全国各地2015年中考数学试卷解析分类汇编专题(第1期) 38 方案设计 含答案

合集下载

全国各地中考数学试卷解析分类汇编(第1期)专题18 图形的展开与叠折

全国各地中考数学试卷解析分类汇编(第1期)专题18 图形的展开与叠折

图形的展开与叠折一、选择题1.(2015•江苏无锡,第9题2分)如图的正方体盒子的外表面上画有3条粗黑线,将这个正方体盒子的表面展开(外表面朝上),展开图可能是( )A .B .C .D .考点: 几何体的展开图.分析: 根据正方体的表面展开图进行分析解答即可.解答: 解:根据正方体的表面展开图,两条黑线在一列,故A 错误,且两条相邻成直角,故B 错误,间相隔一个正方形,故C 错误,只有D 选项符合条件, 故选D点评: 本题主要考查了几何体的展开图,注意正方体的空间图形,从相对面入手,分析及解答问题.2.(2015湖北荆州第8题3分)如图所示,将正方形纸片三次对折后,沿图中AB 线剪掉一个等腰直角三角形,展开铺平得到的图形是( )A .B .C .D .考点: 剪纸问题.分析: 根据题意直接动手操作得出即可.解答: 解:找一张正方形的纸片,按上述顺序折叠、裁剪,然后展开后得到的图形如图所示:故选A.点评:本题考查了剪纸问题,难点在于根据折痕逐层展开,动手操作会更简便.3.(2015湖北鄂州第8题3分)如图,在矩形ABCD中,AB=8,BC=12,点E是BC的中点,连接AE,将△ABE沿AE折叠,点B落在点F处,连接FC,则sin∠ECF =()A.B.C.D.【答案】D.考点:翻折问题.4.(2015•四川资阳,第9题3分)如图5,透明的圆柱形容器(容器厚度忽略不计)的高为12cm ,底面周长为10cm ,在容器内壁离容器底部3 cm 的点B 处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3 cm 的点A 处,则蚂蚁吃到饭粒需爬行的最短路径是 A .13cmB.CD.考点:平面展开-最短路径问题..分析:将容器侧面展开,建立A 关于EF 的对称点A ′,根据两点之间线段最短可知A ′B 的长度即为所求. 解答:解:如图:∵高为12cm ,底面周长为10cm ,在容器内壁离容器底部3cm 的点B 处有一饭粒,此时蚂蚁正好在容器外壁,离容器上沿3cm 与饭粒相对的点A 处,∴A ′D =5cm ,BD =12﹣3+AE =12cm ,∴将容器侧面展开,作A 关于EF 的对称点A ′, 连接A ′B ,则A ′B 即为最短距离,A ′B ===13(Cm ).故选:A .点评:本题考查了平面展开﹣﹣﹣最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.5、(2015•四川自贡,第10题4分) 如图,在矩形ABCD 中,AB 4AD 6==,,E 是AB 边的中点,F 是线段BC 边上的动点,将△EBF 沿EF 所在直线折叠得到△'EB F ,连接'B D ‘,则'B D ‘的最小值是 ( )A. 2 B .6 C.2 D .4图5EB考点:矩形的性质、翻折(轴对称)、勾股定理、最值.分析:连接EA 后抓住△DEB 中两边一定,要使'DB 的长度最小即要使'DEB ∠最小(也就是使其角度为0°),此时点'B 落在DE 上, 此时''D B D E EB =-略解:∵E 是AB 边的中点,AB 4= ∴1AE EB AB 22===∵四边形ABCD 矩形 ∴A 90∠=o∴在Rt △DAE 根据勾股定理可知:222DE AE AD =+又∵AD 6= ∴ED =根据翻折对称的性质可知'EB EB 2==∵△DEB 中两边一定,要使'DB 的长度最小即要使'DEB ∠最小(也就是使其角度为0°),此时点'B 落在DE 上(如图所示). ∴''DB DE EB 2=-= ∴'DB 的长度最小值为2. 故选A6. (2015•绵阳第12题,3分)如图,D 是等边△ABC 边AB 上的一点,且AD :DB =1:2,现将△ABC 折叠,使点C 与D 重合,折痕为EF ,点E ,F 分别在AC 和BC 上,则CE :CF =( )A .B .C .D . 考点: 翻折变换(折叠问题)..分析: 借助翻折变换的性质得到DE =CE ;设AB =3k ,CE =x ,则AE =3k ﹣x ;根据余弦定理分别求出CE 、CF 的长即可解决问题. 解答: 解:设AD =k ,则DB =2k ; ∵△ABC 为等边三角形,EB∴AB=AC=3k,∠A=60°;设CE=x,则AE=3k﹣x;由题意知:EF⊥CD,且EF平分CD,∴CE=DE=x;由余弦定理得:DE2=AE2+AD2﹣2AE•AD•cos60°即x2=(3k﹣x)2+k2﹣2k(3k﹣x)cos60°,整理得:x=,同理可求:CF=,∴CE:CF=4:5.故选:B.点评:主要考查了翻折变换的性质及其应用问题;解题的关键是借助余弦定理分别求出CE、CF的长度(用含有k的代数式表示);对综合的分析问题解决问题的能力提出了较高的要求.7. (2015•浙江省台州市,第8题)如果将长为6cm,宽为5cm的长方形纸片折叠一次,那么这条折痕的长不可能是()A.8cmB.C.5.5cmD.1cm8.(2015·贵州六盘水,第4题3分)如图2是正方体的一个平面展开图,原正方体上两个“我”字所在面的位置关系是()A.相对 B.相邻 C.相隔 D.重合考点:专题:正方体相对两个面上的文字..分析:正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.解答:解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“我”与“国”是相对面, “我”与“祖”是相对面, “爱”与“的”是相对面.故原正方体上两个“我”字所在面的位置关系是相邻. 故选B . 点评:本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.9. (2015•浙江宁波,第10题4分)如图,将△ABC 沿着过AB 中点D 的直线折叠,使点A 落在BC 边上的A 1处,称为第1次操作,折痕DE 到BC 的距离记为1h ;还原纸片后,再将△ADE 沿着过AD 中点D 1的直线折叠,使点A 落在DE 边上的A 2处,称为第2次操作,折痕D 1E 1到BC 的距离记为2h ;按上述方法不断操作下去,经过第2015次操作后得到的折痕D 2014E 2014到BC 的距离记为2015h ,若1h =1,则2015h 的值为【 】A . 201521B . 201421C .2015211-D .2014212-【答案】D . 【考点】探索规律题(图形的变化类);折叠对称的性质;三角形中位线定理.【分析】根据题意和折叠对称的性质,DE 是△ABC 的中位线,D 1E 1是△A D 1E 1的中位线,D 2E 2是△A 2D 2E 1的中位线,…∴21111122h =+=-,32211111222h =++=-,42331111112222h =+++=-,…20152201420141111112222h =+++⋅⋅⋅+=-.故选D .10.(2015•江苏泰州,第4题3分)一个几何体的表面展开图如图所示, 则这个几何体是A .四棱锥B .四棱柱C .三棱锥D .三棱柱【答案】A . 【解析】试题分析:根据四棱锥的侧面展开图得出答案. 试题解析:如图所示:这个几何体是四棱锥. 故选A .考点:几何体的展开图.11. (2015•四川广安,第4题3分)在市委、市府的领导下,全市人民齐心协力,将广安成功地创建为“全国文明城市”,为此小红特制了一个正方体玩具,其展开图如图所示,原正方体中与“文”字所在的面上标的字应是( )A . 全B . 明C . 城D . 国考点: 专题:正方体相对两个面上的文字..分析: 正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.解答:解:由正方体的展开图特点可得:与“文”字所在的面上标的字应是“城”.故选:C.点评:此题考查了正方体相对两个面上的文字的知识;掌握常见类型展开图相对面上的两个字的特点是解决本题的关键.12. (2015•浙江金华,第9题3分)以下四种沿AB折叠的方法中,不一定能判定纸带两条边线,互相平行的是【】A. 如图1,展开后,测得∠1=∠2B. 如图2,展开后,测得∠1=∠2,且∠3=∠4C. 如图3,测得∠1=∠2D. 如图4,展开后,再沿CD折叠,两条折痕的交点为O,测得OA=OB,OC=OD【答案】C.【考点】折叠问题;平行的判定;对顶角的性质;全等三角形的判定和性质.【分析】根据平行的判定逐一分析作出判断:A. 如图1,由∠1=∠2,根据“内错角相等,两直线平行”的判定可判定纸带两条边线,互相平行;B. 如图2,由∠1=∠2和∠3=∠4,根据平角定义可得∠1=∠2=∠3=∠4=90°,从而根据“内错角相等,两直线平行”或“同旁内角互补,两直线平行”的判定可判定纸带两条边线,互相平行;C. 如图3,由∠1=∠2不一定得到内错角相等或同位角相等或同旁内角互补,故不一定能判定纸带两条边线,互相平行;D. 如图4,由OA=OB,OC=OD,得到,从而得到,进而根据“内错角相等,两直线平行”的判定可判定纸带两条边线,互相平行.故选C.13. (2015•山东潍坊第11 题3分)如图,有一块边长为6cm的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是()A.cm2 B.cm2 C.cm2 D.cm2考点:二次函数的应用;展开图折叠成几何体;等边三角形的性质..分析:如图,由等边三角形的性质可以得出∠A=∠B=∠C=60°,由三个筝形全等就可以得出AD=BE=BF=CG=CH=AK,根据折叠后是一个三棱柱就可以得出DO=PE=PF=QG=QH=OK,四边形ODEP、四边形PFGQ、四边形QHKO为矩形,且全等.连结AO证明△AOD≌△AOK就可以得出∠OAD=∠OAK=30°,设OD=x,则AO=2x,由勾股定理就可以求出AD= x,由矩形的面积公式就可以表示纸盒的侧面积,由二次函数的性质就可以求出结论.解答:解:∵△ABC为等边三角形,∴∠A=∠B=∠C=60°,AB=BC=A C.∵筝形ADOK≌筝形BEPF≌筝形AGQH,∴AD=BE=BF=CG=CH=AK.∵折叠后是一个三棱柱,∴DO=PE=PF=QG=QH=OK,四边形ODEP、四边形PFGQ、四边形QHKO都为矩形.∴∠ADO=∠AKO=90°.连结AO,在Rt△AOD和Rt△AOK中,,∴Rt△AOD≌Rt△AOK(HL).∴∠OAD=∠OAK=30°.设OD=x,则AO=2x,由勾股定理就可以求出AD= x,∴DE=6﹣2 x,∴纸盒侧面积=3x(6﹣2 x)=﹣6 x2+18x,=﹣6 (x﹣)2+ ,∴当x= 时,纸盒侧面积最大为.故选C.点评:本题考查了等边三角形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,矩形的面积公式的运用,二次函数的性质的运用,解答时表示出纸盒的侧面积是关键.二、填空题1. (2015•浙江嘉兴,第14题5分)如图,一张三角形纸片ABC,AB=AC=5.折叠该纸片使点A落在边BC的中点上,折痕经过AC上的点E,则线段AE的长为____▲____.考点:翻折变换(折叠问题)..分析:如图,D为BC的中点,AD⊥BC,因为折叠该纸片使点A落在BC的中点D上,所以折痕EF垂直平分AD,根据平行线等分线段定理,易知E是AC的中点,故AE=2.5.解答:解:如图所示,∵D为BC的中点,AB=AC,∴AD⊥BC,∵折叠该纸片使点A落在BC的中点D上,∴折痕EF垂直平分AD,∴E是AC的中点,∵AC=5∴AE=2.5.故答案为:2.5.点评:本题考查了折叠的性质,等腰三角形的性质以及平行线等分线段定理,意识到折痕EF垂直平分AD,是解决问题的关键.2. (2015•四川省内江市,第14题,5分)如图,在四边形ABCD中,AD∥BC,∠C=90°,E为CD上一点,分别以EA,EB为折痕将两个角(∠D,∠C)向内折叠,点C,D恰好落在AB边的点F处.若AD=2,BC=3,则EF的长为.考点:翻折变换(折叠问题)..分析:先根据折叠的性质得DE=EF,CE=EF,AF=AD=2,BF=CB=3,则DC=2EF,AB=5,再作AH⊥BC于H,由于AD∥BC,∠B=90°,则可判断四边形ADCH为矩形,所以AH=DC=2EF,HB=BC﹣CH=BC﹣AD=1,然后在Rt△ABH中,利用勾股定理计算出AH=2,所以EF=.解答:解∵分别以AE,BE为折痕将两个角(∠D,∠C)向内折叠,点C,D恰好落在AB 边的点F处,∴DE=EF,CE=EF,AF=AD=2,BF=CB=3,∴DC=2EF,AB=5,作AH⊥BC于H,∵AD∥BC,∠B=90°,∴四边形ADCH为矩形,∴AH=DC=2EF,HB=BC﹣CH=BC﹣AD=1,在Rt△ABH中,AH==2,∴EF=.故答案为:.点评:本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理.3. (2015•浙江滨州,第17题4分)如图,在平面直角坐标系中,将矩形AOCD沿直线AE 折叠(点E在边DC上),折叠后顶点D恰好落在边OC上的点F处.若点D的坐标为(10,8),则点E的坐标为 .【答案】(10,3)考点:折叠的性质,勾股定理4. (2015•浙江杭州,第16题4分)如图,在四边形纸片ABCD中,AB=BC,AD=CD,∠A=∠C=90°,∠B=150°,将纸片先沿直线BD对折,再将对折后的图形沿从一个顶点出发的直线裁剪,剪开后的图形打开铺平,若铺平后的图形中有一个是面积为2的平行四边形,则CD=_______________________________【答案】24+【考点】剪纸问题;多边形内角和定理;轴对称的性质;菱形、矩形的判定和性质;含30度角直角三角形的性质;相似三角形的判定和性质;分类思想和方程思想的应用.【分析】∵四边形纸片ABCD中,∠A=∠C=90°,∠B=150°,∴∠C=30°.如答图,根据题意对折、裁剪、铺平后可有两种情况得到平行四边形:如答图1,剪痕BM、BN,过点N作NH⊥BM于点H,第16题A易证四边形BMDN 是菱形,且∠MBN =∠C =30°.设BN =DN =x ,则NH =12x.根据题意,得1222x x x ⋅=⇒=,∴BN =DN =2, NH =1.易证四边形BHNC 是矩形,∴BC =NH =1. ∴在Rt BCN ∆中,CN∴CD=2+如答图2,剪痕AE 、CE ,过点B 作BH ⊥CE 于点H ,易证四边形BAEC 是菱形,且∠BCH =30°.设BC =CE =x ,则BH =12x.根据题意,得1222x x x ⋅=⇒=,∴BC =CE =2, BH =1.在Rt BCH ∆中,CHEH=2.易证BCD EHB ∆∆∽,∴CD BC HB EH =,即1CD =∴224CD +==+.综上所述,CD =2+4+5. (2015•四川省宜宾市,第15题,3分)如图, 一次函数的图象与x 轴、y 轴分别相交于点A 、B ,将△AOB 沿直线AB 翻折,得△ACB .若C (32,32),则该一次幽数的解析式为 .y =+yxCBAO三、解答题1. (2015•浙江金华,第23题10分)图1,图2为同一长方体房间的示意图,图2为该长方体的表面展开图.(1)蜘蛛在顶点A'处①苍蝇在顶点B 处时,试在图1中画出蜘蛛为捉住苍蝇,沿墙面爬行的最近路线;②苍蝇在顶点C 处时,图2中画出了蜘蛛捉住苍蝇的两条路线,往天花板ABCD 爬行的最近路线A 'GC 和往墙面BB'C'C 爬行的最近路线A 'HC ,试通过计算判断哪条路线更近?(2)在图3中,半径为10dm 的⊙M 与D 'C '相切,圆心M 到边CC'的距离为15dm ,蜘蛛P 在线段AB 上,苍蝇Q 在⊙M 的圆周上,线段PQ 为蜘蛛爬行路线。

安徽省中考数学2015年试题精品word版答案或解析精编

安徽省中考数学2015年试题精品word版答案或解析精编

2015年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A、B、C、D四个选项,其中只有一个是正确的.1.(4分)在﹣4,2,﹣1,3这四个数中,比﹣2小的数是()A.﹣4 B.2 C.﹣1 D.32.(4分)计算×的结果是()A. B.4 C.D.23.(4分)移动互联网已经全面进入人们的日常生活.截止2015年3月,全国4G用户总数达到1.62亿,其中1.62亿用科学记数法表示为()A.1.62×104B.1.62×106C.1.62×108D.0.162×1094.(4分)下列几何体中,俯视图是矩形的是()A. B.C.D.5.(4分)与1+最接近的整数是()A.4 B.3 C.2 D.16.(4分)我省2013年的快递业务量为1.4亿件,受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展,2014年增速位居全国第一.若2015年的快递业务量达到4.5亿件,设2014年与2015年这两年的平均增长率为x,则下列方程正确的是()A.1.4(1+x)=4.5 B.1.4(1+2x)=4.5C.1.4(1+x)2=4.5 D.1.4(1+x)+1.4(1+x)2=4.57.(4分)某校九年级(1)班全体学生2015年初中毕业体育考试的成绩统计如下表:成绩(分)35 39 42 44 45 48 50人数(人) 2 5 6 6 8 7 6根据上表中的信息判断,下列结论中错误的是()A.该班一共有40名同学B.该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是45分D.该班学生这次考试成绩的平均数是45分8.(4分)在四边形ABCD中,∠A=∠B=∠C,点E在边AB上,∠AED=60°,则一定有()A.∠ADE=20° B.∠ADE=30° C.∠ADE=∠ADC D.∠ADE=∠ADC9.(4分)如图,矩形ABCD中,AB=8,BC=4.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是()A.2 B.3 C.5 D.610.(4分)如图,一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,则函数y=ax2+(b ﹣1)x+c的图象可能是()A.B.C.D.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)﹣64的立方根是.12.(5分)如图,点A、B、C在半径为9的⊙O上,的长为2π,则∠ACB的大小是.13.(5分)按一定规律排列的一列数:21,22,23,25,28,213,…,若x、y、z表示这列数中的连续三个数,猜想x、y、z满足的关系式是.14.(5分)已知实数a、b、c满足a+b=ab=c,有下列结论:①若c≠0,则+=1;②若a=3,则b+c=9;③若a=b=c,则abc=0;④若a、b、c中只有两个数相等,则a+b+c=8.其中正确的是(把所有正确结论的序号都选上).三、(本大题共2小题,每小题8分,满分16分)15.(8分)先化简,再求值:(+)•,其中a=﹣.16.(8分)解不等式:>1﹣.四、(本大题共2小题,每小题8分,满分16分)17.(8分)如图,在边长为1个单位长度的小正方形网格中,给出了△ABC(顶点是网格线的交点).(1)请画出△ABC关于直线l对称的△A1B1C1;(2)将线段AC向左平移3个单位,再向下平移5个单位,画出平移得到的线段A2C2,并以它为一边作一个格点△A2B2C2,使A2B2=C2B2.18.(8分)如图,平台AB高为12m,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,求楼房CD的高度(=1.7).五、(本大题共2小题,每小题10分,满分20分)19.(10分)A、B、C三人玩篮球传球游戏,游戏规则是:第一次传球由A将球随机地传给B、C两人中的某一人,以后的每一次传球都是由上次的传球者随机地传给其他两人中的某一人.(1)求两次传球后,球恰在B手中的概率;(2)求三次传球后,球恰在A手中的概率.20.(10分)在⊙O中,直径AB=6,BC是弦,∠ABC=30°,点P在BC上,点Q在⊙O上,且OP ⊥PQ.(1)如图1,当PQ∥AB时,求PQ的长度;(2)如图2,当点P在BC上移动时,求PQ长的最大值.六、(本题满分12分)21.(12分)如图,已知反比例函数y=与一次函数y=k2x+b的图象交于点A(1,8)、B(﹣4,m).(1)求k1、k2、b的值;(2)求△AOB的面积;(3)若M(x1,y1)、N(x2,y2)是反比例函数y=图象上的两点,且x1<x2,y1<y2,指出点M、N各位于哪个象限,并简要说明理由.七、(本题满分12分)22.(12分)为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80m的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC的长度为xm,矩形区域ABCD的面积为ym2.(1)求y与x之间的函数关系式,并注明自变量x的取值范围;(2)x为何值时,y有最大值?最大值是多少?八、(本题满分14分)23.(14分)如图1,在四边形ABCD中,点E、F分别是AB、CD的中点,过点E作AB的垂线,过点F作CD的垂线,两垂线交于点G,连接AG、BG、CG、DG,且∠AGD=∠BGC.(1)求证:AD=BC;(2)求证:△AGD∽△EGF;(3)如图2,若AD、BC所在直线互相垂直,求的值.2015年安徽省中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A、B、C、D四个选项,其中只有一个是正确的.1.(4分)(2015•安徽)在﹣4,2,﹣1,3这四个数中,比﹣2小的数是()A.﹣4 B.2 C.﹣1 D.3【分析】根据有理数大小比较的法则直接求得结果,再判定正确选项.【解答】解:∵正数和0大于负数,∴排除2和3.∵|﹣2|=2,|﹣1|=1,|﹣4|=4,∴4>2>1,即|﹣4|>|﹣2|>|﹣1|,∴﹣4<﹣2<﹣1.故选:A.【点评】考查了有理数大小比较法则.正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小.2.(4分)(2015•安徽)计算×的结果是()A. B.4 C.D.2【分析】直接利用二次根式的乘法运算法则求出即可.【解答】解:×==4.故选:B.【点评】此题主要考查了二次根式的乘法运算,正确化简二次根式是解题关键.3.(4分)(2015•安徽)移动互联网已经全面进入人们的日常生活.截止2015年3月,全国4G用户总数达到1.62亿,其中1.62亿用科学记数法表示为()A.1.62×104B.1.62×106C.1.62×108D.0.162×109【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n是负数.【解答】解:将1.62亿用科学记数法表示为1.62×108.故选C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(4分)(2015•安徽)下列几何体中,俯视图是矩形的是()A. B.C.D.【分析】根据简单和几何体的三视图判断方法,判断圆柱、圆锥、三棱柱、球的俯视图,即可解答.【解答】解:A、俯视图为圆,故错误;B、俯视图为矩形,正确;C、俯视图为三角形,故错误;D、俯视图为圆,故错误;故选:B.【点评】本题考查了几何体的三种视图,掌握定义是关键.5.(4分)(2015•安徽)与1+最接近的整数是()A.4 B.3 C.2 D.1【分析】由于4<5<9,由此根据算术平方根的概念可以找到5接近的两个完全平方数,再估算与1+最接近的整数即可求解.【解答】解:∵4<5<9,∴2<<3.又5和4比较接近,∴最接近的整数是2,∴与1+最接近的整数是3,故选:B.【点评】此题主要考查了无理数的估算能力,估算无理数的时候,“夹逼法”是估算的一般方法,也是常用方法.6.(4分)(2015•安徽)我省2013年的快递业务量为1.4亿件,受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展,2014年增速位居全国第一.若2015年的快递业务量达到4.5亿件,设2014年与2015年这两年的平均增长率为x,则下列方程正确的是()A.1.4(1+x)=4.5 B.1.4(1+2x)=4.5C.1.4(1+x)2=4.5 D.1.4(1+x)+1.4(1+x)2=4.5【分析】根据题意可得等量关系:2013年的快递业务量×(1+增长率)2=2015年的快递业务量,根据等量关系列出方程即可.【解答】解:设2014年与2015年这两年的平均增长率为x,由题意得:1.4(1+x)2=4.5,故选:C.【点评】此题主要考查了由实际问题抽象出一元二次方程,关键是掌握平均变化率的方法,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.7.(4分)(2015•安徽)某校九年级(1)班全体学生2015年初中毕业体育考试的成绩统计如下表:成绩(分)35 39 42 44 45 48 50人数(人) 2 5 6 6 8 7 6根据上表中的信息判断,下列结论中错误的是()A.该班一共有40名同学B.该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是45分D.该班学生这次考试成绩的平均数是45分【分析】结合表格根据众数、平均数、中位数的概念求解.【解答】解:该班人数为:2+5+6+6+8+7+6=40,得45分的人数最多,众数为45,第20和21名同学的成绩的平均值为中位数,中位数为:=45,平均数为:=44.425.故错误的为D.故选D.【点评】本题考查了众数、平均数、中位数的知识,掌握各知识点的概念是解答本题的关键.8.(4分)(2015•安徽)在四边形ABCD中,∠A=∠B=∠C,点E在边AB上,∠AED=60°,则一定有()A.∠ADE=20° B.∠ADE=30° C.∠ADE=∠ADC D.∠ADE=∠ADC【分析】利用三角形的内角和为180°,四边形的内角和为360°,分别表示出∠A,∠B,∠C,根据∠A=∠B=∠C,得到∠ADE=∠EDC,因为∠ADC=∠ADE+∠EDC=∠EDC+∠EDC=∠EDC,所以∠ADE=∠ADC,即可解答.【解答】解:如图,在△AED中,∠AED=60°,∴∠A=180°﹣∠AED﹣∠ADE=120°﹣∠ADE,在四边形DEBC中,∠DEB=180°﹣∠AED=180°﹣60°=120°,∴∠B=∠C=(360°﹣∠DEB﹣∠EDC)÷2=120°﹣∠EDC,∵∠A=∠B=∠C,∴120°﹣∠ADE=120°﹣∠EDC,∴∠ADE=∠EDC,∵∠ADC=∠ADE+∠EDC=∠EDC+∠EDC=∠EDC,∴∠ADE=∠ADC,故选:D.【点评】本题考查了多边形的内角和,解决本题的关键是根据利用三角形的内角和为180°,四边形的内角和为360°,分别表示出∠A,∠B,∠C.9.(4分)(2015•安徽)如图,矩形ABCD中,AB=8,BC=4.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是()A.2 B.3 C.5 D.6【分析】连接EF交AC于O,由四边形EGFH是菱形,得到EF⊥AC,OE=OF,由于四边形ABCD是矩形,得到∠B=∠D=90°,AB∥CD,通过△CFO≌△AOE,得到AO=CO,求出AO=AC=2,根据△AOE∽△ABC,即可得到结果.【解答】解;连接EF交AC于O,∵四边形EGFH是菱形,∴EF⊥AC,OE=OF,∵四边形ABCD是矩形,∴∠B=∠D=90°,AB∥CD,∴∠ACD=∠CAB,在△CFO与△AOE中,,∴△CFO≌△AOE,∴AO=CO,∵AC==4,∴AO=AC=2,∵∠CAB=∠CAB,∠AOE=∠B=90°,∴△AOE∽△ABC,∴,∴,∴AE=5.故选C.【点评】本题考查了菱形的性质,全等三角形的判定和性质,相似三角形的判定和性质,熟练运用定理是解题的关键.10.(4分)(2015•安徽)如图,一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,则函数y=ax2+(b﹣1)x+c的图象可能是()A.B.C.D.【分析】由一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,得出方程ax2+(b﹣1)x+c=0有两个不相等的根,进而得出函数y=ax2+(b﹣1)x+c与x轴有两个交点,根据方程根与系数的关系得出函数y=ax2+(b﹣1)x+c的对称轴x=﹣>0,即可进行判断.【解答】解:∵一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,∴方程ax2+(b﹣1)x+c=0有两个不相等的根,∴函数y=ax2+(b﹣1)x+c与x轴有两个交点,又∵﹣>0,a>0∴﹣=﹣+>0∴函数y=ax2+(b﹣1)x+c的对称轴x=﹣>0,∴A符合条件,故选A.【点评】本题考查了二次函数的图象,直线和抛物线的交点,交点坐标和方程的关系以及方程和二次函数的关系等,熟练掌握二次函数的性质是解题的关键.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)(2015•安徽)﹣64的立方根是﹣4 .【分析】根据立方根的定义求解即可.【解答】解:∵(﹣4)3=﹣64,∴﹣64的立方根是﹣4.故选﹣4.【点评】此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.12.(5分)(2015•安徽)如图,点A、B、C在半径为9的⊙O上,的长为2π,则∠ACB的大小是20°.【分析】连结OA、OB.先由的长为2π,利用弧长计算公式求出∠AOB=40°,再根据在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半得到∠ACB=∠AOB=20°.【解答】解:连结OA、OB.设∠AOB=n°.∵的长为2π,∴=2π,∴n=40,∴∠AOB=40°,∴∠ACB=∠AOB=20°.故答案为20°.【点评】本题考查了弧长公式:l=(弧长为l,圆心角度数为n,圆的半径为R),同时考查了圆周角定理.13.(5分)(2015•安徽)按一定规律排列的一列数:21,22,23,25,28,213,…,若x、y、z表示这列数中的连续三个数,猜想x、y、z满足的关系式是xy=z .【分析】首项判断出这列数中,2的指数各项依次为1,2,3,5,8,13,…,从第三个数起,每个数都是前两数之和;然后根据同底数的幂相乘,底数不变,指数相加,可得这列数中的连续三个数,满足xy=z,据此解答即可.【解答】解:∵21×22=23,22×23=25,23×25=28,25×28=213,…,∴x、y、z满足的关系式是:xy=z.故答案为:xy=z.【点评】此题主要考查了探寻数列规律问题,考查了同底数幂的乘法法则,注意观察总结规律,并能正确的应用规律,解答此题的关键是判断出x、y、z的指数的特征.14.(5分)(2015•安徽)已知实数a、b、c满足a+b=ab=c,有下列结论:①若c≠0,则+=1;②若a=3,则b+c=9;③若a=b=c,则abc=0;④若a、b、c中只有两个数相等,则a+b+c=8.其中正确的是①③④(把所有正确结论的序号都选上).【分析】按照字母满足的条件,逐一分析计算得出答案,进一步比较得出结论即可.【解答】解:①∵a+b=ab≠0,∴+=1,此选项正确;②∵a=3,则3+b=3b,b=,c=,∴b+c=+=6,此选项错误;③∵a=b=c,则2a=a2=a,∴a=0,abc=0,此选项正确;④∵a、b、c中只有两个数相等,不妨a=b,则2a=a2,a=0,或a=2,a=0不合题意,a=2,则b=2,c=4,∴a+b+c=8.当a=c时,则b=0,不符合题意,b=c时,a=0,也不符合题意;故只能是a=b=2,c=4;此选项正确其中正确的是①③④.故答案为:①③④.【点评】此题考查分式的混合运算,一元一次方程的运用,灵活利用题目中的已知条件,选择正确的方法解决问题.三、(本大题共2小题,每小题8分,满分16分)15.(8分)(2015•安徽)先化简,再求值:(+)•,其中a=﹣.【分析】原式括号中第二项变形后,利用同分母分式的减法法则计算,约分得到最简结果,把a的值代入计算即可求出值.【解答】解:原式=(﹣)•=•=,当a=﹣时,原式=﹣1.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.16.(8分)(2015•安徽)解不等式:>1﹣.【分析】先去分母,然后移项并合并同类项,最后系数化为1即可求出不等式的解集.【解答】解:去分母,得2x>6﹣x+3,移项,得2x+x>6+3,合并,得3x>9,系数化为1,得x>3.【点评】本题考查了一元一次不等式的解法,解答本题的关键是熟练掌握解不等式的方法步骤,此题比较简单.四、(本大题共2小题,每小题8分,满分16分)17.(8分)(2015•安徽)如图,在边长为1个单位长度的小正方形网格中,给出了△ABC(顶点是网格线的交点).(1)请画出△ABC关于直线l对称的△A1B1C1;(2)将线段AC向左平移3个单位,再向下平移5个单位,画出平移得到的线段A2C2,并以它为一边作一个格点△A2B2C2,使A2B2=C2B2.【分析】(1)利用轴对称图形的性质得出对应点位置进而得出答案;(2)直接利用平移的性质得出平移后对应点位置进而得出答案.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求.【点评】此题主要考查了轴对称变换以及平移变换,根据图形的性质得出对应点位置是解题关键.18.(8分)(2015•安徽)如图,平台AB高为12m,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,求楼房CD的高度(=1.7).【分析】首先分析图形,根据题意构造直角三角形.本题涉及多个直角三角形,应利用其公共边构造关系式求解.【解答】解:如图,过点B作BE⊥CD于点E,根据题意,∠DBE=45°,∠CBE=30°.∵AB⊥AC,CD⊥AC,∴四边形ABEC为矩形.∴CE=AB=12m.在Rt△CBE中,cot∠CBE=,∴BE=CE•cot30°=12×=12.在Rt△BDE中,由∠DBE=45°,得DE=BE=12.∴CD=CE+DE=12(+1)≈32.4.答:楼房CD的高度约为32.4m.【点评】考查了解直角三角形的应用﹣仰角俯角问题,本题要求学生借助俯角构造直角三角形,并结合图形利用三角函数解直角三角形.五、(本大题共2小题,每小题10分,满分20分)19.(10分)(2015•安徽)A、B、C三人玩篮球传球游戏,游戏规则是:第一次传球由A将球随机地传给B、C两人中的某一人,以后的每一次传球都是由上次的传球者随机地传给其他两人中的某一人.(1)求两次传球后,球恰在B手中的概率;(2)求三次传球后,球恰在A手中的概率.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次传球后,球恰在B手中的情况,再利用概率公式即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与三次传球后,球恰在A手中的情况,再利用概率公式即可求得答案.【解答】解:(1)画树状图得:∵共有4种等可能的结果,两次传球后,球恰在B手中的只有1种情况,∴两次传球后,球恰在B手中的概率为:;(2)画树状图得:∵共有8种等可能的结果,三次传球后,球恰在A手中的有2种情况,∴三次传球后,球恰在A手中的概率为:=.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.20.(10分)(2015•安徽)在⊙O中,直径AB=6,BC是弦,∠ABC=30°,点P在BC上,点Q在⊙O上,且OP⊥PQ.(1)如图1,当PQ∥AB时,求PQ的长度;(2)如图2,当点P在BC上移动时,求PQ长的最大值.【分析】(1)连结OQ,如图1,由PQ∥AB,OP⊥PQ得到OP⊥AB,在Rt△OBP中,利用正切定义可计算出OP=3tan30°=,然后在Rt△OPQ中利用勾股定理可计算出PQ=;(2)连结OQ,如图2,在Rt△OPQ中,根据勾股定理得到PQ=,则当OP的长最小时,PQ 的长最大,根据垂线段最短得到OP⊥BC,则OP=OB=,所以PQ长的最大值=.【解答】解:(1)连结OQ,如图1,∵PQ∥AB,OP⊥PQ,∴OP⊥AB,在Rt△OBP中,∵tan∠B=,∴OP=3tan30°=,在Rt△OPQ中,∵OP=,OQ=3,∴PQ==;(2)连结OQ,如图2,在Rt△OPQ中,PQ==,当OP的长最小时,PQ的长最大,此时OP⊥BC,则OP=OB=,∴PQ长的最大值为=.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了勾股定理和解直角三角形.六、(本题满分12分)21.(12分)(2015•安徽)如图,已知反比例函数y=与一次函数y=k2x+b的图象交于点A(1,8)、B(﹣4,m).(1)求k1、k2、b的值;(2)求△AOB的面积;(3)若M(x1,y1)、N(x2,y2)是反比例函数y=图象上的两点,且x1<x2,y1<y2,指出点M、N各位于哪个象限,并简要说明理由.【分析】(1)先把A点坐标代入y=可求得k1=8,则可得到反比例函数解析式,再把B(﹣4,m)代入反比例函数求得m,得到B点坐标,然后利用待定系数法确定一次函数解析式即可求得结果;(2)由(1)知一次函数y=k2x+b的图象与y轴的交点坐标为(0,6),可求S△AOB=×6×2+×6×1=15;(3)根据反比例函数的性质即可得到结果.【解答】解:(1)∵反比例函数y=与一次函数y=k2x+b的图象交于点A(1,8)、B(﹣4,m),∴k1=8,B(﹣4,﹣2),解,解得;(2)由(1)知一次函数y=k2x+b的图象与y轴的交点坐标为C(0,6),∴S△AOB=S△COB+S△AOC=×6×4+×6×1=15;(3)∵比例函数y=的图象位于一、三象限,∴在每个象限内,y随x的增大而减小,∵x1<x2,y1<y2,∴M,N在不同的象限,∴M(x1,y1)在第三象限,N(x2,y2)在第一象限.【点评】本题考查了反比例函数与一次函数的交点问题,求三角形的面积,求函数的解析式,正确掌握反比例函数的性质是解题的关键.七、(本题满分12分)22.(12分)(2015•安徽)为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80m的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC的长度为xm,矩形区域ABCD的面积为ym2.(1)求y与x之间的函数关系式,并注明自变量x的取值范围;(2)x为何值时,y有最大值?最大值是多少?【分析】(1)根据三个矩形面积相等,得到矩形AEFD面积是矩形BCFE面积的2倍,可得出AE=2BE,设BE=a,则有AE=2a,表示出a与2a,进而表示出y与x的关系式,并求出x的范围即可;(2)利用二次函数的性质求出y的最大值,以及此时x的值即可.【解答】解:(1)∵三块矩形区域的面积相等,∴矩形AEFD面积是矩形BCFE面积的2倍,∴AE=2BE,设BE=FC=a,则AE=HG=DF=2a,∴DF+FC+HG+AE+EB+EF+BC=80,即8a+2x=80,∴a=﹣x+10,3a=﹣x+30,∴y=(﹣x+30)x=﹣x2+30x,∵a=﹣x+10>0,∴x<40,则y=﹣x2+30x(0<x<40);(2)∵y=﹣x2+30x=﹣(x﹣20)2+300(0<x<40),且二次项系数为﹣<0,∴当x=20时,y有最大值,最大值为300平方米.【点评】此题考查了二次函数的应用,以及列代数式,熟练掌握二次函数的性质是解本题的关键.八、(本题满分14分)23.(14分)(2015•安徽)如图1,在四边形ABCD中,点E、F分别是AB、CD的中点,过点E作AB的垂线,过点F作CD的垂线,两垂线交于点G,连接AG、BG、CG、DG,且∠AGD=∠BGC.(1)求证:AD=BC;(2)求证:△AGD∽△EGF;(3)如图2,若AD、BC所在直线互相垂直,求的值.【分析】(1)由线段垂直平分线的性质得出GA=GB,GD=GC,由SAS证明△AGD≌△BGC,得出对应边相等即可;(2)先证出∠AGB=∠DGC,由,证出△AGB∽△DGC,得出比例式,再证出∠AGD=∠EGF,即可得出△AGD∽△EGF;(3)延长AD交GB于点M,交BC的延长线于点H,则AH⊥BH,由△AGD≌△BGC,得出∠GAD=∠GBC,再求出∠AGE=∠AHB=90°,得出∠AGE=∠AGB=45°,求出,由△AGD∽△EGF,即可得出的值.【解答】(1)证明:∵GE是AB的垂直平分线,∴GA=GB,同理:GD=GC,在△AGD和△BGC中,,∴△AGD≌△BGC(SAS),∴AD=BC;(2)证明:∵∠AGD=∠BGC,∴∠AGB=∠DGC,在△AGB和△DGC中,,∴△AGB∽△DGC,∴,又∵∠AGE=∠DGF,∴∠AGD=∠EGF,∴△AGD∽△EGF;(3)解:延长AD交GB于点M,交BC的延长线于点H,如图所示:则AH⊥BH,∵△AGD≌△BGC,∴∠GAD=∠GBC,在△GAM和△HBM中,∠GAD=∠GBC,∠GMA=∠HMB,∴∠AGB=∠AHB=90°,∴∠AGE=∠AGB=45°,∴,又∵△AGD∽△EGF,∴==.【点评】本题是相似形综合题目,考查了线段垂直平分线的性质、全等三角形的判定与性质、相似三角形的判定与性质、三角函数等知识;本题难度较大,综合性强,特别是(3)中,需要通过作辅助线综合运用(1)(2)的结论和三角函数才能得出结果.。

2015年全国中考数学试卷解析分类汇编二次函数

2015年全国中考数学试卷解析分类汇编二次函数

二次函数一.选择题1.(2015•山东莱芜,第9题3分)二次函数的图象如图所示,则一次函数的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】试题分析:先根据二次函数的图象与系数的关系,又开口方向得a>0,由对称轴x=<0可得b>0,所以一次函数y=bx+a的图象经过第一、二、三象限,不经过第四象限.故选D考点:二次函数的图象与系数的关系,一次函数的性质2.(2015·湖南省益阳市,第8题5分)若抛物线y=(x﹣m)2+(m+1)的顶点在第一象限,则m的取值范围为()A.m>1 B.m>0 C.m>﹣1 D.﹣1<m<0考点:二次函数的性质.分析:利用y=ax2+bx+c的顶点坐标公式表示出其顶点坐标,根据顶点在第一象限,所以顶点的横坐标和纵坐标都大于0列出不等式组.解答: 解:由y =(x ﹣m )2+(m +1)=x 2﹣2mx +(m 2+m +1),根据题意,,解不等式(1),得m >0, 解不等式(2),得m >﹣1; 所以不等式组的解集为m >0. 故选B .点评: 本题考查顶点坐标的公式和点所在象限的取值范围,同时考查了不等式组的解法,难度较大3.(2015•江苏苏州,第8题3分)若二次函数y =x 2+bx 的图像的对称轴是经过点(2,0)且平行于y 轴的直线,则关于x 的方程x 2+bx =5的解为A .120,4x x ==B .121,5x x ==C .121,5x x ==-D .121,5x x =-=【难度】★★【考点分析】二次函数与一元二次方程综合,考察二次函数的图像性质及解一元二次方程。

是中考常考题型,难度不大。

【解析】由题意得:二次函数的对称轴为直线:x 2,所以由对称轴公式得:,即:b=-4;代入一元二次方程易得:。

故选D 。

4.(2015•广东梅州,第10题4分)对于二次函数y =﹣x 2+2x .有下列四个结论:①它的对称轴是直线x =1;②设y 1=﹣x 12+2x 1,y 2=﹣x 22+2x 2,则当x 2>x 1时,有y 2>y 1;③它的图象与x 轴的两个交点是(0,0)和(2,0);④当0<x <2时,y >0.其中正确的结论的个数为()A. 1 B. 2 C. 3 D. 4考点:二次函数的性质.分析:利用配方法求出二次函数对称轴,再求出图象与x轴交点坐标,进而结合二次函数性质得出答案.解答:解:y=﹣x2+2x=﹣(x﹣1)2+1,故①它的对称轴是直线x=1,正确;②∵直线x=1两旁部分增减性不一样,∴设y1=﹣x12+2x1,y2=﹣x22+2x2,则当x2>x1时,有y2>y1,错误;③当y=0,则x(﹣x+2)=0,解得:x1=0,x2=2,故它的图象与x轴的两个交点是(0,0)和(2,0),正确;④∵a=﹣1<0,∴抛物线开口向下,∵它的图象与x轴的两个交点是(0,0)和(2,0),∴当0<x<2时,y>0,正确.故选:C.点评:此题主要考查了二次函数的性质以及一元二次方程的解法,得出抛物线的对称轴和其交点坐标是解题关键.5. (2015•四川乐山,第6题3分)二次函数的最大值为()A.3 B.4 C.5 D.6【答案】C.【解析】试题分析:,∵<0,∴当x=1时,y有最大值,最大值为5.故选C.考点:二次函数的最值.6.(2015湖北荆州第4题3分)将抛物线y=x2﹣2x+3向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为()A.y=(x﹣1)2+4 B.y=(x﹣4)2+4 C.y=(x+2)2+6 D.y=(x﹣4)2+6考点:二次函数图象与几何变换.分析:根据函数图象向上平移加,向右平移减,可得函数解析式.解答:解:将y=x2﹣2x+3化为顶点式,得y=(x﹣1)2+2.将抛物线y=x2﹣2x+3向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为y=(x﹣4)2+4,故选:B.点评:本题考查了二次函数图象与几何变换,函数图象的平移规律是:左加右减,上加下减.7.(2015•福建泉州第7题3分)在同一平面直角坐标系中,函数y=ax2+bx与y=bx+a的图象可能是()A.B.C.D.解:A、对于直线y=bx+a来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2+bx来说,对称轴x=﹣<0,应在y轴的左侧,故不合题意,图形错误.B、对于直线y=bx+a来说,由图象可以判断,a<0,b<0;而对于抛物线y=ax2+bx来说,图象应开口向下,故不合题意,图形错误.C、对于直线y=bx+a来说,由图象可以判断,a<0,b>0;而对于抛物线y=ax2+bx来说,图象开口向下,对称轴y=﹣位于y轴的右侧,故符合题意,D、对于直线y=bx+a来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2+bx来说,图象开口向下,a<0,故不合题意,图形错误.故选:C.8. (2015•四川乐山,第9题3分)已知二次函数的图象如图所示,记,.则下列选项正确的是()A.B.C.D.m、n的大小关系不能确定【答案】A.考点:二次函数图象与系数的关系.9. (2015•浙江嘉兴,第10题4分)如图,抛物线y=-x2+2x+m+1交x轴于点A(a,0)和B(B,0),交y轴于点C,抛物线的顶点为D.下列四个判断:①当x>0时,y>0;②若a=-1,则b=4;③抛物线上有两点P(x1,y1)和Q(x2,y2),若x1<1< x2,且x1+ x2>2,则y1> y2;④点C关于抛物线对称轴的对称点为E,点G,F分别在x轴和y轴上,当m=2时,四边形EDFG周长的最小值为,其中正确判断的序号是(▲)(A)①(B)②(C)③(D)④考点:二次函数综合题..分析:①根据二次函数所过象限,判断出y的符号;②根据A、B关于对称轴对称,求出b的值;③根据>1,得到x1<1<x2,从而得到Q点距离对称轴较远,进而判断出y1>y2;④作D关于y轴的对称点D′,E关于x轴的对称点E′,连接D′E′,D′E′与DE的和即为四边形EDFG周长的最小值.求出D、E、D′、E′的坐标即可解答.解答:解:①当x>0时,函数图象过二四象限,当0<x<b时,y>0;当x>b时,y<0,故本选项错误;②二次函数对称轴为x=﹣=1,当a=﹣1时有=1,解得b=3,故本选项错误;③∵x1+x2>2,∴>1,又∵x1<1<x2,∴Q 点距离对称轴较远,∴y 1>y 2,故本选项正确;④如图,作D 关于y 轴的对称点D ′,E 关于x 轴的对称点E ′,连接D ′E ′,D ′E ′与DE 的和即为四边形EDFG 周长的最小值.当m =2时,二次函数为y =﹣x 2+2x +3,顶点纵坐标为y =﹣1+2+3=4,D 为(1,4),则D ′为(﹣1,4);C 点坐标为C (0,3);则E 为(2,3),E ′为(2,﹣3);则DE ==;D ′E ′==;∴四边形EDFG 周长的最小值为+,故本选项错误.故选C .点评:本题考查了二次函数综合题,涉及函数与不等式的关系、二次函数的对称轴、函数图象上点的坐标特征、轴对称﹣﹣最短路径问题等,值得关注.10. (2015•浙江宁波,第11题4分)二次函数)0(4)4(2≠--=a x a y 的图象在2<x <3这一段位于x 轴的下方,在6<x <7这一段位于x 轴的上方,则a 的值为【 】A . 1B . -1C . 2D . -2【答案】A .【考点】二次函数的性质;解一元一次不等式组;特殊元素法的应用.【分析】∵二次函数2(4)4(0)y a x a =--≠的图象在2<x <3这一段位于x 轴的下方,在6<x <7这一段位于x 轴的上方,∴当52x =时,二次函数2(4)4(0)y a x a =--≠的图象位于x 轴的下方;当132x =时,二次函数2(4)4(0)y a x a =--≠的图象位于x 轴的上方.∴22165<(4)4<0161692<<1316259(4)4>0>225a a a a a ⎧⎧--⎪⎪⎪⎪⇒⇒⎨⎨⎪⎪--⎪⎪⎩⎩.∴a 的值为1.故选A .11. (2015•四川凉山州,第12题4分)二次函数()的图象如图所示,下列说法:①,②当时,,③若(,)、(,)在函数图象上,当时,,④,其中正确的是( )A.①②④B.①④C.①②③D.③④【答案】B.③∵抛物线的对称轴为x=1,开口方向向上,∴若(,)、(,)在函数图象上,当时,;当时,;故③错误;④∵二次函数的图象过点(3,0),∴x=3时,y=0,即,故④正确.故选B.考点:1.二次函数图象与系数的关系;2.二次函数图象上点的坐标特征.12.(2015·贵州六盘水,第10题3分)如图5,假设篱笆(虚线部分)的长度16m,则所围成矩形ABCD的最大面积是()A.60m2B.63m2[C.64m2D.66m2考点:二次函数的应用..专题:应用题.分析:设BC=xm,表示出AB,矩形面积为ym2,表示出y与x的关系式,利用二次函数性质求出面积最大值即可.解答:解:设BC=xm,则AB=(16﹣x)m,矩形ABCD面积为ym2,根据题意得:y=(16﹣x)x=﹣x2+16x=﹣(x﹣8)2+64,当x=8m时,y max=64m2,则所围成矩形ABCD的最大面积是64m2.故选C.点评:此题考查了二次函数的应用,熟练掌握二次函数性质是解本题的关键.13.(2015•山东临沂,第13题3分)要将抛物线平移后得到抛物线,下列平移方法正确的是()(A) 向左平移1个单位,再向上平移2个单位.(B) 向左平移1个单位,再向下平移2个单位.(C) 向右平移1个单位,再向上平移2个单位.(D) 向右平移1个单位,再向下平移2个单位.【答案】D考点:二次函数的平移14.(2015•山东日照,第12题4分)如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,有y2<y1,其中正确的是()A.①②③B.①③④C.①③⑤D.②④⑤考点:二次函数图象与系数的关系;抛物线与x轴的交点..专题:数形结合.分析:根据抛物线对称轴方程对①进行判断;由抛物线开口方向得到a<0,由对称轴位置可得b>0,由抛物线与y轴的交点位置可得c>0,于是可对②进行判断;根据顶点坐标对③进行判断;根据抛物线的对称性对④进行判断;根据函数图象得当1<x<4时,一次函数图象在抛物线下方,则可对⑤进行判断.解答:解:∵抛物线的顶点坐标A(1,3),∴抛物线的对称轴为直线x=﹣=1,∴2a+b=0,所以①正确;∵抛物线开口向下,∴a<0,∴b=﹣2a>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以②错误;∵抛物线的顶点坐标A(1,3),∴x=1时,二次函数有最大值,∴方程ax2+bx+c=3有两个相等的实数根,所以③正确;∵抛物线与x轴的一个交点为(4,0)而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点为(﹣2,0),所以④错误;∵抛物线y1=ax2+bx+c与直线y2=mx+n(m≠0)交于A(1,3),B点(4,0)∴当1<x<4时,y2<y1,所以⑤正确.故选C.点评:本题考查了二次项系数与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异);常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.15.(2015·四川甘孜、阿坝,第9题4分)二次函数y=x2+4x﹣5的图象的对称轴为()A.x=4 B.x=﹣4 C.x=2 D.x=﹣2考点:二次函数的性质..分析:直接利用抛物线的对称轴公式代入求出即可.解答:解:二次函数y=x2+4x﹣5的图象的对称轴为:x=﹣=﹣=﹣2.故选:D.点评:此题主要考查了二次函数的性质,正确记忆抛物线对称轴公式是解题关键.16.(2015•四川广安,第10题3分)如图,抛物线y=ax2+bx+c(c≠0)过点(﹣1,0)和点(0,﹣3),且顶点在第四象限,设P=a+b+c,则P的取值范围是()A.﹣3<P<﹣1 B.﹣6<P<0 C.﹣3<P<0 D.﹣6<P<﹣3考点:二次函数图象与系数的关系..分析:利用二次函数图象的开口方向和对称轴求出a>0,b<0,把x=﹣1代入求出b=a ﹣3,把x=1代入得出P=a+b+c=2a﹣6,求出2a﹣6的范围即可.解答:解:∵抛物线y=ax2+bx+c(c≠0)过点(﹣1,0)和点(0,﹣3),∴0=a﹣b+c,﹣3=c,∴b=a﹣3,∵当x=1时,y=ax2+bx+c=a+b+c,∴P=a+b+c=a+a﹣3﹣3=2a﹣6,∵顶点在第四象限,a>0,∴b=a﹣3<0,∴a<3,∴0<a<3,∴﹣6<2a﹣6<0,即﹣6<P<0.故选:B.点评:此题主要考查了二次函数图象的性质,根据图象过(﹣1,0)和点(0,﹣3)得出a与b的关系,以及当x=1时a+b+c=P是解决问题的关键.17.(2015·山东潍坊第12 题3分)已知二次函数y=ax2+bx+c+2的图象如图所示,顶点为(﹣1,0),下列结论:①abc<0;②b2﹣4ac=0;③a>2;④4a﹣2b+c>0.其中正确结论的个数是()A. 1 B. 2 C. 3 D. 4考点:二次函数图象与系数的关系..分析:①首先根据抛物线开口向上,可得a>0;然后根据对称轴在y轴左边,可得b>0;最后根据抛物线与y轴的交点在x轴的上方,可得c>0,据此判断出abc>0即可.②根据二次函数y=ax2+bx+c+2的图象与x轴只有一个交点,可得△=0,即b2﹣4ac=0.③首先根据对称轴x=﹣=﹣1,可得b=2a,然后根据b2﹣4ac=0,确定出a的取值范围即可.④根据对称轴是x=﹣1,而且x=0时,y>2,可得x=﹣2时,y>2,据此判断即可.解答:解:∵抛物线开口向上,∴a>0,∵对称轴在y轴左边,∴b>0,∵抛物线与y轴的交点在x轴的上方,∴c+2>2,∴c>0,∴abc>0,∴结论①不正确;∵二次函数y=ax2+bx+c+2的图象与x轴只有一个交点,∴△=0,即b2﹣4ac=0,∴结论②正确;∵对称轴x=﹣=﹣1,∴b=2a,∵b2﹣4ac=0,∴4a2﹣4ac=0,∴a=c,∵c>0,∴a>0,∴结论③不正确;∵对称轴是x=﹣1,而且x=0时,y>2,∴x=﹣2时,y>2,∴4a﹣2b+c+2>2,∴4a﹣2b+c>0.∴结论④正确.综上,可得正确结论的个数是2个:②④.故选:B.点评:此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a <0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).18.(2015·山东潍坊第11 题3分)如图,有一块边长为6cm的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是()A.cm2B.cm2 C.cm2 D.cm2考点:二次函数的应用;展开图折叠成几何体;等边三角形的性质..分析:如图,由等边三角形的性质可以得出∠A=∠B=∠C=60°,由三个筝形全等就可以得出AD=BE=BF=CG=CH=AK,根据折叠后是一个三棱柱就可以得出DO=PE=PF=QG=QH=OK,四边形ODEP、四边形PFGQ、四边形QHKO为矩形,且全等.连结AO证明△AOD≌△AOK就可以得出∠OAD=∠OAK=30°,设OD=x,则AO=2x,由勾股定理就可以求出AD=x,由矩形的面积公式就可以表示纸盒的侧面积,由二次函数的性质就可以求出结论.解答:解:∵△ABC为等边三角形,∴∠A=∠B=∠C=60°,AB=BC=A C.∵筝形ADOK≌筝形BEPF≌筝形AGQH,∴AD=BE=BF=CG=CH=AK.∵折叠后是一个三棱柱,∴DO=PE=PF=QG=QH=OK,四边形ODEP、四边形PFGQ、四边形QHKO都为矩形.∴∠ADO=∠AKO=90°.连结AO,在Rt△AOD和Rt△AOK中,,∴Rt △AOD ≌Rt △AOK (HL ). ∴∠OAD =∠OAK =30°.设OD =x ,则AO =2x ,由勾股定理就可以求出AD =x ,∴DE =6﹣2x ,∴纸盒侧面积=3x (6﹣2x )=﹣6x 2+18x ,=﹣6(x ﹣)2+,∴当x =时,纸盒侧面积最大为. 故选C .点评: 本题考查了等边三角形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,矩形的面积公式的运用,二次函数的性质的运用,解答时表示出纸盒的侧面积是关键.19.(2015•安徽省,第10题,4分)如图,一次函数y 1=x 与二次函数y 2=ax 2+bx +c 图象相交于P 、Q 两点,则函数y =ax 2+(b -1)x +c 的图象可能是( )考点:二次函数的图象;正比例函数的图象..P Q OOO OO yyyyyxxxxxA .B .C .D .第10题图分析:由一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,得出方程ax2+(b ﹣1)x+c=0有两个不相等的根,进而得出函数y=ax2+(b﹣1)x+c与x轴有两个交点,根据方程根与系数的关系得出函数y=ax2+(b﹣1)x+c的对称轴x=﹣>0,即可进行判断.解答:解:∵一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,∴方程ax2+(b﹣1)x+c=0有两个不相等的根,∴函数y=ax2+(b﹣1)x+c与x轴有两个交点,∵方程ax2+(b﹣1)x+c=0的两个不相等的根x1>0,x2>0,∴x1+x2=﹣>0,∴﹣>0,∴函数y=ax2+(b﹣1)x+c的对称轴x=﹣>0,∵a>0,开口向上,∴A符合条件,故选A.点评:本题考查了二次函数的图象,直线和抛物线的交点,交点坐标和方程的关系以及方程和二次函数的关系等,熟练掌握二次函数的性质是解题的关键.20.(2015•山东日照,第12题4分)如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,有y2<y1,其中正确的是()A.①②③B.①③④C.①③⑤D.②④⑤考点:二次函数图象与系数的关系;抛物线与x轴的交点..专题:数形结合.分析:根据抛物线对称轴方程对①进行判断;由抛物线开口方向得到a<0,由对称轴位置可得b>0,由抛物线与y轴的交点位置可得c>0,于是可对②进行判断;根据顶点坐标对③进行判断;根据抛物线的对称性对④进行判断;根据函数图象得当1<x<4时,一次函数图象在抛物线下方,则可对⑤进行判断.解答:解:∵抛物线的顶点坐标A(1,3),∴抛物线的对称轴为直线x=﹣=1,∴2a+b=0,所以①正确;∵抛物线开口向下,∴a<0,∴b=﹣2a>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以②错误;∵抛物线的顶点坐标A(1,3),∴x=1时,二次函数有最大值,∴方程ax2+bx+c=3有两个相等的实数根,所以③正确;∵抛物线与x轴的一个交点为(4,0)而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点为(﹣2,0),所以④错误;∵抛物线y1=ax2+bx+c与直线y2=mx+n(m≠0)交于A(1,3),B点(4,0)∴当1<x<4时,y2<y1,所以⑤正确.故选C.点评:本题考查了二次项系数与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异);常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.21.(2015·四川甘孜、阿坝,第9题4分)二次函数y=x2+4x﹣5的图象的对称轴为()A.x=4 B.x=﹣4 C.x=2 D.x=﹣2考点:二次函数的性质..分析:直接利用抛物线的对称轴公式代入求出即可.解答:解:二次函数y=x2+4x﹣5的图象的对称轴为:x=﹣=﹣=﹣2.故选:D.点评:此题主要考查了二次函数的性质,正确记忆抛物线对称轴公式是解题关键.22.(2015•四川广安,第10题3分)如图,抛物线y=ax2+bx+c(c≠0)过点(﹣1,0)和点(0,﹣3),且顶点在第四象限,设P=a+b+c,则P的取值范围是()A.﹣3<P<﹣1 B.﹣6<P<0 C.﹣3<P<0 D.﹣6<P<﹣3考点:二次函数图象与系数的关系..分析:利用二次函数图象的开口方向和对称轴求出a>0,b<0,把x=﹣1代入求出b=a ﹣3,把x=1代入得出P=a+b+c=2a﹣6,求出2a﹣6的范围即可.解答:解:∵抛物线y=ax2+bx+c(c≠0)过点(﹣1,0)和点(0,﹣3),∴0=a﹣b+c,﹣3=c,∴b=a﹣3,∵当x=1时,y=ax2+bx+c=a+b+c,∴P=a+b+c=a+a﹣3﹣3=2a﹣6,∵顶点在第四象限,a>0,∴b=a﹣3<0,∴a<3,∴0<a<3,∴﹣6<2a﹣6<0,即﹣6<P<0.故选:B.点评:此题主要考查了二次函数图象的性质,根据图象过(﹣1,0)和点(0,﹣3)得出a与b的关系,以及当x=1时a+b+c=P是解决问题的关键.23.(2015·山东潍坊第12 题3分)已知二次函数y=ax2+bx+c+2的图象如图所示,顶点为(﹣1,0),下列结论:①abc<0;②b2﹣4ac=0;③a>2;④4a﹣2b+c>0.其中正确结论的个数是()A. 1 B. 2 C. 3 D. 4考点:二次函数图象与系数的关系..分析:①首先根据抛物线开口向上,可得a>0;然后根据对称轴在y轴左边,可得b>0;最后根据抛物线与y轴的交点在x轴的上方,可得c>0,据此判断出abc>0即可.②根据二次函数y=ax2+bx+c+2的图象与x轴只有一个交点,可得△=0,即b2﹣4ac=0.③首先根据对称轴x=﹣=﹣1,可得b=2a,然后根据b2﹣4ac=0,确定出a的取值范围即可.④根据对称轴是x=﹣1,而且x=0时,y>2,可得x=﹣2时,y>2,据此判断即可.解答:解:∵抛物线开口向上,∴a>0,∵对称轴在y轴左边,∴b>0,∵抛物线与y轴的交点在x轴的上方,∴c+2>2,∴c>0,∴abc>0,∴结论①不正确;∵二次函数y=ax2+bx+c+2的图象与x轴只有一个交点,∴△=0,即b2﹣4ac=0,∴结论②正确;∵对称轴x=﹣=﹣1,∴b=2a,∵b2﹣4ac=0,∴4a2﹣4ac=0,∴a=c,∵c>0,∴a>0,∴结论③不正确;∵对称轴是x=﹣1,而且x=0时,y>2,∴x=﹣2时,y>2,∴4a﹣2b+c+2>2,∴4a﹣2b+c>0.∴结论④正确.综上,可得正确结论的个数是2个:②④.故选:B.点评:此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a <0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).24.(2015·山东潍坊第11 题3分)如图,有一块边长为6cm的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是()A.cm2B.cm2 C.cm2 D.cm2考点:二次函数的应用;展开图折叠成几何体;等边三角形的性质..分析:如图,由等边三角形的性质可以得出∠A=∠B=∠C=60°,由三个筝形全等就可以得出AD=BE=BF=CG=CH=AK,根据折叠后是一个三棱柱就可以得出DO=PE=PF=QG=QH=OK,四边形ODEP、四边形PFGQ、四边形QHKO为矩形,且全等.连结AO证明△AOD≌△AOK就可以得出∠OAD=∠OAK=30°,设OD=x,则AO=2x,由勾股定理就可以求出AD=x,由矩形的面积公式就可以表示纸盒的侧面积,由二次函数的性质就可以求出结论.解答:解:∵△ABC为等边三角形,∴∠A=∠B=∠C=60°,AB=BC=A C.∵筝形ADOK≌筝形BEPF≌筝形AGQH,∴AD=BE=BF=CG=CH=AK.∵折叠后是一个三棱柱,∴DO=PE=PF=QG=QH=OK,四边形ODEP、四边形PFGQ、四边形QHKO都为矩形.∴∠ADO=∠AKO=90°.连结AO,在Rt△AOD和Rt△AOK中,,∴Rt△AOD≌Rt△AOK(HL).∴∠OAD=∠OAK=30°.设OD=x,则AO=2x,由勾股定理就可以求出AD=x,∴DE=6﹣2x,∴纸盒侧面积=3x(6﹣2x)=﹣6x2+18x,=﹣6(x﹣)2+,∴当x=时,纸盒侧面积最大为.故选C.点评:本题考查了等边三角形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,矩形的面积公式的运用,二次函数的性质的运用,解答时表示出纸盒的侧面积是关键.二填空题1.(2015•山东临沂,第19题3分)定义:给定关于x的函数y,对于该函数图象上任意两点(x1,y1),(x2,y2),当x1﹤x2时,都有y1﹤y2,称该函数为增函数. 根据以上定义,可以判断下面所给的函数中,是增函数的有______________(填上所有正确答案的序号).①y = 2x;②y =x+1;③y = x2 (x>0);④.【答案】①③考点:函数的图像与性质2.(2015上海,第12题4分)如果将抛物线y=x2+2x-1向上平移,使它经过点A(0,3),那么所得新抛物线的表达式是_______________.【答案】【解析】抛物线方程配方,得:y=(x+1)2-2,向上平移,得:y=(x+1)2+c,经过点A(0,3),则:3=1+c,c=2,所以,新抛物线的表达式是:y=(x+1)2+2=x2+2x+3。

陕西省2015年中考数学试卷及答案解析(word版)

陕西省2015年中考数学试卷及答案解析(word版)

陕西省2015年中考数学试卷一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的)1.计算:(﹣)0=(),求出(﹣(﹣2.(3分)(2015•陕西)如图是一个螺母的示意图,它的俯视图是()B4.(3分)(2015•陕西)如图,AB∥CD,直线EF分别交直线AB,CD于点E,F.若∠1=46°30′,则∠1的度数为()5.(3分)(2015•陕西)设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的6.(3分)(2015•陕西)如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线.若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有()DBC=∠7.(3分)(2015•陕西)不等式组的最大整数解为()8.(3分)(2015•陕西)在平面直角坐标系中,将直线l1:y=﹣2x﹣2平移后,得到直线l2:9.(3分)(2015•陕西)在▱ABCD中,AB=10,BC=14,E,F分别为边BC,AD上的点,10.(3分)(2015•陕西)下列关于二次函数y=ax2﹣2ax+1(a>1)的图象与x轴交点的判二、填空题(共5小题,每小题3分,计12分,其中12、13题为选做题,任选一题作答)11.(3分)(2015•陕西)将实数,π,0,﹣6由小到大用“<”号连起来,可表示为﹣6.≈12.(3分)(2015•陕西)正八边形一个内角的度数为135°.每一个内角的度数为×13.(2015•陕西)如图,有一滑梯AB,其水平宽度AC为5.3米,铅直高度BC为2.8米,则∠A的度数约为27.8°(用科学计算器计算,结果精确到0.1°).A==≈14.(3分)(2015•陕西)如图,在平面直角坐标系中,过点M(﹣3,2)分别作x轴、y 轴的垂线与反比例函数y=的图象交于A,B两点,则四边形MAOB的面积为10.y==y=|ab|=2|cd|=215.(3分)(2015•陕西)如图,AB是⊙O的弦,AB=6,点C是⊙O上的一个动点,且∠ACB=45°.若点M,N分别是AB,BC的中点,则MN长的最大值是3.MN=AD=6MN=AD=3.三、解答题(共11小题,计78分,解答时写出过程)16.(5分)(2015•陕西)计算:×(﹣)+|﹣2|+()﹣3.+2+2+2.17.(5分)(2015•陕西)解分式方程:﹣=1.x=x=18.(5分)(2015•陕西)如图,已知△ABC,请用尺规过点A作一条直线,使其将△ABC 分成面积相等的两部分.(保留作图痕迹,不写作法)19.(5分)(2015•陕西)某校为了了解本校九年级女生体育测试项目“仰卧起坐”的训练情况,让体育老师随机抽查了该年级若干名女生,并严格地对她们进行了1分钟“仰卧起坐”测试,同时统计了每个人做的个数(假设这个个数为x),现在我们将这些同学的测试结果分为四个等级:优秀(x≥44)、良好(36≤x≤43)、及格(25≤x≤35)和不及格(x≤24),并将统计结果绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)被测试女生1分钟“仰卧起坐”个数的中位数落在良好等级;(3)若该年级有650名女生,请你估计该年级女生中1分钟“仰卧起坐”个数达到优秀的人数.20.(7分)(2015•陕西)如图,在△ABC中,AB=AC,作AD⊥AB交BC的延长线于点D,作AE∥BD,CE⊥AC,且AE,CE相交于点E,求证:AD=CE.21.(7分)(2015•陕西)晚饭后,小聪和小军在社区广场散步,小聪问小军:“你有多高?”小军一时语塞.小聪思考片刻,提议用广场照明灯下的影长及地砖长来测量小军的身高.于是,两人在灯下沿直线NQ移动,如图,当小聪正好站在广场的A点(距N点5块地砖长)时,其影长AD恰好为1块地砖长;当小军正好站在广场的B点(距N点9块地砖长)时,其影长BF恰好为2块地砖长.已知广场地面由边长为0.8米的正方形地砖铺成,小聪的身高AC为1.6米,MN⊥NQ,AC⊥NQ,BE⊥NQ.请你根据以上信息,求出小军身高BE的长.(结果精确到0.01米)22.(7分)(2015•陕西)胡老师计划组织朋友暑假去革命圣地延安两日游,经了解,现有甲、乙两家旅行社比较合适,报价均为每人640元,且提供的服务完全相同,针对组团两日游的游客,甲旅行社表示,每人都按八五折收费;乙旅行社表示,若人数不超过20人,每人都按九折收费,超过20人,则超出部分每人按七五折收费,假设组团参加甲、乙两家旅行社两日游的人数均为x人.(1)请分别写出甲、乙两家旅行社收取组团两日游的总费用y(元)与x(人)之间的函数关系式;(2)若胡老师组团参加两日游的人数共有32人,请你计算,在甲、乙两家旅行社中,帮助胡老师选择收取总费用较少的一家.23.(7分)(2015•陕西)某中学要在全校学生中举办“中国梦•我的梦”主题演讲比赛,要求每班选一名代表参赛.九年级(1)班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局,若为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:(1)小亮掷得向上一面的点数为奇数的概率是多少?(2)该游戏是否公平?请用列表或树状图等方法说明理由.(骰子:六个面上分别刻有1,2,3,4,5,6个小圆点的小正方体)∴小亮掷得向上一面的点数为奇数的概率是:==,24.(8分)(2015•陕西)如图,AB是⊙O的直径,AC是⊙O的弦,过点B作⊙O的切线DE,与AC的延长线交于点D,作AE⊥AC交DE于点E.(1)求证:∠BAD=∠E;(2)若⊙O的半径为5,AC=8,求BE的长.BE=.25.(10分)(2015•陕西)在平面直角坐标系中,抛物线y=x2+5x+4的顶点为M,与x轴交于A,B两点,与y轴交于C点.(1)求点A,B,C的坐标;(2)求抛物线y=x2+5x+4关于坐标原点O对称的抛物线的函数表达式;(3)设(2)中所求抛物线的顶点为M′,与x轴交于A′,B′两点,与y轴交于C′点,在以A,B,C,M,A′,B′,C′,M′这八个点中的四个点为顶点的平行四边形中,求其中一个不是菱形的平行四边形的面积.,根据,,MD=,26.(12分)(2015•陕西)如图,在每一个四边形ABCD中,均有AD∥BC,CD⊥BC,∠ABC=60°,AD=8,BC=12.(1)如图①,点M是四边形ABCD边AD上的一点,则△BMC的面积为24;(2)如图②,点N是四边形ABCD边AD上的任意一点,请你求出△BNC周长的最小值;(3)如图③,在四边形ABCD的边AD上,是否存在一点P,使得cos∠BPC的值最小?若存在,求出此时cos∠BPC的值;若不存在,请说明理由.=4AE=24;,=2CD=2AE=8,=,>﹣4 OQ=BOQ==的值为.。

中考数学试卷解析分类汇编(第1期)专题7-分式与分式方程

中考数学试卷解析分类汇编(第1期)专题7-分式与分式方程

分式与分式方程一.选择题1.(2015•淄博第10题,4分)若关于x 的方程+=2的解为正数,则m 的取值范围是( )A . m <6B .m >6C . m <6且m ≠0D . m >6且m ≠8考点: 分式方程的解..分析: 先得出分式方程的解,再得出关于m 的不等式,解答即可. 解答: 解:原方程化为整式方程得:2﹣x ﹣m =2(x ﹣2), 解得:x =2﹣, 因为关于x 的方程+=2的解为正数,可得:,解得:m <6,因为x =2时原方程无解, 所以可得,解得:m ≠0. 故选C .点评: 此题考查分式方程,关键是根据分式方程的解法进行分析. 2、(2015•四川自贡,第3题4分)方程-=+2x 10x 1的解是( ) A .1或-1 B .-1 C .0 D .1 考点:解分式方程、分式方程的解.分析:解分式方程关键是去分母化为整式方程来解,但整式方程的解不一定是分式方程的解,要注意代入最简公分母验根(代入最简公分母后所得到值不能为0).略解:去分母:-=2x 10,解得:,==-12x 1x 1;把,==-12x 1x 1代入+=x 10后知=-x 1不是原分式方程的解,原分式方程的解=x 1.故选D .3. (2015•浙江金华,第2题3分)要使分式1x 2+有意义,则x 的取值应满足【 】A . x 2=-B . x 2≠-C . x 2>-D . x 2≠- 【答案】D .【考点】分式有意义的条件.【分析】根据分式分母不为0的条件,要使1x 2+在实数范围内有意义,必须x 20x 2+≠⇒≠-.故选D .5. (2015•四川省内江市,第5题,3分)函数y =+中自变量x 的取值范围是( )A . x ≤2B .x ≤2且x ≠1 C . x <2且x ≠1 D . x ≠1考点: 函数自变量的取值范围..分析: 根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解. 解答: 解:根据二次根式有意义,分式有意义得:2﹣x ≥0且x ﹣1≠0, 解得:x ≤2且x ≠1. 故选:B .点评: 本题考查函数自变量的取值范围,涉及的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.6. (2015•浙江省绍兴市,第6题,4分)化简xx x -+-1112的结果是A . 1+xB .11+x C . 1-x D . 1-x x考点:分式的加减法.. 专题:计算题.分析:原式变形后,利用同分母分式的减法法则计算即可得到结果.解答:解:原式=﹣===x +1.故选A点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.7.(2015·南宁,第12题3分)对于两个不相等的实数a 、b ,我们规定符号Max {a ,b }表示a 、b 中的较大值,如:Max {2,4}=4,按照这个规定,方程{}xx x x Max 12,+=-的解为( ). (A )21- (B )22- (C )2121-+或 (D )121-+或 考点:解分式方程.. 专题:新定义.分析:根据x 与﹣x 的大小关系,取x 与﹣x 中的最大值化简所求方程,求出解即可. 解答:解:当x <﹣x ,即x <0时,所求方程变形得:﹣x =,去分母得:x 2+2x +1=0,即x =﹣1;当x >﹣x ,即x >0时,所求方程变形得:x =,即x 2﹣2x =1,解得:x =1+或x =1﹣(舍去),经检验x =﹣1与x =1+都为分式方程的解.故选D .点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.8. (2015山东济宁,8,3分)解分式方程时,去分母后变形正确的为( )A .2+(x +2)=3(x -1)B .2-x +2=3(x -1)C .2-(x +2)=3D . 2-(x +2)=3(x -1) 【答案】D 【解析】试题分析: 根据分式方程的特点, 原方程化为:,去分母时,两边同乘以x -1,得:.故选D考点:分式方程的去分母9. (2015•浙江衢州,第18题6分)先化简,再求值:,其中.【答案】解:原式=,当时,原式=【考点】分式的化简求值.【分析】将被除式因式分解,除法变乘法,约分化简,最后代求值即可.10.(2015•甘肃武威,第20题4分)先化简,再求值:÷(1﹣),其中x=0.考点:分式的化简求值.分析:先根据分式混合运算的法则把原式进行化简,再把x=0代入进行计算即可.解答:解:原式=÷(﹣)=•=,当x=0时,原式=.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.11.(2015•广东佛山,第17题6分)计算:﹣.考点:分式的加减法.专题:计算题.分析:原式通分并利用同分母分式的减法法则计算,约分即可得到结果.解答:解:原式=﹣==.点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.12.(2015•广东广州,第19题10分)已知A=﹣(1)化简A;(2)当x满足不等式组,且x为整数时,求A的值.考点:分式的化简求值;一元一次不等式组的整数解.分析:(1)根据分式四则混合运算的运算法则,把A式进行化简即可.(2)首先求出不等式组的解集,然后根据x为整数求出x的值,再把求出的x的值代入化简后的A式进行计算即可.解答:解:(1)A=﹣=﹣=﹣=(2)∵∴∴1≤x<3,∵x为整数,∴x=1或x=2,①当x=1时,∵x﹣1≠0,∴A=中x≠1,∴当x=1时,A=无意义.②当x=2时,A==.点评:(1)此题主要考查了分式的化简求值,注意化简时不能跨度太大,而缺少必要的步骤.(2)此题还考查了求一元一次不等式组的整数解问题,要熟练掌握,解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件求得不等式组的整数解即可.13、(2015·湖南省常德市,第7题3分)分式方程23122xx x+=--的解为:A 、1B 、2C 、13D 、0【解答与分析】这是分式方程的解法:答案为A14.(2015·湖南省益阳市,第6题5分)下列等式成立的是( )A .+=B .=C . =D . =﹣考点: 分式的混合运算. 专题: 计算题.分析: 原式各项计算得到结果,即可做出判断. 解答: 解:A 、原式=,错误;B 、原式不能约分,错误;C 、原式==,正确;D 、原式==﹣,错误, 故选C点评: 此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.15.(2015·湖南省衡阳市,第4题3分)若分式的值为0,则的值为( ).A .2或-1B .0C .2D .-1二.填空题1.(2015·湖北省孝感市,第11题3分)分式方程351+=x x 的解是 ☆ .考点:解分式方程..专题:方程思想.分析:观察可得最简公分母是x(x+3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:方程的两边同乘x(x+3),得x+3=5x,解得x=.检验:把x=代入x(x+3)=≠0.∴原方程的解为:x=.故答案为:x=.点评:考查了解分式方程,注意:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.2.(2015·湖南省衡阳市,第16题3分)方程的解为.[w*ww~.^3、(2015·湖南省常德市,第10题3分)若分式211xx-+的值为0,则x=【解答与分析】这其实就分式方程的解法:211xx-+=0,解之得答案为:x=14.(2015•江苏无锡,第12题2分)化简得.考点:约分.分析:首先分别把分式的分母、分子因式分解,然后约去分式的分子与分母的公因式即可.解答:解:==故答案为:.点评:此题主要考查了约分问题,要熟练掌握,解答此题的关键是要明确:①分式约分的结果可能是最简分式,也可能是整式.②当分子与分母含有负号时,一般把负号提到分式本身的前面.③约分时,分子与分母都必须是乘积式,如果是多项式的,必须先分解因式.5.(2015•广东梅州,第16题5分)若=+,对任意自然数n都成立,则a= ,b﹣;计算:m=+++…+= .考点:分式的加减法.专题:计算题.分析:已知等式右边通分并利用同分母分式的加法法则计算,根据题意确定出a与b的值即可;原式利用拆项法变形,计算即可确定出m的值.解答:解:=+=,可得2n(a+b)+a﹣b=1,即,解得:a=,b=﹣;m=(1﹣+﹣+…+﹣)=(1﹣)=,故答案为:;﹣;.点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.6.(2015•广东佛山,第12题3分)分式方程的解是3 .考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:x=3(x﹣2),去括号得:x=3x﹣6,解得:x=3,经检验x=3是分式方程的解.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.7.(2015•甘肃武威,第12题3分)分式方程的解是x=2 .考点:解分式方程.分析:观察可得最简公分母是x(x+3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:方程的两边同乘x(x+3),得2(x+3)=5x,解得x=2.检验:把x=2代入x(x+3)=10≠0,即x=2是原分式方程的解.故原方程的解为:x=2.故答案为:x=2.点评:此题考查了分式方程的求解方法.注意:①解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解,②解分式方程一定注意要验根.8.(2015·南宁,第14题3分)要使分式11-x 有意义,则字母x 的取值范围是 . 点:分式有意义的条件..分析:分式有意义,分母不等于零.解答:解:依题意得 x ﹣1≠0,即x ≠1时,分式有意义.故答案是:x ≠1.点评:本题考查了分式有意义的条件.从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零; (2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.9.(2015·贵州六盘水,第14题4分)已知0654≠==ab c ,则a c b +的值为 .考点:比例的性质..分析:根据比例的性质,可用a 表示b 、c ,根据分式的性质,可得答案.解答:解:由比例的性质,得 c =a ,b =A .===.故答案为:.点评:本题考查了比例的性质,利用比例的性质得出a 表示b 、c 是解题关键,又利用了分式的性质.10. (2015·河南,第16题8分)先化简,再求值:)11(22222ab b a b ab a -÷-+-,其中15+=a ,15-=b .【分析】解答本题应从运算顺序入手,先将括号里通分,能因式分解的进行因式分解,然后将除法变乘法,最后约分化简成最简分式后,将a ,b 的值代入求解.解:原式=abba b a b a -÷--)(22)(……………………………………………………(4分)=b a abb a -⋅-2 =2ab.……………………………………………………(6分)当1,1a b ==时,原式=22152)15(15=-=-+)(.…………(8分)11. (2015·黑龙江绥化,第14题 分)若代数式6265x 2-+-x x 的值等于0 ,则x =_________.考点:分式的值为零的条件..分析:根据分式的值为零的条件可以求出x 的值.解答:解:由分式的值为零的条件得x 2﹣5x +6=0,2x ﹣6≠0,由x 2﹣5x +6=0,得x =2或x =3, 由2x ﹣6≠0,得x ≠3, ∴x =2, 故答案为2.点评:本题考查了分式值为0的条件,若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.12.(2015•广东省,第12题,4分)分式方程321=+x x的解是 ▲ . 【答案】2=x . 【考点】解分式方程【分析】去分母,得:()321=+x x , 解得:2=x ,经检验,2=x 是原方程的解, ∴原方程的解是2=x .13.(2015•广东梅州,第15题,3分)若1212)12)(12(1++-=+-n bn a n n ,对任意自然数n 都成立,则=a ,=b ;计算:=⨯++⨯+⨯+⨯=21191751531311 m .考点:分式的加减法.. 专题:计算题.分析:已知等式右边通分并利用同分母分式的加法法则计算,根据题意确定出a 与b 的值即可;原式利用拆项法变形,计算即可确定出m 的值. 解答:解:=+=,可得2n (a +b )+a ﹣b =1,即,解得:a =,b =﹣; m =(1﹣+﹣+…+﹣)=(1﹣)=, 故答案为:;﹣;.点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.14.(2015•安徽省,第14题,5分)已知实数a 、b 、c 满足a +b =ab =c ,有下列结论: ①若c ≠0,则 1 a + 1b =1;②若a =3,则b +c =9;③若a =b =c ,则abc =0;④若a 、b 、c 中只有两个数相等,则a +b +c =8.其中正确的是 (把所有正确结论的序号都选上). 考点:分式的混合运算;解一元一次方程..分析:按照字母满足的条件,逐一分析计算得出答案,进一步比较得出结论即可.解答:解:①∵a +b =ab ≠0,∴+=1,此选项正确;②∵a =3,则3+b =3b ,b =,c =,∴b +c =+=6,此选项错误;③∵a =b =c ,则2a =a 2=a ,∴a =0,abc =0,此选项正确;④∵a 、b 、c 中只有两个数相等,不妨a =b ,则2a =a 2,a =0,或a =2,a =0不合题意,a =2,则b =2,c =4,∴a +b +c =8,此选项正确. 其中正确的是①④. 故答案为:①③④.点评:此题考查分式的混合运算,一元一次方程的运用,灵活利用题目中的已知条件,选择正确的方法解决问题.15.(2015•甘肃兰州,第17题,4分)如果k fed c b a ===(0≠++f d b ),且)(3f d be c a ++=++,那么k =_____ 【 答 案 】3【考点解剖】本题考查比例的基本性质【解答过程】因为k f e d c b a ===,且0≠++f d b ,所以fd b ec a f ed c b a k ++++====,而)(3f d b e c a ++=++,即3=++++fd b ec a ,所以3=k 。

2015年中考真题精品解析 数学(河北卷)精编word版(原卷版)

2015年中考真题精品解析 数学(河北卷)精编word版(原卷版)
B.-2<a<0 C.-3≤a≤-2 D.-10<a<-4
15.如图,点 A,B 为定点,定直线 l//AB,P 是 l 上一动点.点 M,N 分别为 PA,PB 的中点,对于下列各值:
①线段 MN 的长;②△PAB 的周长;③△PMN 的面积;④直线 MN,AB 之间的距离;⑤∠APB 的大小.
其中会随点 P 的移动而变化的是
24.(本小题满分 11 分) 某厂生产 A,B 两种产品其单价随市场变化而做相应调整.营销人员根据前三次单价变化的情况,绘制了如 下统计表及不完整的折线图: A,B 产品单价变化统计表
第一次 A 产品单价 (元/件) B 产品单价 (元/件) 6 3.5
第二次 5.2 4
第三次 6.5 3
全卷 共 8 页
A.②③
B.②⑤
C.①③④
D.④⑤
16.图是甲,乙两张不同的矩形纸片,将它们分别沿着虚线剪开后,各自要拼一个与原来面积相等的正 方形, 则 A.甲、乙都可以 C. 甲不可以,乙可以 B.甲、乙都不可以 D.甲可以,乙不可以
卷Ⅱ(非选择题,共 78 分) 注意事项:1.答卷Ⅱ前,将密封线左侧的项目填写清楚 2.答卷Ⅱ时,将答案用黑色字迹的钢笔、签字笔或圆珠笔直接写在试卷上. 二、填空题(本大题共 4 个小题,每小题 3 分,共 12 分.把答案写在题中横线上) 17.若|a|=20150,则 a=____.
A.
B.
[来源:学#科#网
]
C.
D.
10.一台印刷机每年可印刷的书本数量 y(万册)与它的使用时间 x(年)成反比例关系,当 x=2 时,y=20.则 y 与 x 的函数图象大致是
A.
B.
C.
D.
11.利用加减消元法解方程组

2015年北京中考数学试卷解析

2015年北京中考数学试卷解析

2015年北京市高级中等学校招生考试数学试卷逐题解析一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个符合题意的•1. 截止到2015年6月1日,北京市已建成34个地下调蓄设施,蓄水能力达到140 000立方米,将140 000用科学记数法表示应为A. 14X 104B.1.4 X 105C.1.4 X 106D.0.14 X 106【答案】B【解析】难度:★本题考查了有理数的基础一科学计数法.难度易.2. 实数a,b,c,d在数轴上的对应点的位置如图所示,这四个数中,绝对值最大的是A. aB.bC.cD.d【答案】A【解析】难度:★本题考查了有理数的基础数轴的认识以及绝对值的几何意义;3. 一个不透明的盒子中装有3个红球,2个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为D.【答案】B【解析】难度:★本题考查了概率问题,难度易4.剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的为C.B.A.【答案】D【解析】难度:★本题考查了轴对称图形的判断;难度易5.如图,直线1 1,1 2,1 3交于一点,直线14 // 1/仁124°,/ 2=88°,则/ 3的度数为1114若A.26B.36°C.46°【答案】B【解析】难度:★D.56°本题考查了相交线平行线中角度关系的考查,难度易6. 如图,公路AC, BC互相垂直,公路AB的中A点M和点C被湖隔开,若测得AM的长为1.2 km,则M,C两点间的距离为A.0.5kmB.0.6kmC.0.9kmD.1.2km【答案】D【解析】难度:★本题考查了直角三角形斜边中线等于斜边一半的性质,难度易7. 某市6月份的平均气温统计如图所示,则在日平均气温这组数据中,众数和中位数分别是A.21,21B.21,21.5C.21,22D.22,22【答案】C【解析】难度:★ 本题考查了中位数,众数的求法,难度易;8. 右图是利用平面直角坐标系画出的故宫博物院的主要建筑分布图,若这个坐标系分别以正东,正北方向为x轴,y轴的正方向,表示太和门的点的坐标为(0,-1),表示九龙壁的点的坐标为(4,1),则表示下列宫殿的点的坐标正确的是A. 景仁宫(4,2)B. 养心殿(-2,3)C. 保和殿(1,0)B M CD. 武英殿(-3.5 , -4) 【答案】B 【解析】难度:★本题考查了平面直角坐标系点的坐标的确定,难度易;会员年卡类型办卡费用(元)每次游泳收费(元)A 类 50 25B 类 200 20C 类40015例如,购买A 类会员年卡,一年内游泳20次,消费50+25X 20=550元,若一年 内在该游泳馆游泳的次数介于45~55次之间,则最省钱的方式为 A.购买A 类会员年卡 B.购买B 类会员年卡 C.购买C 类会员年卡 D.不购买会员年卡【答案】C【解析】难度:★★本题考查了方案讨论问题,难度中•10. 一个寻宝游戏的寻宝通道如图1所示,通道由在同一平面内的 AB,BC,CA, OA,OB,O (组成,为记录寻宝者的行进路线,在 BC 的中点M 处放置了一台定位仪 器.设寻宝者行进的时间为x ,寻宝者与定位仪器之间的距离为 y ,若寻宝者匀速 行进,且表示y 与x 的函数关系的图象大致如图2所示,则寻宝者的行进路线可 能为A.A — O^BB.B —A ^CC.B — OXD.C — B —O【答案】C【解析】难度:★★本题考查了动点函数图像与路径问题,难度中二、填空题(本题共18分,每小题3 分)11. ________________________________ 分解因式:5x 3 - 10x 2 + 5x = 【答案】5x(x-1)2 【解析】难度:★本题考查了因式分解的计算,难度易12. 右图是由射线AB, BC,CD,DE,EA 组成的平面图形,则/ 1+Z 2+Z 3+Z 4+ / 5= _______ . 【答案】360°【解析】难度:★本题考查了多边形的外角和为360°,难度易;13. 《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架,它的代数成就主要包括开放术,正负术和方程术, 其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有牛 五,羊二,直金十两;牛二,羊五,直金八两.问:牛,羊各直金几何?” 译文:“假设有5头牛,2只羊,值金10两;2头牛,5只羊,值金8两.问: 每头牛,每只羊各值多少两?”设每头牛值金x 两,每只羊值金y 两,可列方程组为 _________【解析】难度:★★本题考查了简单的二元一次方程组的应用问题, 但是阅读量较大,需要学生迅速【答案】6x + 2y=10 ?2x + 5y= 8 D2B1A4E53 C提取有用信息,难度中14. 关于x 的一元二次方程ax 2 + bx + - = 0有两个相等的实数根,写出一组满足条4 件的实数a,b 的值:a= ________ b = _______ . 【答案】a=4,b=2(答案不唯一,满足a b 2) 【解析】难度:★本题考查了根据一元二次方程根的情况求参数值的问题,难度易;15. 北京市2009~2014年轨道交通日均客运量统计 如图所示,根据统计图中提供的信息,预估 2015 年北京市轨道交通日均客运量约为 _________ 人 次,你的预估理由是 ____________________________ 【答案】1038 根据2009〜2014年平均增长率.【解析】难度:★ 本题考查了根据图像求平均增长率问题,难度易16. 阅读下面材料:在数学课上,老师提出如下问题:尺规作图:作一条线段的垂直平分线, 已知:线段AB,I卜m“川"H JJ L 111求作:线段AB 的垂直平分线.小芸的作法如下:【解析】难度:★本题考查了垂直平分线的画图依据,难度易;三、解答题(本题共72分,第17〜26题每小题5分,第27题7分,第28题7 分,第29题8 分)217•计算:-43 2 4s in 60o.2【答案】5 ,3【解析】难度:★解:原式=4-1+2- 3 +2 :. 3=5+ ,3本题考查了实数,零指数幕,负整数幕,特殊角的三角函数值的运算,二次根式的化简.综合考查了实数的混合运算.解决此类问题的关键是熟练记住三角函数值,掌握实数,零指数幕,负整数幕的运算及二次根式的化简•难度易•18. 已知2a23a 6 0,求代数式3a 2a 1 2a 1 2a 1的值.【答案】7【解析】难度:★★解:原式=6a23a 4a21=6a23a 4a21=2a23a 1••• 2a2 +3a- 6 = 02a23a 6原式=6+1=7本题考查了整式的混合运算与化简求值,注意先化简,再整体代入求值.难度中.4x1 7x 1019.解不等式组 x 8,并写出它的所有非负整数解 x 5 ----------3【答案】解集为2 x 7;非负整数解:x=0, 1, 2, 3 2解:解①得:x 2 解②得:x —2原不等式的解集为 2 x -2它的所有非负整数解为x=0,1, 2,3本题考查了一元一次不等式的解法及把解集在数轴上表示出来,解答这类问题 学生往往会在解题时不注意移项时”变号“而出现错误 .重点掌握不等式的基本 性质,难度易•20. 如图,在△ ABC 中, ABAC, AD 是BC 边上的中线,BE 丄AC 于点E , 求证: CBE BAD【答案】证明见解析 【解析】难度:★★ 证明:T AB= ACABC 是等腰三角形T AD 是BC 边上中线【解析】 难度: 7x 10①BAD CADADB ADC 90o••• BE A ACBEA 90oAEB ADB•••DAOB二DAEB+DEADAOB EBC ADBCBE BAD本题考查了等腰三角形的概念及”三线合一“的性质,八字模型的运用•难度中•21. 为解决“最后一公里”的交通接驳问题,北京市投放了大量公租自行车供市 民使用.到2013年底,全市已有公租自行车25 000辆,租赁600个.预计到2015 年底,全市将有公租自行车50 000辆,并且平均每个租赁点的公租自行车数量 是2013年底平均每个租赁点的公租自行车数量的 1.2倍.预计到2015年底,全 市将有租赁点多少个?【答案】1000个【解析】难度:★★解:设2015年底,全市将有租赁点解得:x=1000经检验:x=1000是原分式方程的解 答:预计到2015年底,全市将有租赁点1000个• 本题考查了分式方程的应用,找出题目中蕴含的数量关系,列出方程解出即可 难度中.22. 在YU 中,过点D 作DEL AB 于点E ,点F 在边CD 上,DF=BE,连接AF, BF.(1) 求证:四边形BFDE 是矩形;(2) 若 CF=3,BF=4,DF=5,求证:AF 平分 DAB .【答案】证明见解析;【解析】难度:★★(1)证明:•••四边形ABCD1平行四边形 DF// BEV DF=BE四边形DEBF 是平行四边形根据题意得:50000 x600•••DE丄ABDEB 90°四边形BFDE是矩形(2)证明:Q四边形BFDE是矩形BFD 90°BFC 90°在Rt△ BFC中, CF=3, BF=4BC . BF2 CF232 42 5••四边形ABCD!平行四边形BC=AD=5, DFA FAB• DF=5AD=DFDAF DFADAF FABAF平分DAB本题考查了平行四边形的性质,矩形的判定及性质•等腰三角的定义及性质运用,主要考查了平时所讲到的”角平分线+平行必出等腰的模型•难度中•23. 在平面直角坐标系xOy中,直线y kx b(k 0)与双曲线y 8的一个交点x为P(2, m),与x轴、y轴分别交于点A, B.(1)求m的值;(2)若PA=2AB,求k的值.【答案】(1)4(2) 1 或3【解析】难度:★★★解:(1)v p是直线与双曲线的交点,P在双曲线y 8上.xm=4(2)<方法一代入法>由(1)知,P(2,4)代入直线y=kx+b得:4=2k+bb=4-2 kv直线交x轴、y轴于A、B两点4 2kA ,0 ,B 0,4 2kkPA j2 A 4222k又v PA=2ABk=1 或k=3k的值为1或3(2)<方法二几何法>此题分情况讨论①若k>0且P、A分别在点B的两侧如图①01■■ \r\ns_亠■'4'加i<il/ \ r »:AB4 2k424 2k 4 2k 2/ \ *jT \/ \ 1图①•••PA=2ABB为PA中点OB为中位线B (0,2 )y kx 2(k 0)4=2k+2k=1②若k>0且P、B分别在点A的两侧如图②【解析】难度:★★本题考察了反比例函数和一次函数的基本性质;两点之间坐标距离公式;分类讨论;相似.难度中•本题可用两种方法解决:第一种可利用两点之间坐标距离公式计算得出答案,虽然比较好思考,计算量却很大;第二种利用几何法画图求相似的方法,分类讨论一次函数中k的取值范围画出不同情况的图形解决问题•24. 如图,AB是。

2015年中考数学试卷解析分类汇编(第1期)专题37_操作探究

2015年中考数学试卷解析分类汇编(第1期)专题37_操作探究

精心整理操作探究一、选择题1.(2015?浙江宁波,第12题4分)如图,小明家的住房平面图呈长方形,被分割成3个正方形和2个长方形后仍是中心对称图形.若只知道原住房平面图长A.b,②③-①将a+将2c∴故选A.2.(2015?浙江省绍兴市,第10题,4分)挑游戏棒是一种好玩的游戏,游戏规则:当一根棒条没有被其它棒条压着时,就可以把它往上拿走。

如图中,按照这一规则,第1次应拿走⑨号棒,第2次应拿走⑤号棒,…,则第6次应拿走A.②号棒B.⑦号棒C.⑧号棒D.⑩号棒 考点:规律型:图形的变化类..分析:仔细观察图形,找到拿走后图形下面的游戏棒,从而确定正确的选项. 解答:解:仔细观察图形发现: 第1第2第3第4第5第6故选二.1.(中CD =_______________________________【答案】2或4+第16题【考点】剪纸问题;多边形内角和定理;轴对称的性质;菱形、矩形的判定和性质;含30度角直角三角形的性质;相似三角形的判定和性质;分类思想和方程思想的应用.【分析】∵四边形纸片ABCD 中,∠A =∠C =90°,∠B =150°,∴∠C =30°. 如答图,根据题意对折、裁剪、铺平后可有两种情况H ,设∴设在Rt 易证BCD EHB ∆∆∽,∴CD BCHB EH =,即1CD =∴224CD +==+综上所述,CD =2或4+2.(2015?浙江省绍兴市,第13题,5分)由于木质衣架没有柔性,在挂置衣服的时候不太方便操作。

小敏设计了一种衣架,在使用时能轻易收拢,然后套进衣服后松开即可。

如图1,衣架杆OA=OB=18cm,若衣架收拢时,∠AOB=60°,如图2,则此时A,B两点之间的距离是▲cm考点:等边三角形的判定与性质..专题:应用题.∴△∴3.(t、t1等边三角型的边长为a≈2,等边三角形的周长为6;正方形的边长为b≈1.7,正方形的周长为1.7×4=6.8;圆的周长为3.14×2×1=6.28,∵6.8>6.28>6,∴t2>t3>t1.故答案为:t2>t3>t1.点评:本题考查了轨迹,利用相等的面积求出相应的周长是解题关键.4.(A与点出=2,则∴,∴=故=.故答案为:.点评:此题考查了翻折变换、勾股定理及矩形的性质,难度一般,解答本题的关键是判断出RT△AOE∽RT△ABC,利用相似三角形的性质得出OE的长.三.解答题1.(2015?浙江省台州市,第24题)定义:如图1,点M,N把线段AB分割成AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB的勾股分割点(1)已知点M,N是线段AB的勾股分割点,若AM=2,MN=3求BN的长;(2)如图2,在△ABC中,FG是中位线,点D,E是线段BC的勾股分割点,且段(3D(4,△和△H 是2.(的顶点形所(1)求点D的坐标(用含m的式子表示)(2)若点G的坐标为(0,-3),求该抛物线的解析式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题38 方案设计
1. (2015•四川广安,第24题8分)手工课上,老师要求同学们将边长为4cm的正方形纸片恰好剪成六个等腰直角三角形,聪明的你请在下列四个正方形中画出不同的剪裁线,并直接写出每种不同分割后得到的最小等腰直角三角形面积(注:不同的分法,面积可以相等)
考点:作图—应用与设计作图..
分析:(1)正方形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点,连接HE、EF、FG、GH、HF,即可把正方形纸片恰好剪成六个等腰直角三角形;然后根据三角形的面积公式,求出分割后得到的最小等腰直角三角形面积即可.
(2)正方形ABCD中,E、F分别是AB、BC的中点,O是AC、BD的交点,连接OE、OF,即可把正方形纸片恰好剪成六个等腰直角三角形;然后根据三角形的面积公式,求出分割后得到的最小等腰直角三角形面积即可.
(3)正方形ABCD中,F、H分别是BC、DA的中点,O是AC、BD的交点,连接HF,即可把正方形纸片恰好剪成六个等腰直角三角形;然后根据三角形的面积公式,求出分割后得到的最小等腰直角三角形面积即可.
(4)正方形ABCD中,E、F分别是AB、BC的中点,O是AC的中点,I是AO的中点,连接OE、OB、OF,即可把正方形纸片恰好剪成六个等腰直角三角形;然后根据三角形的面积公式,求出分割后得到的最小等腰直角三角形面积即可.
解答:解:根据分析,可得

(1)第一种情况下,分割后得到的最小等腰直角三角形是△AEH、△BEF、△CFG、△DHG,每个最小的等腰直角三角形的面积是:
(4÷2)×(4÷2)÷2
=2×2÷2
=2(cm2)
(2)第二种情况下,分割后得到的最小等腰直角三角形是△AEO、△BEO、△BFO、△CFO,每个最小的等腰直角三角形的面积是:
(4÷2)×(4÷2)÷2
=2×2÷2
=2(cm2)
(3)第三种情况下,分割后得到的最小等腰直角三角形是△AHO、△DHO、△BFO、△CFO,每个最小的等腰直角三角形的面积是:
(4÷2)×(4÷2)÷2
=2×2÷2
=2(cm2)
(4)第四种情况下,分割后得到的最小等腰直角三角形是△AEI、△OEI,
每个最小的等腰直角三角形的面积是:
(4÷2)×(4÷2)÷2÷2
=2×2÷2÷2
=1(cm2).
点评:(1)此题主要考查了作图﹣应用与设计作图问题,要熟练掌握,解答此题的关键是结合正方形的性质和基本作图的方法作图.
(2)此题还考查了三角形的面积的求法,要熟练掌握.
2.(2015·贵州六盘水,第21题10分)联通公司手机话费收费有A套餐(月租费15元,通话费每分钟0.1元)和B套餐(月租费0元,通话费每分钟0.15元)两种。

设A套餐每月话费为y1(元),B套餐每月话费为y2(元),月通话时间为x分钟.
(1)(4分)分别表示出y1与x,y2与x的函数关系式.
(2)(3分)月通话时间为多长时,A、B两种套餐收费一样?
(3)(3分)什么情况下A套餐更省钱?
考点:一次函数的应用..
分析:(1)根据A套餐的收费为月租加上话费,B套餐的收费为话费列式即可;
(2)根据两种收费相同列出方程,求解即可;
(3)根据(2)的计算结果,小于收费相同时的时间选择B套餐,大于收费相同的时间选择A套餐解答.
解答:解:(1)A套餐的收费方式:y1=0.1x+15;
B套餐的收费方式:y2=0.15x;
(2)由0.1x+15=0.15x,得到x=300,
答:当月通话时间是300分钟时,A、B两种套餐收费一样;
(3)当月通话时间多于300分钟时,A套餐更省钱.
点评:本题考查了一次函数的应用,是典型的电话收费问题,求出两种收费相同的时间是确定选择不同的缴费方式的关键.
3.(2015·河南,第21题10分)某游泳馆普通票价20元/张,暑假为了促销,新推出两种优惠卡:
①金卡售价600元/张,每次凭卡不再收费;
②银卡售价150元/张,每次凭卡另收10元.
暑期普通票正常出售,两种优惠卡仅限暑期使用,不限次数. 设游泳x次时,所需总费用为y元.
(1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式;
(2)在同一个坐标系中,若三种消费方式对应的函数图像如图所示,请求出点A、B、C的坐标;
(3)请根据函数图象,直接写出选择哪种消费方式更合算.
(1)【分析】观察图象,结合题目中的信息,得到普通卡是正比例函数,分析次数x 与20的关系,银卡为一次函数,分析出次数x 与10的关系,从而即可求解
解:
(2)【分析】由(1)中银卡的函数关系式可得点A 的坐标,观察图形,联立普卡和银卡的函数关系式可求得点B 的坐标,再将y =600代入银卡的函数关系式即可求解
.
第21题解图
(3)【分析】观察图象,应从普卡、银卡和金卡三者图象的交点前后进行分段讨论,依次得到消费方案即可求解.
4.(2015·黑龙江绥化,第27题 分)某苹果生产基地,用30名工人进行采摘或加工苹果 ,每名工人只能做其中一项工作。

苹果的销售方式有两
种:一种是可以直接出售;另一种是可以将采摘的苹果加工成罐头出售。

直接出售每吨获利4000元;加工成
罐头出售每吨获利10000元。

采摘的工人每人可以采摘苹果0.4吨 ;加工罐头的工人每
人可加工0.3吨。


有x 名工人进行苹果采摘 ,全部售出后 ,总利润为y 元 。

(1)求y 与x 的函数关系式。

(2)如何分配工人才能活力最大
考点:一次函数的应用..
分析:(1)根据题意可知进行加工的人数为(30﹣x )人,采摘的数量为0.4x 吨,加工的数量(9﹣0.3x )吨,直接出售的数量为0.4x ﹣(9﹣0.3x )=(0.7x ﹣9)吨,由此可得出y 与x 的关系式;
(2)先求出x 的取值范围,再由x 为整数即可得出结论.
解答:解:(1)根据题意得,进行加工的人数为(30﹣x )人,采摘的数量为0.4x 吨,加工的数量为(9﹣0.3x )吨,直接出售的数量为0.4x ﹣(9﹣0.3x )=(0.7x ﹣9)吨, y =4000×(0.7x ﹣9)+10000×(9﹣0.3x )=﹣200x +54000;
(2)根据题意得,0.4x ≥9﹣0.3x ,解得x ≥12,
∴x 的取值是12≤x ≤30的整数.
∵k =﹣200<0,
∴y 随x 的增大而减小,
∴当x =13时利润最大,即13名工人进行苹果采摘,17名工人进行加工,获利最大.
点评:本题考查的是一次函数的应用,根据题意列出关于x 、y 的关系式是解答此题的关键.
5. (2015•浙江省台州市,第24题)定义:如图1,点M ,N 把线段AB 分割成AM ,MN 和BN ,若以AM ,MN ,BN 为边的三角形是一个直角三角形,则称点M ,N 是线段AB 的勾股分割点
(1)已知点M ,N 是线段AB 的勾股分割点,若AM =2,MN =3求BN 的长;
(2)如图2,在△ABC 中,FG 是中位线,点D ,E 是线段BC 的勾股分割点,且EC >DE ≥BD ,连接AD ,AE 分别交FG 于点M ,N ,求证:点M ,N 是线段FG 的勾股分割点
(3)已知点C 是线段AB 上的一定点,其位置如图3所示,请在BC 上画一点D ,使C ,D 是线段AB 的勾股分割点(要求尺规作图,保留作图痕迹,画出一种情形即可)
(4)如图4,已知点M ,N 是线段AB 的勾股分割点,MN >AM ≥BN ,△AMC ,△MND
和△NBM 均是等边三角形,AE 分别交CM ,DM ,DN 于点F ,G ,H ,若H 是DN 的中点,试探究AMF S ∆,BEN S ∆和MNHG S 四边形的数量关系,并说明理由
6.(2015•江苏南京,第25题10分)如图,在边长为4的正方形ABCD中,请画出以A为一个顶点,另外两个顶点在正方形ABCD的边上,且含边长为3的所有大小不同的等腰三角形.(要求:只要画出示意图,并在所画等腰三角形长为3的边上标注数字3)
【答案】答案见试题解析.
【解析】
试题分析:①以A为圆心,以3为半径作弧,交AD、AB两点,连接即可;②连接AC,在AC 上,以A为端点,截取1.5个单位,过这个点作AC的垂线,交AD、AB两点,连接即可;③以A为端点在AB上截取3个单位,以截取的点为圆心,以3个单位为半径画弧,交BC一个点,连接即可;④连接AC,在AC上,以C为端点,截取1.5个单位,过这个点作AC的垂线,交BC、DC两点,然后连接A与这两个点即可;⑤以A为端点在AB上截取3个单位,再作着个线段的垂直平分线交CD一点,连接即可.
试题解析:满足条件的所有图形如图所示:
考点:1.作图—应用与设计作图;2.等腰三角形的判定;3.勾股定理;4.正方形的性质.。

相关文档
最新文档