,连接EM 并延长交线段CD 的延长线于点F 点,G 是线段BC 上一点,连接GE 、GF 、GM .若△EGF 是等腰直角三角形,∠EGF=90°,则AB=20.如图,正方形ABCD 中,AB=2,E 是BC 中点,CD 上有一动点M ,连接EM 、BM ,将BEM ∆沿着BM 翻折得到BFM ∆.连接DF 、CF ,则12DF FC +的最小值为三、解答题:解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡...中对应的位置上.21.(10分)解下列一元二次方程(1) 0462=--x x (2) (7)536x x x -=-第16题图第18题图第15题图第19题图第20题图CDF22.(8分)如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,过点C 作CE ∥BD ,过点D 作DE ∥AC ,CE 与DE 相交于点E ,若AB=10,AC=12,求四边形CODE 的周长.23.(10分)重庆鲁能巴蜀中学膳食科为了了解学生对食堂饭菜的满意程度,从初二年级随机抽取部分同学进行调查统计,绘制了如图所示两幅不完整的统计图:其中A 代表非常满意,B 代表满意,C 代表比较满意,D 代表不满意,根据图中提供的信息完成下列问题. (1)扇形统计图中B 对应的圆心角的度数为 度,并补全条形统计图;(2)在抽样调查中D 类不满意学生中有三男一女,为了给全校学生提供更满意的后勤服务,提高学生对食堂饭菜的满意程度,现从D 类不满意的学生中随机抽取2名学生向食堂反映同学们的意见和建议,请你利用画树状图或列表格的方法求出抽取的2名学生恰好是一男一女的概率.924满意度人数108642OA B C D A10%DCB抽样调查中饭菜满意度条形统计图 抽样调查中饭菜满意度扇形统计图24.(10分)国际足联世界杯足球赛于2018年6月14日在俄罗斯拉开战幕,来自5大洲的32只球队参赛,此赛事也吸引了全世界的球迷前往观战,某经销商抓住商机销售纪念品,每天他会用8880元购进球衣和文化衫共240件,其中球衣和文化衫的数量之比为3:1,已知每件球衣的售价比每件文化衫的售价多15元,预计当天就可全部售完。

2017~2018第二学期八年级数学期末试卷

2017~2018第二学期八年级数学期末试卷

2017~2018学年第二学期期末考试卷八年级数学试题 2018.6一、选择题(本大题共10小题,每题3分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请把正确现象前的字母代号填涂在答题卷相应位置..........) 1.下列图形中,既是轴对称图形,又是中心对称图形的是……………………………………………( ▲ )A.BC .D .2.下列各式: a -b 2 ,x -3x ,5+y π ,a +b a -b ,1n(x -y )中,是分式的共有…………………………( ▲ ) A .1个B .2个C .3个D .4个3.下列式子从左到右变形一定正确的是 ………………………………………………………………( ▲ ) A . a b =a 2b 2B . a b =a +1b +1C . a b =a -1b -1D . a 2 ab =a b4.若2x -1 在实数范围内有意义,则x 的取值范围是………………………………………………( ▲ ) A .x ≥12B . x ≥-12C .x >12D .x ≠125.下列计算:(1)(2)2=2,(2)(-2)2=2,(3)(-23)2=12,(4)(2+3)( 2-3)=-1,其中结果正确的个数为 …………………………………………………………………………………………( ▲ ) A .1B .2C .3D .46.一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,下列事件为必然事件的是………… ……………………………………………………………………………( ▲ )A .至少有1个球是黑球B .至少有1个球是白球C .至少有2个球是黑球D .至少有2个球是白球7.已知P 1(x 1,y 1),P 2(x 2,y 2),P 3(x 3,y 3)是反比例函数y =6x 的图像上三点,且y 1<y 2<0<y 3,则x 1,x 2,x 3的大小关系是 …………………………………………………………………………………………( ▲ ) A . x 1<x 2<x 3B . x 3<x 2<x 1C . x 2<x 1<x 3D . x 2<x 3<x 18.关于x 的分式方程7xx -1 +5=2m -1x -1 有增根,则m 的值为 ……………( ▲ )A .5B .4C .3D .19.如图,在菱形ABCD 中,∠BCD =110°,AB 的垂直平分线交对角线AC 于点F ,E 为垂足,连接DF ,则∠CDF 等于 …………………………………………( ▲ )CF E DBA (第9题)A .15°B .25°C .45°D .55°10.如图,在平面直角坐标系中,直线y =33x +2与x 轴交于点A ,与y 轴交于点B ,将△ABO 沿直线AB 翻折,点O 的对应点C 恰好落在双曲线y =kx (k ≠0)上,则k 的值为……( ▲ ) A .-4B .-2C . -2 3D . -3 3二、填空题:(本大题共8小题,每题2分,共计16分.请把答案直接填写在答题卷相应位......置.上.) 11.若分式x -3x值为0,则x 的值为 ▲ . 12.若最简二次根式2a -3 与5是同类二次根式,则a 的值为 ▲ .13.若反比例函数y =k -2x 的图像经过第二、四象限,则k 的取值范围是 ▲ .14.关于x 的分式方程x +m x -2+2m2-x=3的解为正实数,则实数m 的取值范围是 ▲ . 15.如图,点O 是矩形ABCD 的对角线AC 的中点,OM ∥AB 交AD 于点M ,若OM =2,BC =6,则OB 的长为 ▲ .16.如图,正方形ABCD 的边长为6,点G 在对角线BD 上(不与点B 、D 重合),GF ⊥BC 于点F ,连接AG ,若∠AGF =105°,则线段BG = ▲ .17.如图,在平面直角坐标系中,点A 的坐标为(1,0),等腰直角三角形ABC 的边AB 在x 轴的正半轴上,∠ABC =90°,点B 在点A 的右侧,点C 在第一象限.将△ABC 绕点A 逆时针旋转75°,若点C 的对应点E 恰好落在y 轴上,则边AB 的长为 ▲ .18.如图,已知点A 是一次函数y =23x (x ≥0)图像上一点,过点A 作x 轴的垂线,B 是上一点(B 在A 上方),在AB 的右侧以AB 为斜边作等腰三角形ABC ,反比例函数y =kx (x >0)的图像过点B 、C ,若△OAB 的面积为5,则△ABC 的面积是 ▲ .三、解答题(本大题共8小题,共计74分.解答需写出必要的文字说明或演算步骤.)19.(本题满分16分)计算:(1)6×33-(12)-2+|1-2|;(2)(312-213+48)÷3;MDABOCADG BFC(第15题)(第16题)(第18题)(3)1m -2-4m 2-4;(4)解方程:1x -2-1-x 2-x=-3.20.(本题满分4分)先化简,再求值:x -1x ÷(x - 1x ),其中x =3-1.21.(本题满分8分)今年4月23日是第23个“世界读书日”.某校围绕学生日人均阅读时间这一问题,对初二学生进行随机抽样调查.如图是根据调查结果绘制成的统计图(不完整),请你根据图中提供的信息解答下列问题:(1)本次抽样调查的样本容量是多少?(2)请将条形统计图补充完整.(3)在扇形统计图中,计算出日人均阅读时间在1~1.5小时对应的圆心角度数.(4)根据本次抽样调查,试估计我市12000名初二学生中日均阅读时间在0.5~1.5小时的有多少人.22.(本题满分8分)如图,在□ABCD 中,E 、F 为对角线BD 上的两点,且∠BAE =∠DCF . 求证:BF =DE .23.(本题满分8分)如图,方格纸中每个小正方形的边长都是1个单位长度. Rt △ABC 的三个顶点A (-2,2),B (0,5),C (0,2). (1)将△ABC 以点C 为旋转中心旋转180°,得到△A 1B 1C ,请画出的图形△A 1B 1C .(2)平移△ABC ,使点A 的对应点A 2坐标为(-2,-6),请画出平移后对应的△A 2B 2C 2.(3)请用无刻度的直尺在第一、四象限内画出一个以A 1B 2为FEABCD边,面积是7的矩形A1B1EF.(保留作图痕迹,不写作法)(4)若将△A1B1C绕某一点旋转可得到△A2B2C2,请直接写出旋转中心的坐标.24.(本题满分8分)某公司在工程招标时,接到甲、乙两个工程队的投标书.工程领导小组根据甲、乙两队的投标书测算:每施工一天,需付甲工程队工程款1.5万元,付乙工程队工程款1.1万元.甲队单独完成此工程刚好如期完工,乙队单独完成此工程要比规定工期多用5天,若甲、乙两队合作4天,剩下的工程由乙独做也正好如期完工.(1)求甲、乙两队单独完成此项工程各需要多少天?(2)由于任务紧迫,公司要求工程至少提前7天完成,问怎样安排甲、乙两个工程队施工所付施工费最少?最少施工费是多少万元?(施工天数不满一天以一天计)25.(本题满分10分)如图,在平面直角坐标系中,菱形ABCD 的顶点C 与原点O 重合,点B 在y 轴的正半轴上,点A 在反比例函数y =k x (k >0,x >0)的图像上,点D 的坐标为(2,32),设AB 所在直线解析式为y =kx +b (a ≠0),(1)求k 的值,并根据图像直接写出不等式ax +b >kx的解集;(2)若将菱形ABCD 沿x 轴正方向平移m 个单位,① 当菱形的顶点B 落在反比例函数的图像上时,求m 的值;② 在平移中,若反比例函数图像与菱形的边AD 始终有交点,求m 的取值范围.26.(本题满分12分) 在矩形ABCD 中,AB =4,AD =3,现将纸片折叠,点D 的对应点记为点P ,折痕为EF (点E 、F 是折痕与矩形的边的交点),再将纸片还原. (1)若点P 落在矩形ABCD 的边AB 上(如图1).① 当点P 与点A 重合时,∠DEF = ▲ °,当点E 与点A 重合时,∠DEF = ▲ °.② 当点E 在AB 上时,点F 在DC 上时(如图2),若AP =72,求四边形EPFD 的周长.(2)若点F 与点C 重合,点E 在AD 上,线段BA 与线段FP 交于点M (如图3),当AM =DE 时,请求出线段AE 的长度.(3)若点P 落在矩形的内部(如图4),且点E 、F 分别在AD 、DC 边上,请直接写出AP 的最小值.A PBC FDE A E P DF CB DC E MAPBDF CEP AB(图1) (图2) (图3) (图4)。

重庆市渝中区巴蜀八年级下学期期末数学试题(含答案)

重庆市渝中区巴蜀八年级下学期期末数学试题(含答案)

绝密★启用前重庆市渝中区巴蜀中学校八年级下学期期末数学试题班别_________ 姓名__________ 成绩____________要求:1、本卷考试形式为闭卷,考试时间为120分钟。

2、考生不得将装订成册的试卷拆散,不得将试卷或答题卡带出考场。

3、考生只允许在密封线以外答题,答在密封线以内的将不予评分。

4、考生答题时一律使用蓝色、黑色钢笔或圆珠笔(制图、制表等除外)。

5、考生禁止携带手机、耳麦等通讯器材。

否则,视为为作弊。

6、不可以使用普通计算器等计算工具。

第I 卷(选择题)请点击修改第I 卷的文字说明一、单选题 1.我国信息技术飞速发展,下列标志中,既是中心对称图形,又是轴对称图形的是( ) A . B . C . D . 2.下列计算正确的是( )A .4b 3﹣b 3=3B .(a 3b )2=a 6b 2C .a 3•a 2=a 6D .b 6÷b 6=0 3.如图,直线y =﹣x +3与y =mx +n 交点的横坐标为1,则关于x 、y 的二元一次方程组3y mx n y x =+⎧⎨=-+⎩的解为( )A .13x y =⎧⎨=⎩B .31x y =⎧⎨=⎩C .12x y =⎧⎨=⎩D .11x y =⎧⎨=⎩ 4.如图,AB 是圆O 的直径,D 是BA 延长线上一点,DC 与圆O 相切于点C ,连接BC ,∠ABC =20°,则∠BDC 的度数为( )A.50°B.45°C.40°D.35°5.若关于x的一元二次方程mx2﹣2x+3=0有两个不相等的实数根,则m的取值范围是()A.m<13B.m≤13C.m<13且m≠0D.m≤13且m≠06.如图,Rt ABC中,∠A=90°,∠ABC=40°,将Rt ABC绕着点C逆时针旋转得Rt EDC,且点E正好落在BC上,连接BD,则∠CBD的度数为()A.40°B.55°C.60°D.65°7.已知(﹣4,y1),(2.5,y2),(5,y3)是抛物线y=﹣3x2﹣6x+m上的点,则y1、y2、y3的大小关系是()A.y1>y2>y3B.y3>y2>y1C.y1>y3>y2D.y2>y1>y3 8.下列命题中,真命题的是()A.两组对角相等的四边形是平行四边形B.对角线互相垂直的四边形是菱形C.对角线相等的四边形是矩形D.对角线互相垂直平分的四边形是正方形9.如图,菱形ABCD的对角线AC,BD相交于点O,AE∠DC于点E,连接OE,若BD=6,OE)10.如图,抛物线y =ax 2+bx +c 与x 轴交于A (﹣1,0)、B (3,0)两点,与y 轴交于点C ,下列结论不正确的是( )A .abc >0B .2a +b =0C .3a +c >0D .4a +2b +c <011.若关于x 的不等式组()232212x x a x x ⎧-<-⎪⎨+>-⎪⎩无解,且关于y 的分式方程2622a y y y +-+--=3有非负整数解,则符合条件的所有整数a 的和为( )A .﹣2B .2C .5D .012.如图,ABC 中,∠ACB =60°,AG 平分∠BAC 交BC 于点G ,BD 平分∠ABC 交AC 于点D ,AG 、BD 相交于点F ,BE ∠AG 交MG 的延长线于点E ,连接CE ,下列结论中正确的有( )∠若∠BAD =70°,则∠EBC =5°;∠BF =2EF ;∠BE =CE ;∠AB =BG +AD ;∠BFG AFD S BF S AF=△△.A .5个B .4个C .3个D .2个第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题13.计算:|22=_____.14.函数yx 的取值范围是_____.15.如图,在OBC 中,∠COB=90°,∠B =60°,CO =OB 为半径的半圆O 交斜边BC 于点D ,则阴影部分面积为_____(结果保留π).16.如图是一个横断面为抛物线形状的拱桥,此时水面宽AB 为3米,拱桥最高点C 离水面的距离CO 也为3米,则当水位上升1米后,水面的宽度为____米.17.如图,在矩形ABCD 中,E 为CD 上一点,连接AE ,EF ∠AE 交BC 于点F ,连接AF ,若∠DAE =∠F AE ,CF =1,AB =6,则D 到AF 的距离为_____.18.某礼品店准备了甲、乙、丙、丁四种小礼品销售(单价与销量均为整数),在第一周销售时,乙的单价是甲的3倍,丙的单价是丁的5倍,丁的销量是乙的5倍,甲的销量是丙的3倍,且乙和丙的总销量不低于5件,第一周销售结束后,发现甲、乙两种礼品的销售总额比丙、丁两种礼品的销售总额多了105元.在第二周销售时,商家将甲礼品的单价提高了50%,丁礼品的单价为第一周的2倍,乙和丙的单价不变,而第二周甲的销量比第一周减少了13,丙的销量是第一周的2倍,乙、丁的销量和第一周相同,则第二周这四种小礼品的销售总额最少为____元.三、解答题 19.计算:(1)(a ﹣2)2+4(a ﹣1); (2)22x x x++÷(x ﹣1﹣31x +). 20.如图,矩形ABCD 中,AC 是对角线.(1)用尺规完成基本作图:作AC的垂直平分线,交AC于点O,交AB、CD延长线分别于点E、F,连接CE、AF.(保留作图痕迹,不写作法)(2)求证:四边形AECF是菱形,请完成下列证明过程.证明:∠EF垂直平分AC,∠AO=,∠AOE=∠COF=90.∠四边形ABCD为矩形,∠AB∥CD,∠∠ .∠AOE∠COF(AAS)∠∠ .∠AO=OC,∠四边形AECF是.∠∠ .∠四边形AECF是菱形.21.2022年4月16日9时56分,神舟十三号载人飞船返回舱在东风着陆场成功着落,神舟十三号载人飞行任务取得圆满成功,中国航天又达到了一个新的高度.某校为了了解本校学生对航天科技的关注程度,对八、九年级学生进行了航天科普知识竞赛(百分制),并从其中分别随机抽取了20名学生的测试成绩,整理、描述和分析如下:(成绩得分用x表示,共分成四组:A.80≤x<85;B.85≤x<90;C.90≤x<95;D.95≤x≤100)其中,八年级20名学生的成绩是:96,80,96,91,99,96,90,100,89,82,85,96,87,96,84,81,90,82,86,94.九年级20名学生的成绩在C组中的数据是:90,91,92,92,93,94.八、九年级抽取的学生竞赛成绩统计表和九年级抽取的学生成绩扇形统计图如表和图:根据以上信息,解答下列问题:(1)直接写出上述a、b、c的值:a=,b=,c=;(2)你认为这次比赛中年级成绩相对更好,理由是?(3)若该校九年级共1400人参加了此次航天科普知识竞赛活动,估计参加此次活动成绩优秀(x≥90)的九年级学生人数.22.“你出地、我出苗,你种植、我培训”.在当地政府支持农业发展的政策带领下,李大伯家种植了车厘子和水蜜桃,今年开始收成并批发出售,水蜜桃的产量是300斤,车厘子的产量比水蜜桃产量的两倍多100斤,每斤车厘子批发价比水蜜桃多2元.(1)李大伯把车厘子每斤批发价至少定为多少元,可使今年这两种水果的收入不低于23400元;(2)某水果店从李大伯家用(1)中的最低批发价购进车厘子销售.第一天每斤售价为40元,卖出了100斤,为了增加销量,水果店决定第二天每斤售价降低215m元,销量则在第一天的基础上上涨了2m斤,后结算发现第二天比第一天多盈利320元,已知每天的售价均为整数.求m的值.23.如图,直线AB与x轴、y轴分别交于A(1,0)B两点,与直线CD:y=﹣3x+12交于点D,且ACD的面积为15.(1)求直线AB的解析式;(2)直线EF经过原点,与直线AB交于点E,与直线CD交于点F,若E点的横坐标为﹣2,求四边形OBDF的面积.数字与十位上数字之和记为x,百位上数字与个位上数字之和记为y,若x﹣y=1.且其千位上数字与个位上数字之和等于百位上数字,则称N为“扬一数”.例如:N=2573,x =2+7=9,y=5+3=8,x﹣y=1,2+3=5则2573是“扬一数”;再如N=2354,x=2+5=7,y=3+4=7,x﹣y=0≠1,所以2354不是“扬一数”.(1)请判断4652和4157,是不是“扬一数”,并说明理由;(2)已知一个四位数S是“扬一数”,且能被7整除,请求出所有满足条件的S.25.如图1,在平面直角坐标系中,抛物线y=ax2+bx+3交x轴于A、B两点(点A在点B的左侧),交y轴于点C,连接AC,∠BAC=45°,OC=3OB.(1)求抛物线的解析式;(2)如图2,P为线段AC上方的抛物线上一动点,连接P A、PC、CB,求四边形P ABC 面积的最大值及此时点P的坐标;(3)在(2)的条件下,将抛物线沿着射线AC方向平移E 是新抛物线对称轴上一点,点N是新抛物线上一点,直接写出所有使得以点B、P、N、E为顶点的四边形是平行四边形的点N的坐标,并把求其中一个点N的坐标的过程写出来.26.如图,正方形ABCD中,P、Q分别是BC、DC上的点,连接AP、AQ,∠P AQ=45°.(1)如图1,连接BD交AP、AQ于点E、F,将ABE绕A点逆时针旋转90°至ADE,(2)如图2,G为AP上一点,连接BG,GM∠AQ于点M,MN∠BG交BG的延长线于点N,连接DG交MN于点H,连接DM,若H为MN的中点,求证:BN=MN+MD;(3)如图3,若AB=2,∠DAQ=30°,S为AQ中点,R为AP上任意一点,将RQ沿着RS翻折到正方形ABCD所在平面得RQ',连接AQ',当AQ R'的面积最大时,直接写出RQ的长.参考答案:1.A【解析】【分析】根据中心对称图形与轴对称图形的概念进行判断即可.【详解】解:A.既是中心对称图形,也是轴对称图形,故此选项符合题意;B.不是中心对称图形,也不是轴对称图形,故此选项不合题意;C.是中心对称图形,不是轴对称图形,故此选项不合题意;D.不是中心对称图形,是轴对称图形,故此选项不合题意;故选:A.【点睛】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与自身重合.2.B【解析】【分析】利用合并同类项法则、积的乘方法则、同底数幂的乘、除法法则逐个计算得结论.【详解】解:A.4b3﹣b3=3b3≠3,故选项A计算不正确;B.(a3b)2=a6b2,故选项B计算正确;C.a3•a2=a5≠a6,故选项C计算不正确;D.b6÷b6=1≠0,故选项D计算不正确.故选:B.【点睛】本题考查了整式的运算,掌握合并同类项法则、积的乘方法则、同底数幂的乘、除法法则是解决本题的关键.3.C【解析】【分析】根据函数图象可以得到两个函数交点坐标,从而可以得到两个函数联立的二元一次方程组的解.【详解】解:根据函数图可知,直线y =﹣x +3与y =mx +n 交点的横坐标为1,把x =1代入y =﹣x +3,可得y =2,故关于x 、y 的二元一次方程组3y mx n y x =+⎧⎨=-+⎩的解为12x y =⎧⎨=⎩, 故选:C .【点睛】本题考查一次函数与二元一次方程组,解题的关键是明确题意,利用数形结合的思想解答问题.4.A【解析】【详解】连接OC ,根据切线的性质得到∠OCD =90°,根据圆周角定理得到∠COD =2∠ABC =40°,根据三角形内角和定理即可得到结论.【解答】解:连接OC ,如图:∠DC 与圆O 相切于点C ,∠∠OCD =90°,∠∠ABC =20°,∠∠COD =2∠ABC =40°,∠∠BDC =90°﹣40°=50°,故选:A .【点睛】本题考查了切线的性质,圆周角定理,熟练掌握切线的性质定理是解题的关键.5.C【解析】【分析】根据一元二次方程根与系数的关系,有两个不相等的实数根,即根的判别式240b ac∆=->,计算出答案即可.【详解】∠一元二次方程mx2﹣2x+3=0有两个不相等的实数根,∠224-2430b ac m∆=-=-⨯()>解得m<1 3∠方程mx2﹣2x+3=0是一元二次方程∠m≠0∠m<13且m≠0故选C.【点睛】本题考查了一元二次方程根与系数的关系,熟练掌握知识点是本题的关键.6.D【解析】【分析】根据旋转的性质和等腰三角形的性质即可得到结论.【详解】解:在Rt∠ABC中,∠A=90°,∠ABC=40°,∠∠ACB=50°,∠将Rt∠ABC绕着点C逆时针旋转得Rt∠EDC,∠∠ECD=∠ACB=50°,CB=CD,∠∠CBD=∠CDB=12(180°﹣50°)=65°,故选:D.【点睛】本题考查了旋转的性质,等腰三角形的性质,熟练掌握旋转的性质是解题的关键.7.A【解析】【分析】由抛物线解析式可判断抛物线的开口方向与对称轴,根据各点与对称轴的距离大小求解.【详解】解:∠y=﹣3x2﹣6x+m,∠抛物线开口向下,对称轴为直线x=﹣62(3)-⨯-=﹣1,∠与直线x=﹣1距离越近的点的纵坐标越大,∠﹣1﹣(﹣4)<2.5﹣(﹣1)<5﹣(﹣1),∠y1>y2>y3,故选:A.【点睛】本题考查二次函数图象上点的坐标特征,二次函数图象上函数值的大小比较:比较点的横坐标与对称轴的距离,开口向上,近小远大;开口向下,近大远小;解题关键是掌握二次函数图象与系数的关系.8.A【解析】【分析】直接利用平行四边形、矩形、菱形、正方形的判定方法分别判断得出答案.【详解】解:A、两组对角相等的四边形是平行四边形,正确,是真命题;B、对角线互相垂直的平行四边形是菱形,原命题错误,不合题意;C、对角线相等的平行四边形是矩形,原命题错误,不合题意;D、对角线互相垂直平分的平行四边形是正方形,原命题错误,不合题意;故选:A.【点睛】此题主要考查了真假命题的判断,正确掌握特殊四边形的判定方法是解题关键.9.B【解析】【详解】BD=3,OA=OC,再根据斜边上的中线性质先根据菱形的性质得到BD∠AC,OD=OB=12得到OA=OC=OE则利用勾股定理可计算出CD=4,然后根据菱形的性质计算菱形的周长.【解答】解:∠四边形ABCD为菱形,BD=3,OA=OC,∠BD∠AC,OD=OB=12∠AE∠DC,∠∠AEC=90°,而OA=OC,∠OA=OC=OE,在Rt∠OCD中,CD4,∠菱形的周长为4×4=16.故选:B.【点睛】本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组内角;直角三角形斜边上中线等于斜边一半及勾股定理等知识;熟练掌握菱形的性质是解题的关键.10.C【解析】【分析】由抛物线的对称轴的位置判断ab的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】解:由图像可得,a >0,c <0,02b a->, 0b ∴<,∠abc >0,故选项A 正确,不合题意;∠抛物线y =ax 2+bx +c (a ≠0)与x 轴交于A (﹣1,0)、B (3,0)两点,∠﹣2b a =132-+=1,得b =﹣2a , ∠2a +b =0,故选项B 正确,不合题意;当x =﹣1时,y =a ﹣b +c =a +2a +c =3a +c =0,故选项C 不正确,符合题意;当x =2时,y =4a +2b +c <0,故选项D 正确,不合题意;故选:C .【点睛】本题主要考查了图像与二次函数系数之间的关系,解题的关键是熟知二次函数的图像及其性质.11.B【解析】【分析】由不等式组无解确定出a 的范围,再由分式方程有非负整数解,确定出a 的值即可.【详解】解:不等式组 23(2)212x x a x x -<-⎧⎪⎨+>-⎪⎩,整理得:223x a x >⎧⎪+⎨<⎪⎩, 由不等式组无解,得到:23a +≤2, ∴a ≤4, 方程2622a y y y+-+--=3两边同时乘以y ﹣2, 得:y =22a +≥0,且22a +≠2, ∴a ≥﹣2且a ≠2,∴﹣2≤a ≤4且a ≠2,∴整数a 的值有:﹣2,4,所以和为2.故选:B .【点睛】此题考查了解一元一次不等式组,以及解分式方程,熟练掌握运算法则是解本题的关键. 12.B【解析】【详解】由角平分线的定义和三角形内角和定理可求∠ABD =∠DBC =25°,∠BAG =∠CAG =35°,由外角的性质和直角三角形的性质可求∠EBC =5°,故∠正确;同理可求∠BFE =60°,由直角三角形的性质可得BF =2EF ,故∠正确;由“ASA ”可证∠ABE ∠∠AHE ,可得BE =EH ,由直角三角形的性质可得EC ≠BE ,故∠错误;由“SAS ”可证∠BFN ∠∠BFG ,可得∠BFN =∠BFG =60°,由“ASA ”可证∠AFD ∠∠AFN ,可得AD =AN ,即AB =BG +AD ,故∠正确;由角平分线的性质可得NQ =NP ,由全等三角形的性质可得S △BFN =S △BFG ,S △AFD =S △AFN ,可得BFG AFD S BF S AF△△,故∠正确,即可求解. 【解答】解:∠∠∠ACB =60°,∠BAD =70°,∠∠ABC =50°,∠AG 平分∠BAC ,BD 平分∠ABC ,∠∠ABD =∠DBC =25°,∠BAG =∠CAG =35°,∠∠BFE =60°,∠BE ∠AG ,∠∠FBE =30°,∠∠EBC =5°,故∠正确;∠∠ACB =60°,∠∠BAD +∠ABC =120°,∠AG 平分∠BAC ,BD 平分∠ABC ,∠∠ABD =∠DBC =12∠ABC ,∠BAG =∠CAG =12∠BAC ,∠∠BFE =∠ABD +∠BAG =12(∠ABC +∠BAC )=60°,∠BE ∠AG ,∠∠FBE =30°,∠BF=2EF,故∠正确;∠如图,延长BE,AC交于点H,∠∠BAE=∠CAE,AE=AE,∠AEB=∠AEH=90°,∠∠ABE∠∠AHE(ASA),∠BE=EH,∠BC≠AC,∠EC≠BE,故∠错误;∠如图,在AB上截取BN=BG,连接NF,∠BN=BG,∠ABD=∠CBD,BF=BF,∠∠BFN∠∠BFG(SAS),∠∠BFN=∠BFG=60°,∠∠AFD=∠AFN=60°,又∠∠BAG=∠CAG,AF=AF,∠∠AFD∠∠AFN(ASA),∠AD=AN,∠AB=BG+AD,故∠正确;∠如图,过点N作NP∠BF于P,NQ∠AF于Q,∠∠AFN =∠BFN =60°,NP ∠BF ,NQ ∠AF ,∠NP =NQ ,∠S △AFN =12×AF ×NQ ,S △BFN =12×BF ×NP , ∠BFG AFD S BF S AF =△△, ∠∠BFN ∠∠BFG ,∠AFD ∠∠AFN ,∠S △BFN =S △BFG ,S △AFD =S △AFN , ∠BFG AFD S BF S AF=△△,故∠正确, 故选:B .【点睛】本题是三角形综合题,考查了全等三角形的性质,角平分线的性质,直角三角形的性质等知识,添加恰当辅助线构造全等三角形是解题的关键.13.【解析】【分析】先化简绝对值、计算二次根式的乘法,再计算二次根式的加减法即可得.【详解】解:原式22==故答案为:【点睛】本题考查了绝对值、二次根式的乘法与加减法,熟练掌握运算法则是解题关键.14.x ≥1【解析】【分析】根据被开方数大于等于0列式求解即可.【详解】解:根据题意得,x ﹣1≥0,解得x ≥1.故答案为:x ≥1.【点睛】本题考查二次根式有意义的条件,熟知二次根式的被开方数是非负数是解题的关键. 15.43π【解析】【分析】连接OD ,首先证得△BOD 是等边三角形,然后解直角三角形求得OB ,再利用扇形面积求法以及等边三角形面积求法得出答案.【详解】解:连接OD ,∠OB =OD ,∠B =60°,∠∠BOD 是等边三角形,∠∠BOD =60°,∠∠COD =90°﹣60°=30°,在△OBC 中,∠COB =90°,∠B =60°,CO =∠OB4, ∠S 阴影=S 扇形DOE +S △BOD ,=23041+443602π⨯⨯=43π故答案为:43π【点睛】此题主要考查了解直角三角形、扇形面积求法以及等边三角形的性质,熟记扇形的面积公式是解答此题的关键.16【解析】【分析】根据题意建立合适的平面直角坐标系,然后求出函数的解析式,然后令y=1求出相应的x 的值,则水面的宽就是此时两个x的差的绝对值.【详解】解:如右图所示,建立平面直角坐标系,设抛物线的解析式为:y=ax2+3,∠函数图像过点A(﹣32,0),∠0=a(﹣32)2+3,解得:a=﹣43,∠抛物线的解析式为:y=﹣43x2+3,当y=1时,1=﹣43x2+3,解得:x1x2∠米.【点睛】本题考查二次函数的应用,解答此类问题的关键是明确题意,求出相应的函数解析式,根据函数值求出相应的x的值.17.27 5【解析】【分析】过点E作EM∠AF于点M,容易证明△ECF∠∠EMF,得到EC=EM=ED,故可求出EF和AF的长,点D作DN∠AF于点N,利用三角形ADF的面积求出DN即可.【详解】解:如图,过点E作EM∠AF于点M,点D作DN∠AF于点N,连接DF,∠四边形ABCD是矩形,∠∠ADE=∠C=90°,AB=DC=6,∠∠DAE=∠F AE,EM∠AF,∠DE=EM,∠AE∠EF,∠∠AED+∠FEC=90°,∠∠DAE+∠AED=90°,∠∠FEC=∠DAE,∠EM∠AF,∠∠EAF+∠AEM=90°,∠∠MEF +∠AEM =90°,∠∠EAF =∠MEF ,∠DAE =∠F AE ,∠∠FEC =∠MEF ,∠∠C =∠EMF =90°,EF =EF ,∠∠ECF ∠∠EMF (AAS ),∠MF =FC =1,ME =EC ,∠ME =ED ,∠ME =DE =DC =3,在Rt ADE △与Rt AME △中DE DM AE AE=⎧⎨=⎩ ∴Rt ADE △≌Rt AME △(HL )AM AD ∴=设AM AD x ==1AF AM MF x ∴=+=+,1BF BC FC AD FC x =-=-=-在Rt ABF 中,222AF AB BF =+∴()()222161x x +=+- 解得9x =∠AD =9,∠AD =AM ,∠AM =9,∠AF =AM +FM =9+1=10,∠∠ADF 的面积为:1()22FC AD DC AF DN +⋅=﹣12DC •FC , 即1(19)61022DN +⨯⨯⨯=﹣1612⨯⨯, 解得DN =275. 故答案为:275. 【点睛】本题考查了矩形的性质以及全等三角形的性质与判定,角平分线的性质与判定,勾股定理,熟记矩形的性质定理并灵活运用是解题的关键.18.330【解析】【分析】设第一周甲,乙,丙,丁的单价分别为m元,3m元,5n元,n元,销量分别为3x件,y件,x件,5y件,销售额分别为3mx元,3my元,5nx元,5ny元,则第二周甲,乙,丙,丁的单价分别为1.5m元,3m元,5n元,2n元,销量分别为2x件,y件,2x件,5y件,销售额分别为3mx元,3my元,10nx元,10ny元,则第二周的销售总额为W=(3m+10n)(x+y)元,根据甲、乙两种礼品的销售总额比丙、丁两种礼品的销售总额多了105元可得(3m﹣5n)(x+y)=105,再根据m,n,x,y都为正整数,且x+y≥5,可得x+y=5,3m﹣5n=21或x+y=7,3m﹣5n=15或x+y=15,3m﹣5n=7或x+y=21,3m﹣5n=5或x+y=35,3m﹣5n=3或x+y =105,3m﹣5n=1,依此进行讨论即可求解.【详解】解:设第一周甲,乙,丙,丁的单价分别为m元,3m元,5n元,n元,销量分别为3x件,y件,x件,5y件,销售额分别为3mx元,3my元,5nx元,5ny元,则第二周甲,乙,丙,丁的单价分别为1.5m元,3m元,5n元,2n元,销量分别为2x件,y件,2x件,5y件,销售额分别为3mx元,3my元,10nx元,10ny元,则第二周的销售总额为W=3mx+3my+10nx+10ny=(3m+10n)(x+y)元,由题意得:3mx+3my﹣(5nx+5ny)=105,化简得(3m﹣5n)(x+y)=105,∠m,n,x,y都为正整数,且x+y≥5,∠x+y=5,3m﹣5n=21或x+y=7,3m﹣5n=15或x+y=15,3m﹣5n=7或x+y=21,3m﹣5n=5或x+y=35,3m﹣5n=3或x+y=105,3m﹣5n=1,∠当x+y=5,3m﹣5n=21时,3m=21+5n,∠n最小为3,此时m最小为12,∠W最小为(3×12+10×3)×5=330(元);∠当x+y=7,3m﹣5n=15时,3m=15+5n,∠n最小为3,此时m最小为10,∠W最小为(3×10+10×3)×7=420(元);∠当x+y=15,3m﹣5n=7时,3m=7+5n,∠n最小为1,此时m最小为4,∠W最小为(3×4+10×1)×15=330(元);∠当x+y=21,3m﹣5n=5时,3m=5+5n,∠n最小为2,此时m最小为5,∠W最小为(3×5+10×2)×21=735(元);∠当x+y=35,3m﹣5n=3时,3m=3+5n,∠n最小为3,此时m最小为6,∠W最小为(3×6+10×3)×35=1680(元);∠当x+y=105,3m﹣5n=1时,3m=1+5n,∠n最小为1,此时m最小为2,∠W最小为(3×2+10×1)×105=1680(元);故第二周这四种小礼品的销售总额最少为330元.故答案为:330.【点睛】本题考查了应用类问题,不定方程的应用,解题的关键是正确读懂题意列出方程和代数式.19.(1)a2(2)1 (2) x x-【解析】【分析】(1)直接利用完全平方公式化简,再合并同类项得出答案;(2)直接将括号里面通分运算,再利用分式的混合运算法则计算得出答案.(1)解:原式=a2﹣4a+4+4a﹣4=a2;(2)解:原式=2(1)xx x++÷(1)(1)31x xx-+-+=21(1)(2)(2)x xx x x x++⨯++-=1(2)x x-【点睛】此题主要考查了分式的混合运算以及整式的混合运算,正确将括号里面通分运算是解题关键.20.(1)见解析(2)OC;∠AEO=∠CFO;OE=OF;平行四边形;AC∠EF【解析】【分析】(1)根据题意作出图形即可;(2)根据垂直平分线的性质得到AO=OC,∠AOE=∠COF=90.根据平行线的性质得到∠AEO=∠CFO.根据全等三角形的性质得到OE=OF.根据菱形的判定定理即可得到结论.(1)解:如图所示,直线EF即为所求;(2)证明:∠EF垂直平分AC,∠AO=OC,∠AOE=∠COF=90.∠四边形ABCD为矩形,∠AB∠CD,∠∠∠AEO=∠CFO.∠∠AOE∠∠COF(AAS),∠∠OE=OF.∠AO=OC,∠四边形AECF是平行四边形.∠∠AC∠EF.∠四边形AECF是菱形,故答案为:OC,∠AEO=∠CFO,OE=OF,平行四边形,AC∠EF.【点睛】本题考查了作图——基本作图,全等三角形的判定和性质,矩形的性质,菱形的判定,线段垂直平分线的性质,正确地作出图形是解题的关键.21.(1)40;96;92.5(2)九年级成绩相对更好,见解析(3)875人【解析】【分析】(1)用1分别减去其它三组所占百分比即可得出a的值,根据众数和中位数的定义即可得出b、c的值;(2)可从平均数、众数、中位数和方差角度分析求解;(3)利用样本估计总体即可.(1)解:由题意可知,a%=1﹣6100%20﹣10%﹣20%=40%,故a=40;八年级抽取的学生竞赛成绩出现最多的是96分,故众数b=96;九年级20名学生的成绩从小到大排列,排在中间的两个数分别为92、93,故中位数为c=92932+=92.5,故答案为:40;96;92.5;(2)解:)九年级成绩相对更好,理由如下:∠九年级测试成绩的众数大于八年级;∠九年级测试成绩的方差大于八年级;故答案为:九;∠九年级测试成绩的众数大于八年级;∠九年级测试成绩的方差大于八年级;(3)解:由题意得:1400×1162040%2020++⨯+=875(人).答:估计参加此次活动成绩优秀(x≥90)的九年级学生人数为875人.【点睛】本题考查了方差,众数、中位数以及平均数,掌握众数、中位数以及平均数的定义和方差的意义是解题的关键.22.(1)李大伯把车厘子每斤批发价至少定为24元,可使今年这两种水果的收入不低于23400元(2)30【解析】【分析】(1)设李大伯把车厘子每斤批发价定为x元,则把水蜜桃每件批发价定为(x﹣2)元,利用总价=单价×数量,结合今年这两种水果的收入不低于23400元,即可得出关于x的一元一次不等式,解之取其中的最小值即可得出结论;(2)利用总利润=每斤的销售利润×销售数量,结合第二天比第一天多盈利320元,即可得出关于m的一元二次方程,解之即可得出m的值,再结合每天的售价均为整数,即可得出m的值为30.(1)解:设李大伯把车厘子每斤批发价定为x元,则把水蜜桃每件批发价定为(x﹣2)元,依题意得:(300×2+100)x+300(x﹣2)≥23400,解得:x≥24.答:李大伯把车厘子每斤批发价至少定为24元,可使今年这两种水果的收入不低于23400元.(2)依题意得:(40﹣215m﹣24)(100+2m)﹣(40﹣24)×100=320,整理得:m2﹣70m+1200=0,解得:m1=30,m2=40.又∠(40﹣215m)为整数,∠m=30.答:m的值为30.【点睛】本题考查了一元一次不等式的应用以及一元二次方程的应用,解题的关键是:(1)根据各数量之间的关系,正确列出一元一次不等式;(2)找准等量关系,正确列出一元二次方程.23.(1)y=2x+2(2)8【解析】【分析】(1)过D作DH∠x轴于H,由直线CD:y=﹣3x+12得C(4,0),则AC=5,根据△ACD 的面积为15得DH=6,可得D(2,6),利用待定系数法即可求解;(2)求出点E的坐标,利用待定系数法得直线EF为y=x,联立直线CD:y=﹣3x+12得F (3,3),根据S四边形OBDF=S△OBD+S△OCD﹣S△OCF即可求解.(1)解:过D作DH∠x轴于H,∠直线CD:y=﹣3x+12,令y=0,则0=﹣3x+12,解得x=4,∠C(4,0),∠A(﹣1,0),∠AC=5,∠∠ACD的面积为15,∠12AC•DH=12×5DH=15,∠DH=6,当y=6时,6=﹣3x+12,解得x=2,∠D(2,6),设直线AB的解析式为y=kx+b,∠26k bk b-+=⎧⎨+=⎩,解得22kb=⎧⎨=⎩,∠直线AB的解析式为y=2x+2;(2)解:连接OD,如图,∠直线EF与直线AB :y =2x +2交于点E ,E 点的横坐标为﹣2,∠点E 的坐标为(﹣2,﹣2),设直线EF 的解析式为y =mx ,∠﹣2m =﹣2,解得m =1,∠直线EF 的解析式为y =x ,联立直线CD :y=﹣3x +12得,312y x y x =⎧⎨=-+⎩解得33x y =⎧⎨=⎩∠F (3,3),∠直线AB :y =2x +2,令0x =,得0y =∠B (0,2),∠D (2,6),C (4,0),∠S 四边形OBDF =S △OBD +S △OCD ﹣S △OCF =12×2×2+12×4×6﹣12×4×3=2+12﹣6=8. 【点睛】本题考查了两直线相交问题,待定系数法求一次函数的解析式,一次函数图象上点的坐标特征,三角形的面积,数形结合是解题的关键.24.(1)4652是“扬一数”,4157是“扬一数”,见解析(2)S =7952或5873或3794【解析】【分析】(1)根据新定义进行解答便可;(2)设S =abcd ,根据数S 是“扬一数”,得(a +c )﹣(b +d )=1且a +d =b ,进而得c =2d +1,从而求得c =3,d =1或c =5,d =2或c =7,d =3或c =9,d =4,再根据S 能被7整除,得157a +15d +1+237a d ++为整数,进而得237a d ++为整数,对应前面c 、d 的值便可求得a 、b 的值,于是问题得解.(1)解:4652是“扬一数”,4157不是“扬一数”.理由如下:∠N =4652,x =4+5=9,y =6+2=8,x ﹣y =1,4+2=6,∠4652是“扬一数”,∠N =4157,x =4+5=9,y =1+7=8,x ﹣y =1,但4+7≠1,∠4157“扬一数”;(2)设S =abcd ,∠数S 是“扬一数”,∠(a +c )﹣(b +d )=1且a +d =b ,∠c ﹣2d =1,∠c =2d +1,∠c =3,d =1或c =5,d =2或c =7,d =3或c =9,d =4,∠S 能被7整除,∠1000100101000100()10(21)77a b c d a a d d d ++++++++==157a +15d +1+237a d ++为整数,∠237a d ++为整数,∠a =7,b =9,c =5,d =2或a =5,b =8,c =7,d =3或a =3,b =7,c =9,d =4,∠S =7952划5873或3794.【点睛】本题主要考查了新定义,整除的应用,不定方程的应用,关键是正确应用新定义和解不定方程.25.(1)y=﹣x2﹣2x+3(2)四边形P ABC面积有最大值是758,此时点P的坐标是(﹣32,154)(3)点N的坐标为(92,34)或(﹣12,34)或(﹣52,﹣534),见解析【解析】【分析】(1)求出A、B点的坐标,再将两点坐标代入y=ax2+bx+3,即可求解;(2)过点P作PQ∠y轴,交AC于Q点,利用待定系数法求直线AC的解析式,设P(m,﹣m2﹣2m+3),则Q(m,m+3),表示PQ的长,根据面积和可得四边形P ABC面积=S△P AC+S△ACB,配方后可得结论;(3)先根据∠BAC=45°,将抛物线沿着射线AC方向平移于将抛物线向右平移3个单位,再向上平移3个单位得到新抛物线,得到新抛物线的解析式,可得对称轴是直线x=2,确定点E的横坐标为2,当以点B、P、N、E为顶点的四边形是平行四边形,分情况讨论并运用平移的性质可得结论(1)解:在y=ax2+bx+3中,当x=0时,y=3,∠C(0,3),∠OC=3,∠OC=3OB,∠OB =1,∠B(1,0),Rt∠AOC中,∠BAC=45°,∠∠AOC是等腰直角三角形,∠A(﹣3,0),将点A、B代入y=ax2+bx+3,∠933030a ba b-+=⎧⎨++=⎩,解得:12ab=-⎧⎨=-⎩,∠抛物线的解析式:y=﹣x2﹣2x+3;(2)解:如图2,过点P作PQ∠y轴,交AC于Q点,设直线AC的解析式为:y=kx+n,则303k nn-+=⎧⎨=⎩,解得:13kn=⎧⎨=⎩,∠直线AC的解析式为:y=x+3,设P(m,﹣m2﹣2m+3),则Q(m,m+3),∠PQ=(﹣m2﹣2m+3)﹣(m+3)=﹣m2﹣3m,∠四边形P ABC面积=S△P AC+S△ACB=32(﹣m2﹣3m)+12×3×(1+3)=﹣32m2﹣92m+6=﹣32(m2+3m+94﹣94)+6=﹣32(m+32)2+758,∠﹣32<0,∠当m=﹣32时,四边形P ABC面积有最大值是758,此时点P的坐标是(﹣32,154);(3)解:由题意得:y=﹣x2﹣2x+3=﹣(x+1)2+4,∠将抛物线沿着射线AC方向平移32个单位,得到新抛物线,且∠BAC=45°,∠相当于将抛物线向右平移3个单位,再向上平移3个单位得到新抛物线,则新抛物线的解析式为:y=﹣(x+1﹣3)2+4+3=﹣(x﹣2)2+7,∠点E的横坐标为2,分三种情况:∠如图3,四边形PBNE是平行四边形,∠P的坐标是(﹣32,154),B(1,0),根据点P移动到点E的平移规律可得:点B到点N的平移规律,∠点N的横坐标为92,∠N(92,34);∠如图4,四边形PBEN是平行四边形,同理得点N的横坐标为﹣12,∠N(﹣12,34);∠如图5,四边形EPNB是平行四边形,同理得点N的横坐标为﹣52,∠N(﹣52,﹣534);综上,点N的坐标为(92,34)或(﹣12,34)或(﹣52,﹣534)【点睛】本题是二次函数的综合题,熟练掌握二次函数的图象及性质,平行四边形的性质和判定,平移的性质,四边形的面积,最值问题等知识,掌握利用二次函数的最值解决四边形的面积问题是解决问题的关键,并运用分类讨论的思想.26.(1)4(2)见解析【解析】【分析】(1)如图1中,连接FE ′.证明∠AFE ∠∠AFE ′(SAS ),推出EF =FE ′=5,证明∠FDE ′=90°,利用勾股定理求解;(2)过点D 作DI ∠BN 于点I ,交GM 的延长线于点K ,连接AK ,AI ,AI 交GK 于点L ,取BD 的中点O ,连接AO ,OL .利用相似三角形的性质证明DK =DI ,利用四点共圆证明∠AGK 是等腰直角三角形,再利用全等三角形的性质证明DN ,DM ,BG =DK ,可得结论;(3)如图3中,连接SQ ′,QQ ′,证明SQ ′Q ′的运动轨迹是S 为半径的圆,当SQ ′∠AQ 时,∠AQQ ′的面积最大,如图4中,利用勾股定理求出RQ ′即可;(1)解:如图1中,连接FE ′.∠四边形ABCD 是正方形,∠∠BAD =90°,∠ABD =∠ADB =45°,∠∠ADE ′是由∠ABE 绕点A 逆时针旋转90°得到,∠AE =AE ′,∠BAE =∠DAE ′,∠∠P AQ =45°,∠∠BAE +∠DAF =45°,∠∠DAE ′+∠DAF =45°,∠∠F AE =∠F AE ′=45°,在∠AFE 和∠AFE ′中,AF AF FAE FAE AE AE '=⎧⎪∠=∠⎨='⎪⎩,∠∠AFE ∠∠AFE ′(SAS ),∠EF =FE ′=5,∠∠ADE ′=∠ABD =45°,∠∠FDE ′=90°,∠DF =22FE DE ''-=2253-=4;(2)证明:过点D 作DI ∠BN 于点I ,交GM 的延长线于点K ,连接AK ,AI ,AI 交GK 于。

重庆市巴蜀中学2017—2018学年八年级(下)数学期末模拟卷

重庆市巴蜀中学2017—2018学年八年级(下)数学期末模拟卷

重庆市巴蜀中学2017—2018学年⼋年级(下)数学期末模拟卷重庆市巴蜀中学2017—2018学年⼋年级(下)数学期末模拟卷⼀、选择题:每⼩题都给出了代号为ABCD 的四个答案,其中只有⼀个是正确的,请将正确答案填涂在答题卷中对应⽅框内. 1.下列代数式中,属于分式的是()A .?3B .12a b - C .1x D .24a b - 2.下⾯的多项式中,能因式分解的是( ) A .2m m - B .21m m -+ C .2m n - D .221m m ++ 3.要使分式51x -有意义,则x 的取值范围是( ) A .1x ≠ B .1x > C .1x < D .1x ≠-4、下列分式中,是最简分式的是()A .1227m mB .2223()m n m n -- C .4422a b a b -- D .222()m n m n ++ 5、计算mn n m m n m 222+--+的结果是(). A . m n n m 2+- B .m n n m 2++ C . m n n m 23+- D .mn n m 23++6、如图,四边形ABCD 的对⾓线互相平分,要使它成为菱形,那么需要添加的条件是( )A .AB=CDB .AD=BCC .4B=BCD .AC=BD7.如图,将周长为10的△ABC 沿BC ⽅向平移l 个单位,得到△DEF ,则四边形ABFD 的周长是( )A .12B .14C .15D .168.如图,⼩敏不慎将⼀块平⾏四边形玻璃打碎成如图的四块,为了能在商店配到与原来相同的平⾏四边形玻璃,她带了两块碎玻璃,其编号应该是()A .①,②B .①,④C .③,④D .②,③9.若关于x 的分式⽅程1322m x x x++=--有增根,则m 的值是() A .m =?1 B .m =2 C . m =3 D .m =0或m =310.如图,若□ABCD 的周长为36cm ,过点D 分别做AB , BC 边上的⾼DE ,DF ,且DE =4cm ,DF =5cm ,□ABCD 的⾯积为()cm 2A .40B .32C .36D .5011、如图,菱形纸⽚ABCD 中,∠A=60°,折叠菱形纸⽚ABCD ,使点C 落在DP(P 为AB 中点)所在的直线上,得到经过点D 的折痕DE .则∠DEC 的⼤⼩为( )A 、70°B 、75°C 、80°D 、85°12、如图,平⾏四边形ABCD 中,AE 平分∠BAD ,交BC 于点E ,且AB=AE ,延长AB与DE 的延长线交于点F .下列结论中正确的有( )①△ABC ≌△EAD ;②△ABE 是等边三⾓形;③AD=BF ;④S △BEF =S △ACD ;⑤S △CEF =S △ABE .A 、1个B 、2个C 、3个D 、4个⼆、填空题:在每⼩题中,请将答案直接填写在答题卷中对应的横线上.13、分解因式:228a b b -=____________14.若分式22a +有意义,则a 的取值范围是__________. 15.若x =2是⼀元⼆次⽅程220x mx ++=的⼀个解,则m 的值是___________.16、平⾏四边形ABCD 中,AB=24,∠B=45°,BC=10,则平⾏四边形ABCD 的⾯积是。

重庆市渝中区巴蜀中学2017-2018年八年级(下)第一次月考数学试卷

重庆市渝中区巴蜀中学2017-2018年八年级(下)第一次月考数学试卷

八年级(下)第一次月考数学试卷一、选择题(本大题共12小题,每小题4分,共48分) 1.(4分)下列各式中,是分式的为( ) A .35(1﹣x )B .x3C .3x 2+2yD .1−x22.(4分)分式a+1a−1的值为0,则a 的值为( )A .1B .﹣1C .±1D .03.(4分)下列各式正确的是( ) A .a+x b+x =a+1b+1B .yx=y 2xC .n m=nama(a ≠0) D .n m=n−a m−a4.(4分)能判定四边形ABCD 是平行四边形的是( )A .AB ∥CD ,AD =BC B .∠A =∠B ,∠C =∠DC .AB =CD ,AD =BCD .AB =AD ,CB =CD5.(4分)一个多边形,其每个内角都是140°,则该多边形的边数是( ) A .6B .7C .8D .96.(4分)如图,在平行四边形ABCD 中,AD =6,AB =4,DE 平分∠ADC 交BC 于点E ,则BE 的长是( )A .2B .3C .4D .57.(4分)如图,菱形ABCD 的边长是4cm ,且∠ABC =60°,E 是BC 中点,P 点在BD 上,则PE +PC 的最小值为( )cm .A .2B .2√3C .3D .48.(4分)如图,点P 是平行四边形ABCD 内一点,已知S △P AB =7,S △P AD =4,那么S △P AC等于( ) A .4B .3.5C .3D .无法确定9.(4分)轮船在顺水航行90千米比逆水航行90千米少花了3小时,已知水流速度是2千米/时,求轮船在静水中的速度.设轮船在静水中的速度为x 千米/时,依据题意列方程得( ) A .90x+2+3=90x−2 B .90x−2+3=90x+2C .90x+3+2=90x−3D .90x+3−2=90x−310.(4分)对于任意的x 值都有2x+7x +x−2=M x+2+Nx−1,则M ,N 值为( )A .M =1,N =3B .M =﹣1,N =3C .M =2,N =4D .M =1,N =411.(4分)如图,在平行四边形ABCD 中,E ,F 分别是边AD ,BC 的中点,AC 分别交BE ,DF 于G ,H ,试判断下列结论:①△ABE ≌△CDF ;②AG =GH =HC ;③2EG =BG ;④S △ABG :S 四边形GHDE =2:3,其中正确的结论是( )A .1个B .2个C .3个D .4个12.(4分)若整数a 使关于x 的不等式组{12(x −3)+x2≥3a−3x 3>0无解,且使关于x 的分式方程ax x−3+33−x=−2有整数解,那么所有满足条件的a 值的和是( )A .﹣20B .﹣19C .﹣15D .﹣13二、填空题(本大题共8小题,每小题4分,共32分)13.(4分)若一个多边形的内角和与外角和之和是1800°,则此多边形是 边形. 14.(4分)已知yx −x y=5,则5x 2+2xy−5y 2y −x = .15.(4分)若x =3是分式方程a−2x−1x−2=0的根,则a 的值是 .16.(4分)已知关于x 的分式方程2ax+1−x−1x 2+x=0有增根,则a = .17.(4分)如图,△ABC 中,AB =8,AC =6,AD ,AE 分别是其角平分线和中线,过点C 作CG ⊥AD 于F ,交AB 于G ,连接EF ,则EF 为 .18.(4分)如图,在平行四边形ABCD 中,点E 在边AD 上,以BE 为折痕,将△ABE 向上翻折,点A 正好落在CD 上的点F 处,若△FDE 的周长为12,△FCB 的周长为28,则FC 的长为 .19.(4分)如图,平行四边形ABCD ,点F 是BC 上的一点,连接AF ,∠F AD =60°,AE 平分∠F AD ,交CD 于点E ,且点E 是CD 的中点,连接EF ,已知AD =5,CF =3,则EF = .20.(4分)如图,平行四边形ABCD 中,多点B 作BE ⊥AD 于点E ,过点E 作EF ⊥AB 于点F ,与CD 的延长线交于点G ,连接BG ,且BE =BC ,BG =5√2,∠BGF =45°,EG =3,若点M 是线段BF 上的一个动点,将△MEF 沿ME 所在直线翻折得到△MEF ′,连接CF ′,则CF ′长度的最小值是 .三、解答题(共70分)21.(10分)计算:(1)4a2b÷(−a2b)•(−b8a)(2)2aba2−b2+aa−b−ba+b22.(10分)解分式方程(1)1x−2+1=x+12x−4(2)2x+1−31−x=51−x223.(10分)在平行四边形ABCD中,分别延长BA,DC到点E,H,使得AE=AB,CH=CD,连接EH,分别交AD,BC于点F,G,求证:EF=GH.24.(10分)先化简,再求值:(x2+xx−1−x﹣1)÷x3+x2x2−2x+1,其中x是不等式组{−x−1<03(x+1)≤x+7的整数解.25.(10分)一水果店主分两批购进同一种水果,第一批所用资金为2400元,因天气原因,水果涨价,第二批所用资金是2700元,但由于第二批单价比第一批单价每箱多10元,以致购买的数量比第一批少25%.(1)该水果店主购进第一批这种水果每箱的单价是多少元?(2)该水果店主计划两批水果的售价均定为每千克4元,每箱10千克,实际销售时按计划无损耗售完第一批后,发现第二批水果品质不如第一批,于是该店主将售价下降a%销售,结果还是出现了2%的损耗,但这两批水果销售完后仍赚了不低于2346元,求a 的最大值.26.(10分)阅读下列材料,解决问题:在处理分数和分式问题时,有时由于分子比分母大,或者为了分子的次数告诉于分母的次数,在实际运算时往往难度比较大,这时我们可以将假分数(分式)拆分成一个整数(或整式)与一个真分数的和(或差)的形式,通过对简单式的分析来解决问题,我们称为分离整数法,此法在处理分式或整除问题时颇为有效,现举例说明. 材料1:将分式101x+10y11拆分成一个整式与一个分式(分子为整数)的和的形式.解:101x+10y11=99x+11y+2x−y11=9x +y +2x−y11材料2:将分式x 2−x+3x+1拆分成一个整式与一个分式(分子为整数)的和的形式.解:由分母x +1,可设x 2﹣x +3=(x +1)(x +a )+b则x 2﹣x +3=(x +1)(x +a )+b =x 2+ax +x +a +b =x 2+(a +1)x +a +b ∵对于任意x 上述等式成立. ∴{a +1=−1a +b =3解得:{a =−2b =5. ∴x 2−x+3x+1=(x+1)(x−2)+5x+1=x ﹣2+5x+1. 这样,分式x 2−x+3x+1就拆分成一个整式x ﹣2与一个分式5x+1的和的形式.(1)将分式x 2+6x−3x−1拆分成一个整式与一个分子为整数的分式的和的形式,则结果为 .(2)已知整数x 使分式2x 2+5x−20x−3的值为整数,则满足条件的整数x = ;(3)已知一个六位整数20xy17能被33整除,求满足条件的x ,y 的值.27.(10分)如图1,在菱形ABCD 中,∠DAB =60°,AB =8√3,对角线交于点O ,CF 垂直AB 交AB 的延长线于点F ,过点B 作BE ∥AC 交FC 于EF . (1)求BE 的长:(2)如图2,在OB 上有一动点P ,将△AOB 绕A 点顺时针旋转90°至△AOB ',P 点的对应点为P ′,现有一动点Q 从P 点出发,沿着适当路径先运动到O ′点,再沿O ′A 运动至A 点,再从A 点沿适当的路径运动至P ′点.求Q 点的最短运动路径的长; (3)若△ABO 以每秒2√3个单位长度的速度沿射线AB 向右平移,得到三角形△A 1B 1O 1,当A1与点F重合时停止移动,设运动时间为t,在这个过程中,点O1关于直线BC的对称点为O″,当O″,F,C三点构成的三角形为等腰三角形时,直接写出t的值.八年级(下)第一次月考数学试卷参考答案一、选择题(本大题共12小题,每小题4分,共48分)1.C ; 2.B ; 3.C ; 4.C ; 5.D ; 6.A ; 7.B ; 8.C ; 9.A ; 10.B ;11.D ; 12.D ;二、填空题(本大题共8小题,每小题4分,共32分) 13.十; 14.−235; 15.5; 16.1; 17.1; 18.8; 19.4; 20.√58−2;三、解答题(共70分) 21.解:(1)原式=4a 2b •(−2b a )•(−b8a) =b 3 (2)原式=2ab (a+b)(a−b)+a(a+b)(a+b)(a−b)−b(a−b)(a+b()a−b)=(a+b)2(a+b)(a−b)=a+ba−b22.解:(1)x =3, (2)x =−65,.23.证明:∵四边形ABCD 为平行四边形, ∴∠BAD =∠DCB ,AB =CD ,AB ∥CD . ∵AE =AB ,CH =CD , ∴AE =CH .∵∠EAF +∠BAD =180°,∠HCG +∠DCB =180°,∠BAD =∠DCB , ∴∠EAF =∠HCG . ∵AB ∥CD , ∴∠AEF =∠CHG .在△AEF 和△CHG 中,{∠AEF =∠CHG AE =CH ∠EAF =∠HCG ,∴△AEF ≌△CHG (ASA ),24.原式=2−122=14.25.解:(1)20元.(2)25.26.解:(1)答案为:x+7+4x−1;(2)答案为:2或4或﹣10或16;(3)当k=1时,x=2、y=9符合题意;当k=2时,x=6、y=2符合题意;当k=3时,x=9、y=5符合题意.27.解:(1)如图1中,∵四边形ABCD是菱形,∠DAB=60°,∴AB=BC=8√3,∠BAC=∠BCA=30°,∵BC∥AD,BE∥AC,∴∠CBF=∠DAB=60°,∠BCA=∠CBE=30°,∵CF⊥BF,∴∠BCE=∠EBC=30°,∴BE=EC,在Rt△BCF中,BF=12BC=4√3,在Rt△BEF中,cos30°=BF BE,∴BE=4√332=8.(2)如图2中,∵四边形ABCD是菱形,∴AC⊥BDOA=OC,∴A、C关于BD对称,连接CO′交BD于Q,连接AQ,此时Q点的最短运动路径最短,最短路径=QO′+O′A+AP′=CQ+QO′+AO=CO′+AO′=√122+242+12=12√5+12.(3)①如图3中,当点B1与F重合时,点O1在BC的中点,易知AA1=12AB=4√3,∴t=4√323=2s.②如图4中,当FC=FO″时,设FO″交BC于H,易证四边形HO1B1F是平行四边形,FH=12BC=4√3,HO″=HO1=B1F=12﹣4√3,∴AA1=12,t=23=2√3s.③如图5,当点A1与F重合时,CF=CO″,此时AA1=12√3,t=6s.综上所述,当t=2或2√3或6s时,△CFO″是等腰三角形.。

2017-2018学年度八年级第二学期期末考试数学试卷

2017-2018学年度八年级第二学期期末考试数学试卷

2017-2018学年度八年级第二学期期末考试数学试卷2017-2018学年八年级第二学期期末测试数学试卷(考试时间100分钟,满分120分)2018.06一、选择题(每题3分,共18分)1.(3分)二次根式有意义的条件是x≥2.2.(3分)下列各组数中能作为直角三角形的三边长的是3,4,5.3.(3分)若一次函数 y=x+4 的图象上有两点 A(-1,y1)、B(1,y2),则下列说法正确的是 y1<y2.4.(3分)如图,四边形 ABCD 的对角线 AC 和 BD 交于点 O,则下列不能判断四边形 ABCD 是平行四边形的条件是∠ABD=∠ADB,∠BAO=∠DCO。

5.(3分)在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同。

其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的中位数。

6.(3分)在平面直角坐标系中,平行四边形 ABCD 的顶点 A,B,D 的坐标分别是(0,0),(5,0),(2,3),则顶点 C 的坐标是(7,3)。

二、填空题(每题3分,共24分)7.(3分)将直线 y=2x 向下平移2个单位,所得直线的函数表达式是 y=2x-2.8.(3分)直线y=kx+b(k>0)与x 轴的交点坐标为(2,0),则关于 x 的不等式 kx+b>0 的解集是 x>-b/k。

9.(3分)计算:(-2)²=4.10.(3分)如图所示,在△ABC中,∠B=90°,AB=3,AC=5,将△ABC折叠,使点 C 与点 A 重合,折痕为 DE,则△ABE 的周长为6+2√13.11.(3分)如图,平行四边形ABCD 中,AD=5,AB=3,若 AE 平分∠BAD 交边 BC 于点 E,则线段 EC 的长度为 3/2.12.(3分)已知一组数据1,2,-1,x,1 的平均数是1,则这组数据的中位数为 1.13.(3分)一次函数 y=kx+3 的图象过点 A(1,4),则这个一次函数的解析式 y=kx+1.14.(3分)如图,菱形ABCD 周长为16,∠ADC=120°,E 是 AB 的中点,P 是对角线 AC 上的一个动点,则 PE+PB 的最小值是 8.2三、计算题15.计算:-8 + 3.5 = -4.516.如图,平行四边形ABCD中,AE=CE,请仅用无刻度的直尺完成下列作图:1)在图1中,作出∠DAE的角平分线;2)在图2中,作出∠AEC的角平分线.四、应用题17.已知一次函数y=kx-4,当x=2时,y=-3.1)求一次函数的解析式:由题意得,-3=k(2)-4,解得k=1,所以一次函数的解析式为y=x-4.2)将该函数的图象向上平移6个单位,求平移后的图象与x轴的交点的坐标。

2017-2018年第二学期八年级数学期末试卷(参考答案)


∴ BC AC 2 AB 2 32 42 5 ……8 分
作 AH⊥BC
则 1 BC AH 1 AC AB
2
2
∴5AH=3×4
八年级数学 第 3 页(共 8 页)
∴AH= 12 ……9 分 5
∴ S菱形ADCF

DC AH

5 12 25
6
答:菱形 ADCF 的面积是 6.……10 分
∴点 D’在直线 y=x-3 上运动,当 OD’⊥直线 y=x-3 时,OD’最小,此时∆OBD’是等腰直
角三角形,……9 分
作 D’H⊥x 轴,垂足为 H,则 OH=HD’=HB= 3 ……10 分 2
∴4-m= 3 , m 5 ……11 分
2
2
∴D 点坐标( 5 , 1 )……12 分 22
∵四边形 ABCD 是正方形,
∴∠ABK=∠ABC=∠ADC=∠BAD=90°,AB=AD
在∆AKB 和∆AFD 中
BE
C
图2
AB AD ABK ADF KB DF
∴∆AKB≌∆AFD……1 分 ∴AK=AF,∠KAB=∠FAD ∵2∠EAF=∠ADC=90° ∴∠EAF=45° ∴∠BAK+∠BAE=∠DAF+∠BAE=45° 即∠KAE=∠FAE 在∆AKE 和∆AFE 中
说明:此题可用平行线等积变换,即△ABF 的面积与△ACF 的面积相等,或连接 DF 等。
五.解答题(本题共 3 小题,其中 24 题 11 分,25、26 题各 12 分,共 35 分)
24.(1)1,16;……2 分
(2)∵四边形 ABCD 是正方形
D
C
∴AB=AD,∠ADB=∠ABD=45°

重庆市巴蜀中学2017—2018学年八年级(下)数学期末模拟卷2无答案

重庆市巴蜀中学2017—2018学年八年级(下)数学期末模拟卷2一、选择题:(本大题12个小题,每小题4分,共48分)每小题都给出了代号为ABCD 的四个答案,其中只有一个是正确的,请将正确答案填涂在答题卷中对应方框内.1.下列因式分解错误的是()A .22()()x y x y x y -=+-B .2269(3)x x x ++=+C .2()x xy x x y +=+D .222()x y x y +=+2.分式34x x -+的值为0,则x 的值为( ) A 、3 B 、-3 C 、3± D 、0 3.如图,在平行四边形ABCD 中,AB=4,AD=6,DE 平分∠ADC,则BE 的长为( )A 、1B 、2C 、3D 、4第3题图 第7题图4、若一个多边形内角和等于1260°,则该多边形边数是( )A 、8B 、9C 、10D 、115.下列变形中,正确的是( )A 、22a a b b =B 、2111x x x -=-+ C 、362x y x y =++ D 、11a a b b +=+ 6、若代数式(2)(1)1x x x ---的值为0,则x 的值是( ) A .2或1B .±1C .2D .1 7. 如图,平行四边形ABCD 的面积为12,P 是对角线AC 上任一点(点P 不与点A 、C 重合)且PE ∥BC 交AB 于 E ,PF ∥CD 交AD 于F ,则阴影部分的面积是( )A 、 6B 、7C 、8D 、98、多项式2+224x x -的一个因式为( )A .+2xB .12x -C .+6xD .+4x 9、若关于x 的方程313292-=++-x x x m 有增根,则m 的值为( ) A .不存在 B .6 C .12 D .6或1210.关于x 的方程123(2)(3)x x x a x x x x ++-=-+-+的解为非正数,则a 的取值范围为( ) A 、3a ≤且12a ≠- B 、3a ≥且12a ≠ C 、3a ≤ D 、3a ≥且13a ≠11.A 、B 两地相距160千米,甲车和乙车的平均速度之比为4:5,两车同时从A 地出发到B 地,乙车比甲车早到30分钟,若求甲车的平均速度,设甲车平均速度为4x 千米/小时,则所列方程是()A .1601603045x x -=B .16016014502x -=C .1601601542x x -=D .1601603054x x+= 12. 如图,平行四边形ABCD 中,对角线AC 和BD 交于点O ,E 、F分别为AB ,BC 的中点,分别连结DE 和AF ,则图中与△ABF 面积相等的三角形(不包括△ABF )共有的个数( ).A .4个B .5个C .6个D .7个二、填空题:(本大题共6小题,每小题4分,共24分)在每小题中,请将答案直接填写在答题卷中对应的横线上.13.若x=3是分式方程2102a x x --=-的解,则a = . 14. 已知14a a +=,则=+221aa 15.已知26111A B x x x =+-+-是恒等式(A 、B 均为常数),则A B ⋅=__ . 16、如图, ABCD 的对角线AC 、BD 相交于点O ,点E 、F 分别是线段AO 、BO 的中点.已知AC+BD=12厘米,AOAB 的周长是10厘米,则EF=________厘米.17.若关于x 的方程122x m m x x +=+--有增根,则m 的值为________ 18、如图,四边形ABCD 是菱形,对角线AC=8cm ,BD=6cm ,DH ⊥AB 于点H ,则DH 长为________cm 。

2018年重庆八年级下学期期末考试数学试题word版含答案

2018年重庆八年级下学期期末考试数学试题(本试卷满分150分,考试时间120分钟)一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了 代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将各小题所选答案的标号填入对应的表格内.1.若分式011=+-x x ,则的值是( ) A . 1=x B .1-=x C .0=x D .1-≠x 2.下列分解因式正确的是( )A .)1(23-=-x x x xB .)1)(1(12-+=-x x xC .2)1(22+-=+-x x x xD .22)1(12-=-+x x x3.下列图形中,是中心对称图形,但不是轴对称图形的是( )A. B . C . D . 4.方程x x 32=的解是( )A .3=xB .3-=xC .0=xD . 3=x 或0=x 5.根据下列表格的对应值:判断方程012=-+x x 一个解的取值范围是( )A .61.059.0<<xB .61.060.0<<xC .62.061.0<<xD .63.062.0<<x6.将点P (-3,2)向右平移2个单位后,向下平移3个单位得到点Q ,则点Q 的坐标为( ) A .(-5,5) B .(-1,-1) C .(-5,-1) D .(-1,5)7.某种商品原价是120元,经两次降价后的价格是100元,求平均每次降价的百分率. 设平均每次降价的百分率为,可列方程为( )A .100)1(1202=-xB .120)1(1002=-xC .120)1(1002=+xD .100)1(1202=+x8.如图,在平行四边形ABCD 中,E 是AB 的中点,CE 和BD 交于点O ,若2=∆BOE S ,则DOC S ∆是( ) A .4B .6C .8D .99.已知0=x 是关于的一元二次方程012)1(22=-++-k x x k的根,则常数的值为( ) A .0或1 B .1 C .-1 D .1或-1 10.如图,菱形ABCD 中,对角线AC 、BD 交于点O ,菱形ABCD 周长为32,点P 是边CD 的中点,则线段OP 的长为( ) A .3 B .5 C .8 D .411.如图,以下各图都是由同样大小的图形①按一定规律组成,其中第①个图形中共有1个完整菱形,第②个图形中共有5个完整菱形,第③个图形中共有13个完整菱形,……,则第⑦个图形中完整菱形的个数为( )A .83B .84C .85D .86 12.如图,□ABCD 中,∠B =70°,点E 是BC 的中点,点F 在 AB 上,且BF=BE ,过点F 作FG ⊥CD 于点G ,则∠EGC 的度数 为( )A .35°B .45°C .30°D .55°二.填空题(本大题6个小题,每小题4分,共24分)请将正确答案填入对应的表格内. 题号 13 14 15 16 17 18 答案13.已知23=y x ,则yy x + = . 14.已知点C 是线段AB 的黄金分割点,且AC >BC ,AB =2,CO PA BD第10题图第12题图第8题图①④ ③ ② F G A EB C D 3-=kx y xybx y +=24-6O POEDCB A则AC 的长为 .15.如图,已知函数b x y +=2与函数3-=kx y 的图象交于点P ,则不等式b x kx +>-23的解集是 .16. 已知一元二次方程01892=+-x x 的两个解恰好分别是等腰△ABC 的底边长和腰长,则△ABC 的周长为 .17. 关于的方程15=+x m的解是负数,则的取值范围是 . 18. 如图,矩形ABCD 中,AD=10,AB=8,点P 在边CD 上,且BP=BC ,点M 在线段BP 上,点N 在线段BC的延长线上,且PM=CN ,连接MN 交BP 于点F ,过 点M 作ME ⊥CP 于E ,则EF= .三.解答题(本大题3个小题,19题12分,20,21题各6分,共24分)解答每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卷中对应的位置上.19.解方程: (1) 121=--xx x (2) 01322=-+x x20. 解不等式组: ()⎪⎩⎪⎨⎧-≥-+<-42211513x x x xP B DNA MC F E 第18题图 第15题图21. 如图,矩形ABCD 中,点E 在CD 边的延长线上,且∠EAD =∠CAD . 求证:AE=BD .四.解答题(本大题3个小题,每小题10分,共30分)解答每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卷中对应的位置上.22.先化简,再求值:41)2122(216822+-+--÷++-x x x xx x x ,其中满足0342=-+x x .BC D EA 第21题图23.某蔬菜店第一次用400元购进某种蔬菜,由于销售状况良好,该店又用700元第二次购进该品种蔬菜,所购数量是第一次购进数量的2倍,但进货价每千克少了0.5元.(1)第一次所购该蔬菜的进货价是每千克多少元?(2)蔬菜店在销售中,如果两次售价均相同,第一次购进的蔬菜有2% 的损耗,第二次购进的蔬菜有3% 的损耗,若该蔬菜店售完这些蔬菜获利不低于944元,则该蔬菜每千克售价至少为多少元?24.在正方形ABCD 中,点F 是BC 延长线上一点,过点B 作BE ⊥DF 于点E ,交CD 于点G ,连接CE . (1)若正方形ABCD 边长为3,DF =4,求CG 的长; (2)求证:EF+EG =2CE .第24题图GEA BCDF五.解答题(本大题2个小题,每小题12分,共24分)解答每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卷中对应的位置上.25. 为深化“携手节能低碳,共建碧水蓝天”活动,发展“低碳经济”,某单位进行技术革新,让可再生资源重新利用.今年1月份,再生资源处理量为40吨,从今年1月1日起,该单位每月再生资源处理量每一个月将提高10吨.月处理成本(元)与月份之间的关系可近似地表示为:450100502++=x x p ,每处理一吨再生资源得到的新产品的售价定为100元. 若该单位每月再生资源处理量为(吨),每月的利润为(元). (1)分别求出与,与的函数关系式; (2)在今年内....该单位哪个月获得利润达到5800元? (3)随着人们环保意识的增加,该单位需求的可再生资源数量受限.今年三月的再生资源处理量比二月份减少了%,该新产品的产量也随之减少,其售价比二月份的售价增加了m 6.0%.四月份,该单位得到国家科委的技术支持,使月处理成本比二月份的降低了20%.如果该单位四月份在保持三月份的再生资源处理量和新产品售价的基础上,其利润比二月份的利润减少了60元,求的值.26. 如图1,菱形ABCD 中,AB =5,AE ⊥BC 于E ,AE =4.一个动点P 从点B 出发,以每秒个单位长度的速度沿线段BC 方向运动,过点P 作PQ ⊥BC ,交折线段BA-AD 于点Q ,以PQ 为边向右作正方形PQMN ,点N 在射线BC 上,当P 点到达C 点时,运动结束.设点P 的运动时间为秒(0t >). (1)求出线段BD 的长,并求出当正方形PQMN 的边PQ 恰好经过点A 时,运动时间的值; (2)在整个运动过程中,设正方形PQMN 与△BCD 的重合部分面积为S ,请直接写出S 与之间的函数关系式和相应的自变量的取值范围;(3)如图2,当点M 与点D 重合时,线段PQ 与对角线BD 交于点O ,将△BPO 绕点O 逆时针旋转︒α (1800<<α),记旋转中的△BPO 为△O P B '',在旋转过程中,设直线P B ''与直线BC 交于G ,与直线BD 交于点H ,是否存在这样的G 、H 两点,使△BGH 为等腰三角形?若存在,求出此时2OH 的值;若不存在,请说明理由.第26题图1第26题图2CABDOQ PB 'P 'E P NCBD MQA2018年重庆八年级下学期期末考试数学试题参考答案一、选择题(每小题4分,共48分)ABCD CBAC CDCD二、填空题(每小题4分,共24分)13. 14.15- 15. 4<x 16.15 17.5<m 且0≠m 18. 52 19. (1)解:方程两边同乘以)1(-x x ,得)1()1(22-=--x x x x ……………… 3分∴02=+-x ……………… 4分 ∴2=x . ……………… 5分 经检验2=x 是原方程的解.∴原方程的解为2=x . ……………… 6分(2)解:∵2=a ,3=b ,1-=c∴17)1(24942=-⨯⨯-=-ac b ……………… 2分∴4173±-=x ……………… 5分 ∴41731+-=x ,41732--=x . ……………… 6分20. 解:解不等式①得: 2->x ……………… 2分 解不等式②得: 37≤x ……………… 4分 ∴原不等式组的解集为:372≤<-x……………… 6分21..证明:∵四边形ABCD 是矩形∴∠CDA =∠EDA =90°,AC=BD . ……………… 3分∵∠CAD=∠EAD ,AD=AD∴△ADC ≌△ADE . ……………… 5分 ∴AC =AE. 分∴BD=AE . ……………… 6分22. 解:原式=41216)2()4(22+-+-÷+-x x x x x x ··················· 3分=41)4)(4(2)2()4(2+--++⋅+-x x x x x x x ················· 4分=41)4(4+-+-x x x x ························ 5分 =)4(4+-x x=xx 442+-. ························· 6分∵0342=-+x x∴342=+x x . ························ 8分∴原式=34-. ························· 10分 23.解:(1)设第一次所购该蔬菜的进货价是每千克元,根据题意得5.07002400-=⋅x x …………………………3分 解得4=x .经检验4=x 是原方程的根,∴第一次所购该蔬菜的进货价是每千克4元; ············· 5分 (2)由(1)知,第一次所购该蔬菜数量为400÷4=100第二次所购该蔬菜数量为100×2=200 设该蔬菜每千克售价为元,根据题意得[100(1-2%)+200(1-3%)]944700400≥--y . ··········· 8分 ∴7≥y . ···························· 9分∴该蔬菜每千克售价至少为7元. ················ 10分24. (1)∵四边形ABCD 是正方形∴∠BCG =∠DCB=∠DCF=90°,BC=DC .∵BE ⊥DF∴∠CBG+∠F=∠CDF+∠F .∴∠CBG=∠CDF . ……………………………………2分 ∴△CBG ≌△CDF .∴BG=DF=4. ……………………………………3分∴在Rt △BCG 中,222BG BC CG =+∴CG =73422=-. …………………………4分 (2)过点C 作CM ⊥CE 交BE 于点M∵∠BCG=∠MCE =∠DCF =90°M∴∠BCM=∠DCE ,∠MCG=∠ECF ∵BC=DC ,∠CBG=∠CDF∴△CBM ≌△CDE ……………………………………6分 ∴CM=CE∴△CME 是等腰直角三角形 ……………………………………7分 ∴ME=CE 2 ,即MG+EG=CE 2又∵△CBG ≌△CDF ∴CG=CF∴△CMG ≌△FCE ……………………………………9分 ∴MG=EF∴EF+EG =2CE ……………………………………10分25. (1)3010+=x y ……………………………………2分 p y w -=100255090050)45010050()3010(10022++-=++-+=x x x x x ……………………………………4分(2)由58002550900502=++-x x 得 ……………………………………6分065182=+-x x∴131=x ,52=x∵12≤x ∴5=x . ……………………………………8分 ∴在今年内....该单位第5个月获得利润达到5800元. (3)二月份再生资源处理量为:40+10=50(吨)二月份月处理成本为:85045021002502=+⨯+⨯=p (元)50(1-%)×100(1+m 6.0%)-850×(1-20%)=50×100-850-60………10分 设%=,则023*******=-+t t∴30131060067600200±-=±-=t ∵0>t ,∴1.0=t∴%=0.1,即10=m . ……………………………………12分26.(1)过点D 作DK ⊥BC 延长线于K∴Rt △DKC 中,CK =3.∴Rt △DBK 中,BD=544)35(22=-+ ……………………2分在Rt △ABE 中,AB =5,AE =4, . ∴BE =3,∴当点Q 与点A 重合时,3=t . …………3分(2)⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≤<+-≤<++-≤<-+-≤<=)54(1041)43(31031032)3715(35091402768)7150(9102222t t t t t t t t t t S …………8分(3)当点M 与点D 重合时,BP=QM=4,∠BPO=∠MQO ,∠BOP=∠MOQ∴△BPO ≌△MQO ∴PO=2,BO=52 若HB=HG 时,∠HBC=∠HGB=∠O B H ' ∴B O '∥BG ∴HO=B H '∴设HO=B H '=222)4(2x x -+=, ∴25=x ∴4252=OH . ……………………………………9分 若GB=GH 时, ∠GBH=∠GHB∴此时,点G 与点C 重合,点H 与点D 重合∴20)52(222===OD OH . ……………………………………10分 当BH=BG 时, ∠BGH=∠BHG∵∠HBG=∠B ', ∴∠B OH B HO '∠='∴B O B H '='=52,∴P H '=452-.∴51640)452(2222-=-+=OH . 或∠BGH=∠HA P 'BB 'O CDHGA BC D OP 'B '(G)(H)ABC DOB 'P 'GH P 'GHBADOCB '∴∠OBG=∠H P B O ∠=''2 ∴∠H B HO ∠='∴B O B H '='=52, ∴P H '=452+.∴51640)452(2222+=++=OH . ……………………………………12分 综上所述,当4252=OH 、20、51640-、51640+时,△BGH 为等腰三角形.。

2017-2018学年 八年级(下)期末数学试卷(有答案和解析)

2017-2018学年八年级(下)期末数学试卷一、单项选择题(共10小题,每小题3分,30分)本题共10小题,每小题均给出A,B,C,D 四个选项,有且只有一个答案是正确的,请將正确答案的代号填在答题卡上,填在试题卷上无效.1.式子在实数范围内有意义,则x的取值范围是()A.x≥0B.x<0C.x≤2D.x≥22.已知直角三角形的两条直角边的长分别为1,,则斜边长为()A.1B.C.2D.33.下列计算正确的是()A.B.3﹣=3C.D.=4.点(a,﹣1)在一次函数y=﹣2x+1的图象上,则a的值为()A.a=﹣3B.a=﹣1C.a=1D.a=25.四边形ABCD中,已知AB∥CD,下列条件不能判定四边形ABCD为平行四边形的是()A.AB=CD B.AD=BC C.AD∥BC D.∠A+∠B=1806.匀速地向如图所示容器内注水,最后将容器注满.在注水过程中,水面高度h随时间t变化情况的大致函数图象(图中OABC为一折线)是()A.(1)B.(2)C.(3)D.无法确定7.如图,在△ABC中,AB=10,BC=6,点D为AB上一点,BC=BD,BE⊥CD于点E,点F为AC的中点,连接EF,则EF的长为()A.1B.2C.3D.48.某居民今年1至6月份(共6个月)的月平均用水量5t,其中1至5月份月用水量(单位:t)统计如图所示,根据表中信息,该户今年1至6月份用水量的中位数和众数分别是()A.4,5B.4.5,6C.5,6D.5.5,69.如图,过点A0(1,0)作x轴的垂线,交直线l:y=2x于B1,在x轴上取点A1,使OA1=OB1,过点A1作x轴的垂线,交直线l于B2,在x轴上取点A2,使OA2=OB2,过点A2作x轴的垂线,交直线l于B3,…,这样依次作图,则点B8的纵坐标为()A.()7B.2()7C.2()8D.()910.在平面直角坐标系中,一次函数y=x﹣1和y=﹣x+1的图象与x轴的交点及x轴上方的部分组成的图象可以表示为函数y=|x﹣1|,当自变量﹣1≤x≤2时,若函数y=|x﹣a|(其中a为常量)的最小值为a+5,则满足条件的a的值为()A.﹣3B.﹣5C.7D.﹣3或﹣5二、填空愿:(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置11.计算=,(﹣)2=,3﹣=.12.下表记录了某校篮球队队员的年龄分布情况,则该校篮球队队员的平均年龄为.13.如图,在平行四边形ABCD中,AC⊥BC,AD=AC=2,则BD的长为.14.将一次函数y=﹣x+1沿x轴方向向右平移3个单位长度得到的直线解析式为.15.“五一”期间,小红到某景区登山游玩,小红上山时间x(分钟)与走过的路程y(米)之间的函数关系如图所示,在小红出发的同时另一名游客小卉正在距离山底60米处沿相同线路上山,若小红上山过程中与小卉恰好有两次相遇,则小卉上山平均速度v(米/分钟)的取值范围是.16.如图,在矩形ABCD中,AB=5,AD=9,点P为AD边上点,沿BP折叠△ABP,点A的对应点为E,若点E到矩形两条较长边的距离之比为1:4,则AP的长为.三、解答题:〔共8小题,72分)小下列各题需要在答题卡指定的位置写出文字说明、证明过程、演算步骤或画出图形17.(8分)计算:(1)﹣+(2)(+3)(﹣2)18.(8分)如图,已知▱ABCD的对角线AC,BD相交于O,点E,F分别是OA,OC的中点,求证:BE=DF.19.(8分)已知y是x的一次函数,如表列出了部分y与x的对应值,求m的值.20.(8分)运动服装店销售某品牌S号,M号,L号,XL号,XXL号五种不同型号服装,随机统计该品牌运动服装一周的销售情况并绘制如图所示不完整统计图.(1)L号运动服一周的销售所占百分比为.(2)请补全条形统计图;(3)服装店老板打算再次购进该品牌服饰共600件,根据各种型号的销售情况,你认为购进XL 号约多少件比较合适,请计算说明.21.(8分)如图,在矩形ABCD中,AF平分∠BAD交BC于E,交DC延长线于F,点G为EF 的中点,连结DG.(1)求证:BC=DF;(2)连BD,求BD:DG的值.22.(10分)某移动通信公司推出了如下两种移动电话计费方式,说明:月使用费固定收取,主叫不超过限定时间不再收费,超过部分加收超时费.例如,方式一每月固定交费30元,当主叫计时不超过300分钟不再额外收费,超过300分钟时,超过部分每分钟加收0.20元(不足1分钟按1分钟计算)(1)请根据题意完成如表的填空;(2)设某月主叫时间为t(分钟),方式一、方式二两种计费方式的费用分别为y1(元),y2(元),分别写出两种计费方式中主叫时间t(分钟)与费用为y1(元),y2(元)的函数关系式;(3)请计算说明选择哪种计费方式更省钱.23.(10分)如图,在正方形ABCD中,点E,F分别在边AD,CD上,(1)若AB=6,AE=CF,点E为AD的中点,连接AE,BF.①如图1,求证:BE=BF=3;②如图2,连接AC,分别交AE,BF于M,M,连接DM,DN,求四边形BMDN的面积.(2)如图3,过点D作DH⊥BE,垂足为H,连接CH,若∠DCH=22.5°,则的值为(直接写出结果).24.(12分)如图,直线y=2x+6交x轴于A,交y轴于B.(1)直接写出A(,),B(,);(2)如图1,点E为直线y=x+2上一点,点F为直线y=x上一点,若以A,B,E,F为顶点的四边形是平行四边形,求点E,F的坐标(3)如图2,点C(m,n)为线段AB上一动点,D(﹣7m,0)在x轴上,连接CD,点M为CD的中点,求点M的纵坐标y和横坐标x之间的函数关系式,并直接写出在点C移动过程中点M的运动路径长.2017-2018学年八年级(下)期末数学试卷参考答案与试题解析一、单项选择题(共10小题,每小题3分,30分)本题共10小题,每小题均给出A,B,C,D 四个选项,有且只有一个答案是正确的,请將正确答案的代号填在答题卡上,填在试题卷上无效. 1.【分析】由二次根式的性质可以得到x﹣2≥0,由此即可求解.【解答】解:依题意得x﹣2≥0,∴x≥2.故选:D.【点评】此题主要考查了二次根式有意义的条件,根据被开方数是非负数即可解决问题.2.【分析】根据勾股定理进行计算,即可求得结果.【解答】解:直角三角形的两条直角边的长分别为1,,则斜边长=;故选:C.【点评】本题考查了勾股定理;熟练运用勾股定理进行求解是解决问题的关键.3.【分析】根据二次根式的运算法则逐一计算可得.【解答】解:A、、不是同类二次根式,不能合并,此选项错误;B、3﹣=2,此选项错误;C、×=,此选项错误;D、=,此选项正确;故选:D.【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的运算法则.4.【分析】把点A(a,﹣1)代入y=﹣2x+1,解关于a的方程即可.【解答】解:∵点A(a,﹣1)在一次函数y=﹣2x+1的图象上,∴﹣1=﹣2a+1,解得a=1,故选:C.【点评】此题考查一次函数图象上点的坐标特征;用到的知识点为:点在函数解析式上,点的横坐标就适合这个函数解析式.5.【分析】平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.【解答】解:根据平行四边形的判定,A、C、D均符合是平行四边形的条件,B则不能判定是平行四边形.故选:B.【点评】此题主要考查了学生对平行四边形的判定的掌握情况.对于判定定理:“一组对边平行且相等的四边形是平行四边形.”应用时要注意必须是“一组”,而“一组对边平行且另一组对边相等”的四边形不一定是平行四边形.6.【分析】根据题意和图形可以判断哪个函数图象符合实际,从而可以解答本题.【解答】解:由图形可得,从开始到下面的圆柱注满这个过程中,h随时间t的变化比较快,从最下面的圆柱注满到中间圆柱注满这个过程中,h随时间t的变化比较缓慢,从中间圆柱注满到最上面的圆柱注满这个过程中,h随时间t的变化最快,故(1)中函数图象符合题意,故选:A.【点评】本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.7.【分析】根据等腰三角形的性质求出CE=ED,根据三角形中位线定理解答.【解答】解:BD=BC=6,∴AD=AB﹣BD=4,∵BC=BD,BE⊥CD,∴CE=ED,又CF=FA,∴EF=AD=2,故选:B.【点评】本题考查的是三角形中位线定理、等腰三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.8.【分析】先根据平均数的定义求出6月份的用水量,再根据中位数和众数的定义求解可得.【解答】解:根据题意知6月份的用水量为5×6﹣(3+6+4+5+6)=6(t),∴1至6月份用水量从小到大排列为:3、4、5、6、6、6,则该户今年1至6月份用水量的中位数为=5.5、众数为6,故选:D.【点评】本题主要考查众数和中位数,解题的关键是根据平均数定义求出6月份用水量及众数和中位数的定义.9.【分析】根据一次函数图象上点的坐标特征和等腰三角形的性质即可得到结论.【解答】解:∵A0(1,0),∴OA0=1,∴点B1的横坐标为1,∵B1,B2、B3、…、B8在直线y=2x的图象上,∴B1纵坐标为2,∴OA1=OB1=,∴A1(,0),∴B2点的纵坐标为2,于是得到B3的纵坐标为2()2…∴B8的纵坐标为2()7故选:B.【点评】本题考查了一次函数图象上点的坐标特征、等腰直角三角形的性质,解题的关键是找出B n的坐标的变化规律.10.【分析】分三种情形讨论求解即可解决问题;【解答】解:对于函数y=|x﹣a|,最小值为a+5.情形1:a+5=0,a=﹣5,∴y=|x+5|,此时x=﹣5时,y有最小值,不符合题意.情形2:x=﹣1时,有最小值,此时函数y=x﹣a,由题意:﹣1﹣a=a+5,得到a=﹣3.∴y=|x+3|,符合题意.情形3:当x=2时,有最小值,此时函数y=﹣x+a,由题意:﹣2+a=a+5,方程无解,此种情形不存在,综上所述,a=﹣3.故选:A.【点评】本题考查两直线相交或平行问题,一次函数的性质等知识,解题的关键是学会用分类讨论的思想解决问题,属于中考常考题型.二、填空愿:(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置11.【分析】根据二次根式的性质化简和(﹣)2,利用二次根式的加减法计算3﹣.【解答】解:=2,(﹣)2=6,3﹣=2.故答案为2,6,2.【点评】本题考查了二次根式的加减法:二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.12.【分析】根据加权平均数的计算公式计算可得.【解答】解:该校篮球队队员的平均年龄为=13.7(岁),故答案为:13.7.【点评】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义和计算公式.13.【分析】设AC与BD的交点为O,根据平行四边形的性质,可得AO=CO=1,BO=DO,根据勾股定理可得BO=,即可求BD的长.【解答】解:设AC与BD的交点为O∵四边形ABCD是平行四边形∴AD=BC=2,AD∥BCAO=CO=1,BO=DO∵AC⊥BC∴BO==∴BD=2故答案为2【点评】本题考查了平行四边形的性质,关键是灵活运用平行四边形的性质解决问题.14.【分析】平移后的直线的解析式的k不变,设出相应的直线解析式,从原直线解析式上找一个点,然后找到向右平移3个单位,代入设出的直线解析式,即可求得b,也就求得了所求的直线解析式.【解答】解:可设新直线解析式为y=﹣x+b,∵原直线y=﹣x+1经过点(0,1),∴向右平移3个单位,(3,1),代入新直线解析式得:b=,∴新直线解析式为:y=﹣x+.故答案为:y=﹣x+.【点评】此题主要考查了一次函数图象与几何变换,用到的知识点为:平移不改变直线解析式中的k,关键是得到平移后经过的一个具体点.15.【分析】利用极限值法找出小卉走过的路程y与小红上山时间x之间的函数图象经过的点的坐标,由点的坐标利用待定系数法可求出y与x之间的函数关系式,再结合函数图象,即可找出小卉上山平均速度v(米/分钟)的取值范围.【解答】解:设小卉走过的路程y与小红上山时间x之间的函数关系式为y=kx+b(k≠0).将(0,60)、(30,300)代入y=kx+b,得:,解得:,∴此种情况下,y关于x的函数关系式为y=8x+60;将(0,60)、(70,480)代入y=kx+b,得:,解得:,∴此种情况下,y关于x的函数关系式为y=6x+60;将(0,60)、(50,300)代入y=kx+b,得:,解得:,∴此种情况下,y关于x的函数关系式为y=4.8x+60.观察图形,可知:小卉上山平均速度v(米/分钟)的取值范围是6<v<8或v=4.8.故答案为:6<v<8或v=4.8【点评】本题考查了一次函数的应用以及待定系数法求出一次函数解析式,根据点的坐标,利用待定系数法求出一次函数解析式是解题的关键.16.【分析】分点E在矩形内部,EM:EN=1:4,或EM:EN=4:1,点E在矩形外部,EN:EM =1:4,三种情况讨论,根据折叠的性质和勾股定理可求AP的长度.【解答】解:过点E作ME⊥AD,延长ME交BC与N,∵四边形ABCD是矩形∴AD∥BC,且ME⊥DA∴EN⊥BC且∠A=90°=∠ABC=90°∴四边形ABNM是矩形∴AB=MN=5,AM=BN若ME:EN=1:4,如图1∵ME:EN=1:4,MN=5∴ME=1,EN=4∵折叠∴BE=AB=5,AP=PE在Rt△BEN中,BN==3∴AM=3在Rt△PME中,PE2=ME2+PM2AP2=(3﹣AP)2+1解得AP=若ME:EN=4:1,则EN=1,ME=4,如图2在Rt△BEN中,BN==2∴AM =2在Rt △PME 中,PE 2=ME 2+PM 2AP 2=(2﹣AP )2+16解得AP =若点E 在矩形外,如图∵EN :EM =1:4∴EN =,EM =在Rt △BEN 中,BN ==∴AM =在Rt △PME 中,PE 2=ME 2+PM 2AP 2=(AP ﹣)2+()2解得:AP =5故答案为,,5 【点评】本题考查了折叠问题,矩形的性质,勾股定理,利用分类思想解决问题是本题的关键.三、解答题:〔共8小题,72分)小下列各题需要在答题卡指定的位置写出文字说明、证明过程、演算步骤或画出图形17.【分析】(1)先把各二次根式化简为最简二次根式,然后合并即可;(2)利用多项式乘法公式展开,然后合并即可.【解答】解:(1)原式=3﹣2+=;(2)原式=5﹣2+3﹣6=﹣1.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.【分析】据平行四边形的性质对角线互相平分得出OA=OC,OB=OD,利用中点的意义得出OE=OF,从而利用平行四边形的判定定理“对角线互相平分的四边形是平行四边形”判定BFDE 是平行四边形,从而得出BE=DF.【解答】证明:连接BF、DE,如图所示:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵E、F分别是OA、OC的中点,∴OE=OA,OF=OC,∴OE=OF,∴四边形BFDE是平行四边形,∴BE∥DF.【点评】本题考查了平行四边形的基本性质和判定定理的运用.性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.19.【分析】利用待定系数法即可解决问题;【解答】解:设一次函数的解析式为y=kx+b,则有,解得,∴一次函数的解析式为y=2x﹣3,当x=﹣1时,m=﹣5.【点评】本题考查一次函数图象上的点的特征,解题的关键是熟练掌握待定系数法解决问题,属于中考常考题型.20.【分析】(1)利用百分比之和为1,计算即可;(2)求出M、L的件数,画出条形图即可;(3)利用不要告诉总体的思想解决问题即可;【解答】解:(1)L号运动服一周的销售所占百分比为1﹣16%﹣8%﹣30%﹣26%=20%.故答案为20%.(2)总数=13÷26%=50,M有50×30%=15,L有50×20%=10,条形统计图如图所示:(3)购进XL号约600×16%=96(件)比较合适.【点评】本题考查了频数分布直方图、扇形统计图和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.21.【分析】(1)根据矩形的性质解答即可;(2)根据全等三角形的判定和性质以及等腰直角三角形的性质解答即可.【解答】证明:(1)∵四边形ABCD为矩形,∴AD=BC,∠BAD=∠ADC=90°,∵AF平分∠BAD,∴∠DAF=45°,∴AD=DF,∴BC=DF;(2)连接CG,BG,∵点G为EF的中点,∴GF=CG,∴∠F=∠BCG=45°,在△BCG与△DFG中,∴△BCG≌△DFG(SAS),∴BG=DG,∠CBG=∠FDG,∴△BDG为等腰直角三角形,∴BD=DG,∴BD:DG=:1.【点评】此题考查矩形的性质,关键是根据矩形的性质和全等三角形的判定和性质解答.22.【分析】(1)根据题意得出表中数据即可;(2)根据分段计费的费用就可以得出各个时段各种不同的付费方法就可以得出结论;(3)分别求出几种情况下时x的取值范围,根据x的取值范围即可选择计费方式.【解答】解:(1)由题意可得:月主叫时间500分钟时,方式一收费为70元;月主叫时间800分钟时,方式二收费为100元,故答案为:70;100;(2)由题意可得:y1(元)的函数关系式为:;y2(元)的函数关系式为:;(3)①当0≤t≤300时方式一更省钱;②当300<t≤600时,若两种方式费用相同,则当0.2t﹣30=50,解得:t=400,即当t=400,两种方式费用相同,当300<t≤400时方式一省钱,当400<t≤600时,方式二省钱;③当t>600时,若两种方式费用相同,则当0.2t﹣30=0.25t﹣100,解得:t=1400,即当t=1400,两种方式费用相同,当600<t≤1400时方式二省钱,当t>1400时,方式一省钱;综上所述,当0≤t≤400时方式一省钱;当400<t≤1400时,方式二省钱,当t>1400时,方式一省钱,当为400分钟、1400分钟时,两种方式费用相同.【点评】本题考查了一次函数的应用,难度中等.得到两种计费方式的关系式是解决本题的关键,注意在列式时应保证单位的统一.23.【分析】(1)①先求出AE=3,进而求出BE,再判断出△BAE≌△BCF,即可得出结论;②先求出BD=6,再判断出△AEM∽△CMB,进而求出AM=2,再判断出四边形BMDN是菱形,即可得出结论;(2)先判断出∠DBH=22.5°,再构造等腰直角三角形,设出DH,进而得出HG,BG,即可得出BH,结论得证.【解答】解:(1)①∵四边形ABCD是正方形,∴AB=BC=AD=6,∠BAD=∠BCD=90°,∵点E是中点,∴AE=AD=3,在Rt△ABE中,根据勾股定理得,BE==3,在△BAE和△BCF中,,∴△BAE≌△BCF(SAS),∴BE=BF,∴BE=BF=3;②如图2,连接BD,在Rt△ABC中,AC=AB=6,∴BD=6,∵四边形ABCD是正方形,∴AD∥BC,∴△AEM∽△CMB,∴=,∴=,∴AM=AC=2,同理:CN=2,∴MN=AC﹣AM﹣CN=2,由①知,△ABE≌△CBF,∴∠ABE=∠CBF,∵AB=BC,∠BAM=∠BCN=45°,∴△ABM≌△CBN,∴BM=BN,∵AC是正方形ABCD的对角线,∴AB=AD,∠BAM=∠DAM=45°,∵AM=AM,∴△BAM≌△DAM,∴BM=DM,同理:BN=DN,∴BM=DM=DN=BN,∴四边形BMDN是菱形,∴S=BD×MN=×6×2=12;四边形BMDN(2)如图3,设DH=a,连接BD,∵四边形ABCD是正方形,∴∠BCD=90°,∵DH⊥BH,∴∠BHD=90°,∴点B,C,D,H四点共圆,∴∠DBH=∠DCH=22.5°,在BH上取一点G,使BG=DG,∴∠DGH=2∠DBH=45°,∴∠HDG=45°=∠HGD,∴HG=HD=a,在Rt△DHG中,DG=HD=a,∴BG=a,∴BH=BG+HG=A+A=(+1)a,∴==﹣1.故答案为:﹣1.【点评】此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,菱形的判定和性质,勾股定理,判断出四边形BMDN是菱形是解本题的关键.24.【分析】(1)利用待定系数法即可解决问题;(2)因为A,B,E,F为顶点的四边形是平行四边形,推出AB=EF,AB∥EF,设E(m,m+2),则F(m+3,m+8)或(m﹣3,m﹣4),再利用待定系数法求出m即可;(3)求出点M的坐标(用m表示),即可解决问题,利用特殊位置求出点M的坐标,可以解决点C移动过程中点M的运动路径长;【解答】解:(1)对于直线y=2x+6,令x=0,得到y=6,令y=0,得到x=﹣3,∴A(﹣3,0),B(0,6),故答案为﹣3,0,0,6;(2)∵A,B,E,F为顶点的四边形是平行四边形,∴AB=EF,AB∥EF,设E(m,m+2),则F(m+3,m+8)或(m﹣3,m﹣4),把F(m+3,m+8)代入y=x,得到m+8=(m+3),解得m=﹣13,∴E(﹣13,﹣11),F(﹣10,﹣5),把F(m﹣3,m﹣4)代入y=x中,m﹣4=(m﹣3),解得m=5,∴E(5,7),F(2,1),当AB为对角线时,设E(m,m+2),则F(m﹣3,6﹣m),把F(﹣m﹣3,4﹣m)代入y=x中,4﹣m=(﹣m﹣3),解得m=11,∴E(11,13),F(﹣14,﹣7).(3)∵C(m,n)在直线y=2x+6上,∴n=2m+6,∴C(m,2m+6),∵D(﹣7m,0),CM=MD,∴M(﹣3m,m+3),令x=﹣3m,y=m+3,∴y=﹣x+3,当点C与A重合时,m=﹣3,可得M(9,0),当点C与B重合时,m=0,可得M(0,3),∴点C移动过程中点M的运动路径长为:=3.【点评】本题考查一次函数综合题、平行四边形的判定和性质、中点坐标公式、勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,学会利用特殊位置寻找点的运动轨迹,属于中考压轴题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档