辽宁省沈阳市中考数学试卷及答案

合集下载

辽宁省沈阳市2022年中考数学真题试题Word版含解析

辽宁省沈阳市2022年中考数学真题试题Word版含解析

辽宁省沈阳市2022年中考数学真题试题Word版含解析辽宁省沈阳市2022年中考数学真题试题一、选择题〔每题只有一个正确选项,此题共10小题,每题2分,共20分〕1.〔2.00分〕以下各数中是有理数的是〔〕 A.π B.0C.D.2.〔2.00分〕辽宁男蓝夺冠后,从4月21日至24日各类媒体体关于“辽篮CBA夺冠〞××××103.〔2.00分〕如图是由五个相同的小立方块搭成的几何体,这个几何体的左视图是〔〕4646A. B. C. D.4.〔2.00分〕在平面直角坐标系中,点B的坐标是〔4,﹣1〕,点A与点B 关于x轴对称,那么点A的坐标是〔〕 A.〔4,1〕 B.〔﹣1,4〕C.〔﹣4,﹣1〕 D.〔﹣1,﹣4〕5.〔2.00分〕以下运算错误的选项是〔〕A.〔m〕=m B.a÷a=a C.x?x=x D.a+a=a6.〔2.00分〕如图,AB∥CD,EF∥GH,∠1=60°,那么∠2补角的度数是〔〕236109358437A.60° B.100°C.110°D.120°7.〔2.00分〕以下事件中,是必然事件的是〔〕 A.任意买一张电影票,座位号是2的倍数 B.13个人中至少有两个人生肖相同C.车辆随机到达一个路口,遇到红灯 D.明天一定会下雨8.〔2.00分〕在平面直角坐标系中,一次函数y=kx+b的图象如下图,那么k 和b的取值范围是〔〕A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<09.〔2.00分〕点A〔﹣3,2〕在反比例函数y=〔k≠0〕的图象上,那么k的值是〔〕 A.﹣6 B.﹣ C.﹣1 D.610.〔2.00分〕如图,正方形ABCD内接于⊙O,AB=2,那么的长是〔〕A.π B.π C.2π D.π二、细心填一填〔本大题共6小题,每题3分,总分值18分,请把答案填在答題卷相应题号的横线上〕11.〔3.00分〕因式分解:3x﹣12x= .12.〔3.00分〕一组数3,4,7,4,3,4,5,6,5的众数是. 13.〔3.00分〕化简:14.〔3.00分〕不等式组﹣= .的解集是.315.〔3.00分〕如图,一块矩形土地ABCD由篱笆围着,并且由一条与CD边平行的篱笆EF分开.篱笆的总长为900m〔篱笆的厚度忽略不计〕,当AB= m时,矩形土地ABCD的面积最大.16.〔3.00分〕如图,△ABC是等边三角形,AB=,点D是边BC上一点,点H是线段AD上一点,连接BH、CH.当∠BHD=60°,∠AHC=90°时,DH= .三、解答题题〔17题6分,18-19题各8分,请认真读题〕 17.〔6.00分〕计算:2tan45°﹣|﹣3|+〔〕﹣〔4﹣π〕.﹣218.〔8.00分〕如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E.〔1〕求证:四边形OCED是矩形;〔2〕假设CE=1,DE=2,ABCD的面积是.19.〔8.00分〕经过校园某路口的行人,可能左转,也可能直行或右转.假设这三种可能性相同,现有小明和小亮两人经过该路口,请用列表法或画树状图法,求两人之中至少有一人直行的概率.四、解答题〔每题8分,请认真读题〕20.〔8.00分〕九年三班的小雨同学想了解本校九年级学生对哪门课程感兴趣,随机抽取了局部九年级学生进行调查〔每名学生必只能选择一门课程〕.将获得的数据整理绘制如下两幅不完整的统计图.据统计图提供的信息,解答以下问题:〔1〕在这次调查中一共抽取了名学生,m的值是.〔2〕请根据据以上信息直在答题卡上补全条形统计图;〔3〕扇形统计图中,“数学〞所对应的圆心角度数是度;〔4〕假设该校九年级共有1000名学生,根据抽样调查的结果,请你估计该校九年级学生中有多少名学生对数学感兴趣.21.〔8.00分〕某公司今年1月份的生产本钱是400万元,由于改良技术,生产本钱逐月下降,3月份的生产本钱是361万元.假设该公司2、3、4月每个月生产本钱的下降率都相同.〔1〕求每个月生产本钱的下降率;〔2〕请你预测4月份该公司的生产本钱.五、解答题〔此题10〕22.〔10.00分〕如图,BE是O的直径,点A和点D是⊙O上的两点,过点A 作⊙O的切线交BE延长线于点.〔1〕假设∠ADE=25°,求∠C的度数;〔2〕假设AB=AC,CE=2,求⊙O半径的长.六、解答题〔此题10分〕23.〔10.00分〕如图,在平面直角坐标系中,点F的坐标为〔0,10〕.点E 的坐标为〔20,0〕,直线l1经过点F和点E,直线l1与直线l2 、y=x相交于点P.〔1〕求直线l1的表达式和点P的坐标;〔2〕矩形ABCD的边AB在y轴的正半轴上,点A与点F重合,点B在线段OF 上,边AD平行于x 轴,且AB=6,AD=9,将矩形ABCD沿射线FE的方向平移,边AD始终与x 轴平行.矩形ABCD以每秒t秒〔t>0〕.①矩形ABCD在移动过程中,B、C、D三点中有且只有一个顶点落在直线l1或l2上,请直接写出此时t的值;②假设矩形ABCD在移动的过程中,直线CD交直线l1于点N,交直线l2于点M.当△PMN的面积等于18时,请直接写出此时t的值.个单位的速度匀速移动〔点A移动到点E时止移动〕,设移动时间为七、解答题〔此题12分〕24.〔12.00分〕:△ABC是等腰三角形,CA=CB,0°<∠ACB≤90°.点M在边AC上,点N在边BC上〔点M、点N不与所在线段端点重合〕,BN=AM,连接AN,BM,射线AG∥BC,延长BM交射线AG于点D,点E在直线AN上,且AE=DE.〔1〕如图,当∠ACB=90°时①求证:△BCM≌△ACN;②求∠BDE的度数;〔2〕当∠ACB=α,其它多件不变时,∠BDE的度数是〔用含α的代数式表示〕〔3〕假设△ABC是等边三角形,AB=3于点F,请直接写出线段CF的长.,点N是BC边上的三等分点,直线ED与直线BC交八、解答题〔此题12分〕25.〔12.00分〕如图,在平面角坐标系中,抛物线C1:y=ax+bx﹣1经过点A 〔﹣2,1〕和点B〔﹣1,﹣1〕,抛物线C2:y=2x+x+1,动直线x=t与抛物线C1交于点N,与抛物线C2交于点M.〔1〕求抛物线C1的表达式;〔2〕直接用含t的代数式表示线段MN的长;〔3〕当△AMN是以MN为直角边的等腰直角三角形时,求t的值;〔4〕在〔3〕的条件下,设抛物线C1与y轴交于点P,点M在y轴右侧的抛物线C2上,连接AM交y轴于点k,连接KN,在平面内有一点Q,连接KQ和QN,当KQ=1且∠KNQ=∠BNP时,请直接写出点Q的坐标.22参考答案与试题解析一、选择题〔每题只有一个正确选项,此题共10小题,每题2分,共20分〕1.〔2.00分〕以下各数中是有理数的是〔〕 A.π B.0C.D.【分析】根据有理数是有限小数或无限循环小,可得答案.【解答】解:A、π是无限不循环小数,属于无理数,故本选项错误; B、0是有理数,故本选项正确; C、D、是无理数,故本选项错误;无理数,故本选项错误;应选:B.【点评】此题考查了有理数,有限小数或无限循环小数是有理数.2.〔2.00分〕辽宁男蓝夺冠后,从4月21日至24日各类媒体体关于“辽篮CBA夺冠〞××××10【分析】科学记数法的表示形式为a×10的形式,其中1≤×10.应选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.〔2.00分〕如图是由五个相同的小立方块搭成的几何体,这个几何体的左视图是〔〕n4n4646A. B. C. D.【分析】细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定那么可.【解答】解:从左边看,从左往右小正方形的个数依次为:2,1.左视图如下:应选:D.【点评】此题主要考查了几何体的三种视图和学生的空间想象能力,视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.4.〔2.00分〕在平面直角坐标系中,点B的坐标是〔4,﹣1〕,点A与点B 关于x轴对称,那么点A的坐标是〔〕 A.〔4,1〕 B.〔﹣1,4〕C.〔﹣4,﹣1〕 D.〔﹣1,﹣4〕【分析】直接利用关于x轴对称点的性质,横坐标不变纵坐标改变符号进而得出答案.【解答】解:∵点B的坐标是〔4,﹣1〕,点A与点B关于x轴对称,∴点A的坐标是:〔4,1〕.应选:A.【点评】此题主要考查了关于x轴对称点的性质,正确把握横纵坐标的关系是解题关键.5.〔2.00分〕以下运算错误的选项是〔〕A.〔m〕=m B.a÷a=a C.x?x=x D.a+a=a【分析】直接利用合并同类项法那么以及单项式乘以单项式运算法那么和同底数幂的除法运算法那么化简求出即可.【解答】解:A、〔m〕=m,正确; B、a÷a=a,正确; C、x?x=x,正确; D、a+a=a+a,错误;应选:D.4343358109236236109358437【点评】此题主要考查了合并同类项法那么以及单项式乘以单项式运算法那么和同底数幂的除法运算法那么等知识,正确掌握运算法那么是解题关键.6.〔2.00分〕如图,AB∥CD,EF∥GH,∠1=60°,那么∠2补角的度数是〔〕 A.60° B.100°C.110°D.120°【分析】根据平行线的性质比拟多定义求解即可;【解答】解:∵AB∥CD,∴∠1=∠EFH,∵EF∥GH,∴∠2=∠EFH,∴∠2=∠1=60°,∴∠2的补角为120°,应选:D.【点评】此题考查平行线的性质、补角和余角等知识,解题的关键是熟练掌握根本知识,属于中考常考题型.7.〔2.00分〕以下事件中,是必然事件的是〔〕 A.任意买一张电影票,座位号是2的倍数 B.13个人中至少有两个人生肖相同 C.车辆随机到达一个路口,遇到红灯 D.明天一定会下雨【分析】必然事件就是一定发生的事件,依据定义即可判断.【解答】解:A、“任意买一张电影票,座位号是2的倍数〞是随机事件,故此选项错误; B、“13个人中至少有两个人生肖相同〞是必然事件,故此选项正确;C、“车辆随机到达一个路口,遇到红灯〞是随机事件,故此选项错误;D、“明天一定会下雨〞是随机事件,故此选项错误;应选:B.【点评】考查了随机事件.解决此题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8.〔2.00分〕在平面直角坐标系中,一次函数y=kx+b的图象如下图,那么k 和b的取值范围是〔〕A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0 【分析】根据一次函数的图象与系数的关系进行解答即可.【解答】解:∵一次函数y=kx+b 的图象经过一、二、四象限,∴k<0,b>0.应选:C.【点评】此题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b〔k ≠0〕中,当k<0,b>0时图象在一、二、四象限.9.〔2.00分〕点A〔﹣3,2〕在反比例函数y=〔k≠0〕的图象上,那么k的值是〔〕 A.﹣6 B.﹣ C.﹣1 D.6【分析】根据点A的坐标,利用反比例函数图象上点的坐标特征求出k值,此题得解.【解答】解:∵A〔﹣3,2〕在反比例函数y=〔k≠0〕的图象上,∴k=〔﹣3〕×2=﹣6.应选:A.【点评】此题考查了反比例函数图象上点的坐标特征,反比例函数图象上所有点的坐标均满足该函数的解析式.。

2022年辽宁省沈阳市中考数学试题(含答案解析)

2022年辽宁省沈阳市中考数学试题(含答案解析)
13.化简: ______.
14.如图,边长4的正方形ABCD内接于 ,则 的长是
______.(结果保留 )
15.如图,四边形ABCD是平行四边形,CD在x轴上,点B在
y轴上,反比例函数 的图象经过第一象限点
A,且平行四边形ABCD的面积为6,则 _____.
16.如图,将矩形纸片ABCD折叠,折痕为MN,点M,N分
为半径作弧,两弧交于点M,N,作直线MN,分别交AB,AD,AC于点E,O,F,
连接DE,DF.
(1)由作图可知,直线MN是线段AD的______.
(2)求证:四边形AEDF是菱形.
四、解答题(每小题8分,共16分)
20.某校积极落实“双减”政策,将要开设拓展课程.为让学生可以根据自己的兴趣爱好
选择最喜欢的课程,进行问卷调查,问卷设置以下四种洗项:A(综合模型)、B(摄影艺
,解得: 或 (不合题意,舍去),
综上所述,点P的坐标为 .
∵AD是 的角平分线,
∴ ,
∵AO=AO,
∴ (ASA),
∴OF=OE,
∵AO=DO,
∴四边形AEDF是平行四边形,
∵ ,
∴四边形AEDF是菱形.
20.
(1)120
(2)如图:
(3)72°
(4)320
21.
(1)解:设AB的长为x厘米,则有 厘米,由题意得:

整理得: ,
解得: ,
∵ ,
∴ ,
∴ 都符合题意,
∵ 是圆 的直径,
∴ ,
∴ ,
∴ 是直角三角形,
∴ ,
∵四边形 内接于圆 ,
∴ ,
又∵ ,
∴ ,
∴ ,
∵ , ,

2022年辽宁省沈阳市中考数学真题及答案

2022年辽宁省沈阳市中考数学真题及答案
根据以上信息,解答下列问题:
(1)此次被调查的学生人数为________名;
(2)直接在答题卡中补全条形统计图;
(3)求拓展课程D(劳动实践)所对应的扇形的圆心角的度数;
(4)根据抽样调查结果,请你估计该校800名学生中,有多少名学生最喜欢C(音乐鉴赏)拓展课程.
21.如图,用一根长60厘米的铁丝制作一个“日”字型框架ABCD,铁丝恰好全部用完.
A.70°B.60°C.30°D.20°
8.在平面直角坐标系中,一次函数 的图象是()
A. B.
C. D.
9.下列说法正确的是( )
A.了解一批灯泡的使用寿命,应采用抽样调查的方式
B.如果某彩票的中奖概率是1%,那么一次购买100张这种彩票一定会中奖
C.若甲、乙两组数据的平均数相同, , ,则乙组数据较稳定
(1)若所围成矩形框架ABCD的面积为144平方厘米,则AB的长为多少厘米?
(2)矩形框架ABCD面积最大值为______平方厘米.
22.如图,四边形 内接于圆 , 是圆 的直径, , 的延长线交于点 ,延长 交 于点 , .
(1)求证: 是圆 的切线;
(2)连接 , , , 的长为______.
23.如图,在平面直角坐标系中,一次函数 的图象与x轴交于点A,与y轴交于点 ,与直线OC交于点 .
沈阳市2022年初中学业水平考试
数学试题
试题满分120分,考试时间120分钟.
注意事项:
1.答题前,考生须用0.5mm黑色字迹的签字笔在本试题卷规定位置填写自己的姓名、准考证号;
2.考生须在答题卡上作答,不能在本试题卷上作答,答在本试题卷上无效;
3.考试结束,将本试题卷和答题卡一并交回;
4.本试题卷包括八道大题,25道小题,共6页.如缺页、印刷不清,考生须声明.

2023年辽宁省沈阳市中考数学真题试卷(解析版)

2023年辽宁省沈阳市中考数学真题试卷(解析版)

2023年辽宁省沈阳市中考数学真题试卷及答案一、选择题(本大题共10小题,共20)1. 2的相反数是()A. 2B. -2C.D.【答案】B【解析】2的相反数是-2.故选:B.2. 如图是由个相同的小立方块搭成的几何体,这个几何体的主视图是()A. B. C. D.【答案】A【解析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中;解:此几何体的主视图从左往右分列,小正方形的个数分别是,,.故选:A【点拨】本题考查了简单组合体的三视图,主视图是从物体的正面看得到的视图3. 我国自主研发的口径球面射电望远镜()有“中国天眼”之称,它的反射面面积约为用科学记数法表示数据为()A. B. C. D.【答案】D【解析】科学记数法的表示形式为的形式,其中为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同,当原数绝对值时,n是正整数;当原数的绝对值时,n是负整数;解:,故选:D【点拨】此题考查科学记数法的表示方法,科学记数法的表示形式为的形式,其中为整数,表示时关键要正确确定a的值以及n的值4. 下列计算结果正确的是()A. B. C. D.【答案】D【解析】根据整式的加减运算法则,同底数幂的运算,完全平方公式,积的乘方运算即可求解.解:、,故此选项错误,不符合题意;B.,故此选项错误,不符合题意;C.,故此选项错误,不符合题意;D.,正确,符合题意.故选:.【点拨】本题主要考查整式的加减运算法则,同底数幂的运算,完全平方公式,积的乘方运算,掌握整式的混合运算是解题的关键.5. 不等式的解集在数轴上表示正确的是()A. B.C. D.【答案】C【解析】根据在数轴上表示不等式解集的方法求解即可.解:∵,∴1处是实心原点,且折线向右.故选:C.【点拨】题考查的是在数轴上表示不等式的解集,熟知“小于向左,大于向右”是解答此题的关键.6. 某班级准备利用暑假去研学旅行,他们准备定做一批容量一致的双肩包为此,活动负责人征求了班内同学的意向,得到了如下数据:容量人数则双肩包容量的众数是()A. B. C. D.【答案】C【解析】根据众数的定义求解即可.解:出现次,出现次数最多,众数是,故选:C.【点拨】本题考查了众数的定义,众数是一组数据中出现次数最多的数,众数可能没有,可能有1个,也可能有多个.7. 下列说法正确的是()A. 将油滴入水中,油会浮在水面上是不可能事件B. 抛出的篮球会下落是随机事件C. 了解一批圆珠笔芯的使用寿命,采用普查的方式D. 若甲、乙两组数据的平均数相同,,,则甲组数据较稳定【答案】D【解析】依据随机事件、必然事件、不可能事件、抽样调查以及方差的概念进行判断,即可得出结论.解:、将油滴入水中,油会浮在水面上是必然事件,故A不符合题意;B.抛出的篮球会下落是必然事件,故B不符合题意;C.了解一批圆珠笔芯的使用寿命,采用抽样调查的方式,故C不符合题意;D.若甲、乙两组数据的平均数相同,,,则甲组数据较稳定,故D符合题意;故选:.【点拨】本题主要考查了随机事件、必然事件、不可能事件、抽样调查以及方差的概念,方差是反映一组数据的波动大小的一个量.方差越大,则各数据与平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,解题的关键是掌握相应知识点的概念.8. 已知一次函数的图象如图所示,则,的取值范围是()A. ,B. ,C. ,D. ,【答案】A【解析】根据一次函数图象进行判断.解:一次函数的图象经过第一、三、四象限,,.故选:A.【点拨】本题考查一次函数的图象和性质,熟知一次函数的图象与系数的关系是解题的关键.9. 二次函数图象的顶点所在的象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B【解析】根据抛物线,可以写出该抛物线的顶点坐标,从而可以得到顶点在第几象限.解:,顶点坐标为,顶点在第二象限.故选:.【点拨】本题主要考查了二次函数的性质,掌握二次函数的性质是解题的关键.10. 如图,四边形内接于,的半径为,,则的长是()A. B. C. D.【答案】C【解析】根据圆内接四边形的性质得到,由圆周角定理得到,根据弧长的公式即可得到结论.解:四边形内接于,,,,的长.故选:.【点拨】本题考查的是弧长的计算,圆内接四边形的性质和圆周角定理,掌握圆内接四边形的对角互补是解题的关键.二、填空题(本大题共6小题,共18分)11. 因式分解:__________.【答案】a(a+1)2【解析】先提取公因式a,再对余下的项利用完全平方公式继续分解因式.完全平方公式:a±2ab+b=(a±b):a3+2a2+a,=a(a2+2a+1),=a(a+1)2.【点拨】此题考查提公因式法与公式法的综合运用,掌握运算法则是解题关键12. 当时,代数式的值为______ .【答案】2【解析】先将原式去括号,然后合并同类项可得,再把前两项提取,然后把的值代入可得结果.解:当时,原式,故答案为:.【点拨】此题主要是考查了整式化简求值,能够熟练运用去括号法则,合并同类项法则化简是解题的关键.13. 若点和点都在反比例函数的图象上,则______ .(用“”“”或“”填空)【答案】【解析】把和分别代入反比例函数中计算y的值,即可做出判断.解:∵点和点都在反比例函数的图象上,∴令,则;令,则,,,故答案为:.【点拨】本题考查了反比例函数图像上点的坐标特征,计算y的值是解题的关键.14. 如图,直线,直线分别与,交于点,,小明同学利用尺规按以下步骤作图:(1)点为圆心,以任意长为半径作弧交射线于点,交射线于点;(2)分别以点,为圆心,以大于的长为半径作弧,两弧在内交于点;(3)作射线交直线于点;若,则______度.【答案】58【解析】由作图得平分,再根据平行线的性质“两直线平行,内错角相等”易得,即可获得答案.解:由作图得:平分,∴,∵,∴,∴.故答案为:.【点拨】本题主要考查了尺规作图-基本作图以及平行线的性质,由作图得到平分是解题关键.15. 如图,王叔叔想用长为的栅栏,再借助房屋的外墙围成一个矩形羊圈,已知房屋外墙足够长,当矩形的边______ 时,羊圈的面积最大.【答案】15【解析】设为,则,根据矩形的面积公式可得关于x的二次函数关系式,配方后即可解.解:设为,面积为,由题意可得:,当时,取得最大值,即时,羊圈的面积最大,故答案为:.【点拨】本题考查了二次函数的性质在实际生活中的应用.最大面积的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值),也就是说二次函数的最值不一定在时取得.16. 如图,在中,,,点在直线上,,过点作直线于点,连接,点是线段的中点,连接,则的长为______ .【答案】或【解析】分两种情况当在延长线上和当在上讨论,画出图形,连接,过点作于,利用勾股定理解题即可解:当在线段上时,连接,过点作于,当在线段上时,,,,,点是线段的中点,,,,,,,,,,当在延长线上时,则,是线段的中点,,,,,,,,,,,,的长为或.故答案为:或.【点拨】本题考查等腰直角三角形的判定和性质,勾股定理,正确作出辅助线是解题的关键.三、解答题(本大题共9小题,共82)17. 计算:.【答案】10【解析】根据零指数幂和负整数指数幂运算法则,二次根式性质,特殊角的三角函数值,进行计算即可.解:.【点拨】本题主要考查了实数混合运算,解题的关键是熟练掌握零指数幂和负整数指数幂运算法则,二次根式性质,特殊角的三角函数值,准确计算.18. 为弘扬中华优秀传统文化,学校举办“经典诵读”比赛,将比赛内容分为“唐诗”“宋词”“元曲”三类(分别用,,依次表示这三类比赛内容).现将正面写有,,的三张完全相同的卡片背面朝上洗匀,由选手抽取卡片确定比赛内容选手小明先从三张卡片中随机抽取一张,记下字母后放回洗匀,选手小梅再随机抽取一张,记下字母请用画树状图或列表的方法,求小明和小梅抽到同一类比赛内容的概率.【答案】图见解析,【解析】用树状图法列举出所有等可能出现的结果,再根据概率的定义进行计算即可;解:用树状图法表示所有等可能出现的结果如下:共有种等可能出现的结果,其中小明和小梅抽到同一类比赛内容的有种,所以小明和小梅抽到同一类比赛内容的概率为.【点拨】本题考查列表法或树状图法,列举出所有等可能出现的结果是正确解答的关键19. 如图,在中,,是边上的中线,点在的延长线上,连接,过点作交的延长线于点,连接、,求证:四边形是菱形.【答案】证明见解析【解析】先根据等腰三角形的性质,得到垂直平分,进而得到,,,再利用平行线的性质,证明,得到,进而得到,即可证明四边形是菱形.证明:,是边上的中线,垂直平分,,,,,,,在和中,,,,,四边形是菱形.【点拨】本题考查了等腰三角形的性质,垂直平分线的性质,全等三角形的判定和性质,菱形的判定,灵活运用相关知识点解决问题是解题关键.20. “书香润沈城,阅读向未来”,沈阳市第十五届全民读书季启动之际某中学准备购进一批图书供学生阅读,为了合理配备各类图书,从全体学生中随机抽取了部分学生进行了问卷调查问卷设置了五种选项:“艺术类”,“文学类”,“科普类”,“体育类”,“其他类”,每名学生必须且只能选择其中最喜爱的一类图书,将调查结果整理绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)此次被调查的学生人数为______ 名;(2)请直接补全条形统计图;(3)在扇形统计图中,“艺术类”所对应的圆心角度数是______ 度;(4)据抽样调查结果,请你估计该校名学生中,有多少名学生最喜爱“科普类”图书.【答案】(1)100 (2)见解析(3)36 (4)720名【解析】(1)用B的人数除以对应百分比可得样本容量;(2)用样本容量减去其它四类的人数可得D类的人数,进而补全条形统计图;(3)用360乘A“艺术类”所占百分比可得对应的圆心角度数;(4)用总人数乘样本中C类所占百分比即可;(1)此次被调查的学生人数为:名,故答案为:;(2)类的人数为:名,补全条形统计图如下:;(3)在扇形统计图中,“艺术类”所对应的圆心角度数是:,故答案为:;(4)(名),答:估计该校名学生中,大约有名学生最喜爱“科普类”图书.【点拨】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键,条形统计图能清楚地表示出每个项目的数据,扇形统计图直接反映部分占总体的百分比大小21. 甲、乙两人加工同一种零件,每小时甲比乙多加工个这种零件,甲加工个这种零件所用的时间与乙加工个这种零件所用的时间相等,求乙每小时加工多少个这种零件.【答案】乙每小时加工个这种零件.【解析】设乙每小时加工个这种零件,则甲每小时加工个这种零件,利用“甲加工个这种零件所用的时间与乙加工个这种零件所用的时间相等”列分式方程即可求解.解:设乙每小时加工个这种零件,则甲每小时加工个这种零件,根据题意得:,解得:,经检验,是所列方程的解,且符合题意.答:乙每小时加工个这种零件.【点拨】本题主要考查了分式方程的应用,解题的关键在于能够根据题意找到等量关系列出方程进行求解.22. 如图,是的直径,点是上的一点(点不与点,重合),连接、,点是上的一点,,交的延长线于点,且.(1)求证:是的切线;(2)若的半径为,,则的长为______ .【答案】(1)证明见解析(2)8【解析】(1)利用圆周角定理,等腰三角形的性质定理,对顶角相等,三角形的内角和定理和圆的切线的判定定理解答即可得出结论;(2)利用直角三角形的边角关系定理得到设, 则, 利用x的代数式表示出线段,再利用勾股定理列出关于x的方程,解方程即可得出结论.(1)证明:是的直径,,,,,,,,,,,即.为的直径,是的切线;(2)解:,,,设,则,,,,,是的直径,,,,解得:不合题意,舍去或..故答案为:.【点拨】本题主要考查了圆的有关性质,圆周角定理,等腰三角形的性质,三角形的内角和定理,圆的切线的判定定理,勾股定理,直角三角形的边角关系定理,熟练掌握圆周角定理是解题的关键.23. 如图,在平面直角坐标系中,一次函数的图象交轴于点,交轴于点直线与轴交于点,与直线交于点点是线段上的一个动点(点不与点重合),过点作轴的垂线交直线于点设点的横坐标为.(1)求的值和直线的函数表达式;(2)以线段,为邻边作▱,直线与轴交于点.①当时,设线段的长度为,求与之间的关系式;②连接,,当面积为时,请直接写出的值.【答案】(1),(2)①;②或【解析】(1)根据直线的解析式求出点C的坐标,用待定系数法求出直线的解析式即可;(2)①用含m的代数式表示出的长,再根据得出结论即可;②根据面积得出l的值,然后根据①的关系式的出m的值.(1)点在直线上,,一次函数的图象过点和点,,解得,直线解析式为;(2)①点在直线上,且的横坐标为,的纵坐标为:,点在直线上,且点的横坐标为,点的纵坐标为:,,点,线段的长度为,,,,即;②的面积为,,即,解得,由①知,,,解得,即的值为或.【点拨】本题考查一次函数的知识,熟练掌握一次函数的图象和性质,待定系数法求解析式是解题的关键.24. 如图,在纸片中,,,,点为边上的一点(点不与点重合),连接,将纸片沿所在直线折叠,点,的对应点分别为、,射线与射线交于点.(1)求证:;(2)如图,当时,的长为______ ;(3)如图,当时,过点作,垂足为点,延长交于点,连接、,求的面积.【答案】(1)证明见解析;(2);(3)【解析】(1)根据平行四边形的性质和平行线的性质,得到,再根据折叠的性质,得到,然后结合邻补角的性质,推出,即可证明;(2)作,交的延长线于,先证明四边形是正方形,再利用特殊角的三角函数值,求出,进而得到,即可求出的长;(3)作,交的延长线于,作于,交的延长线于,作于,解直角三角形,依次求出、、、的值,进而求得的值,根据和,求得、,进而得出的值,解直角三角形,求出的值,进而得出的值,根据,得出,从而设,,进而表示出,最后根据,列出,求出,根据,得出,进而得到,即可求出的面积.(1)证明:四边形是平行四边形,,,由折叠性质可知,,,,,;(2)解:如图,作,交的延长线于,,,,,,,,四边形是矩形,由(1)可知:,矩形是正方形,,,,,,,故答案为:;(3)解:如图,作,交的延长线于,作于,交的延长线于,作于,四边形是平行四边形,,,,,,在中,,,,在中,,由(1)可知:,,,又纸片沿所在直线折叠,点,的对应点分别为,,,,,,,,,,,,,,在中,,,,,,,,,,设,,,,,,,,,,,,,,,,,,.【点拨】本题考查了平行四边形的性质,正方形的判定和性质,等腰三角形的性质,解直角三角形、轴对称的性质等知识,正确作辅助线,熟练解直角三角形是解题关键.25. 如图,在平面直角坐标系中,二次函数的图象经过点,与轴的交点为点和点.(1)求这个二次函数的表达式;(2)点,在轴正半轴上,,点在线段上,以线段,为邻边作矩形,连接,设.连接,当与相似时,求的值;当点与点重合时,将线段绕点按逆时针方向旋转后得到线段,连接,,将绕点按顺时针方向旋转后得到,点,对应点分别为、,连接当的边与线段垂直时,请直接写出点的横坐标.【答案】(1)(2)①或;②或或【解析】(1)利用待定系数法解答即可;(2)①利用已知条件用含a的代数式表示出点E,D,F,G的坐标,进而得到线段的长度,利用分类讨论的思想方法和相似三角形的性质,列出关于a的方程,解方程即可得出结论;②利用已知条件,点的坐标的特征,平行四边形的判定与性质,旋转的性质,全等三角形的判定与性质求得,和的长,利用分类讨论的思想方法分三种情形讨论解答利用旋转的性质,直角三角形的边角关系定理,勾股定理求得相应线段的长度即可得出结论;(1)二次函数的图象经过点,与轴的交点为点,解得:此抛物线的解析式为(2)令,则解得:或,∴.∵,∴四边形为矩形,∴∴∴Ⅰ当时,∴∴∴Ⅱ当时,∴∴∴综上,当与相似时,的值为或;点与点重合,∴∴∴四边形为平行四边形,和中,Ⅰ、当所在直线与垂直时,如图,,,三点在一条直线上,过点作轴于点,则∴此时点的横坐标为Ⅱ当所在直线与垂直时,如图,,,设的延长线交于点,过点作,交的延长线于点,过点作,交的延长线于点,则轴,.,,.,.,,此时点的横坐标为;Ⅲ当所在直线与垂直时,如图,,,,,,三点在一条直线上,则,过点作,交的延长线于点,,此时点的横坐标为.综上,当的边与线段垂直时,点的横坐标为或或.【点拨】本题主要考查了二次函数的图象与性质,抛物线上点的坐标的特征,矩形的性质,相似三角形的判定与性质,全等三角形的判定与性质,直角三角形的性质,勾股定理,直角三角形的边角关系定理,利用点的坐标表示出相应线段的长度和正确利用分类讨论的思想方法是解题的关键。

2020年辽宁省沈阳市中考数学试卷含答案解析

2020年辽宁省沈阳市中考数学试卷含答案解析

2020年辽宁省沈阳市中考数学试卷一.选择题(下列各题的备选答案中,只有一个答案是正确的.每小题2分,共20分)1.下列有理数中,比0小的数是()A.﹣2B.1C.2D.32.2020年5月,中科院沈阳自动化所主持研制的“海斗一号”万米海试成功,下潜深度超10900米,刷新我国潜水器最大下潜深度记录.将数据10900用科学记数法表示为()A.1.09×103B.1.09×104C.10.9×103D.0.109×1053.如图是由四个相同的小立方块搭成的几何体,这个几何体的主视图是()A.B.C.D.4.下列运算正确的是()A.a2+a3=a5B.a2•a3=a6C.(2a)3=8a3D.a3÷a=a35.如图,直线AB∥CD,且AC⊥CB于点C,若∠BAC=35°,则∠BCD的度数为()A.65°B.55°C.45°D.35°6.不等式2x≤6的解集是()A.x≤3B.x≥3C.x<3D.x>37.下列事件中,是必然事件的是()A.从一个只有白球的盒子里摸出一个球是白球B.任意买一张电影票,座位号是3的倍数C.掷一枚质地均匀的硬币,正面向上D.汽车走过一个红绿灯路口时,前方正好是绿灯8.一元二次方程x2﹣2x+1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定9.一次函数y=kx+b(k≠0)的图象经过点A(﹣3,0),点B(0,2),那么该图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限10.如图,在矩形ABCD中,AB=,BC=2,以点A为圆心,AD长为半径画弧交边BC于点E,连接AE,则的长为()A.B.πC.D.二、填空题(每小题3分,共18分)11.因式分解:2x2+x=.12.二元一次方程组的解是.13.甲、乙两人在相同条件下进行射击练习,每人10次射击成绩的平均值都是7环,方差分别为S甲2=2.9,S乙2=1.2,则两人成绩比较稳定的是(填“甲”或“乙”).14.如图,在平面直角坐标系中,O是坐标原点,在△OAB中,AO =AB,AC⊥OB于点C,点A在反比例函数y=(k≠0)的图象上,若OB=4,AC=3,则k的值为.15.如图,在平行四边形ABCD中,点M为边AD上一点,AM=2MD,点E,点F分别是BM,CM中点,若EF=6,则AM的长为.16.如图,在矩形ABCD中,AB=6,BC=B,对角线AC,BD相交于点O,点P为边AD 上一动点,连接OP,以OP为折痕,将△AOP折叠,点A的对应点为点E,线段PE与OD相交于点F.若△PDF为直角三角形,则DP的长为.三、解答题(第17小题6分,第18、19小题各8分,共22分)17.计算:2sin60°+(﹣)﹣2+(π﹣2020)0+|2﹣|.18.沈阳市图书馆推出“阅读沈阳书香盛京”等一系列线上线下相融合的阅读推广活动,需要招募学生志愿者.某校甲、乙两班共有五名学生报名,甲班一名男生,一名女生;乙班一名男生,两名女生.现从甲、乙两班各随机抽取一名学生作为志愿者,请用列表法或画树状图法求抽出的两名学生性别相同的概率.(温馨提示:甲班男生用A表示,女生用B表示;乙班男生用a表示,两名女生分别用b1,b2表示).19.如图,在矩形ABCD中,对角线AC的垂直平分线分别与边AB和边CD的延长线交于点M,N,与边AD交于点E,垂足为点O.(1)求证:△AOM≌△CON;(2)若AB=3,AD=6,请直接写出AE的长为.四、(每小题8分,共16分).20.某市为了将生活垃圾合理分类,并更好地回收利用,将垃圾分为可回收物、厨余垃圾、有害垃圾和其他垃圾四类.现随机抽取该市m吨垃圾,将调查结果制成如下两幅不完整的统计图:根据统计图提供的信息,解答下列问题:(1)m=,n=;(2)根据以上信息直接补全条形统计图;(3)扇形统计图中,厨余垃圾所对应的扇形圆心角的度数为度;(4)根据抽样调查的结果,请你估计该市2000吨垃圾中约有多少吨可回收物.21.某工程队准备修建一条长3000m的盲道,由于采用新的施工方式,实际每天修建盲道的长度比原计划增加25%,结果提前2天完成这一任务,原计划每天修建盲道多少米?五、(本题10分)22.如图,在△ABC中,∠ACB=90°,点O为BC边上一点,以点O为圆心,OB长为半径的圆与边AB相交于点D,连接DC,当DC为⊙O的切线时.(1)求证:DC=AC;(2)若DC=DB,⊙O的半径为1,请直接写出DC的长为.六、(本题10分)23.如图,在平面直角坐标系中,△AOB的顶点O是坐标原点,点A的坐标为(4,4),点B的坐标为(6,0),动点P从O开始以每秒1个单位长度的速度沿y轴正方向运动,设运动的时间为t秒(0<t<4),过点P作PN∥x轴,分别交AO,AB于点M,N.(1)填空:AO的长为,AB的长为;(2)当t=1时,求点N的坐标;(3)请直接写出MN的长为(用含t的代数式表示);(4)点E是线段MN上一动点(点E不与点M,N重合),△AOE和△ABE的面积分别表示为S1和S2,当t=时,请直接写出S1•S2(即S1与S2的积)的最大值为.七、(本题12分)24.在△ABC中,AB=AC,∠BAC=α,点P为线段CA延长线上一动点,连接PB,将线段PB绕点P逆时针旋转,旋转角为α,得到线段PD,连接DB,DC.(1)如图1,当α=60°时,①求证:P A=DC;②求∠DCP的度数;(2)如图2,当α=120°时,请直接写出P A和DC的数量关系.(3)当α=120°时,若AB=6,BP=,请直接写出点D到CP的距离为.八、(本题12分)25.如图1,在平面直角坐标系中,O是坐标原点,抛物线y=x2+bx+c经过点B(6,0)和点C(0,﹣3).(1)求抛物线的表达式;(2)如图2,线段OC绕原点O逆时针旋转30°得到线段OD.过点B作射线BD,点M是射线BD上一点(不与点B重合),点M关于x轴的对称点为点N,连接NM,NB.①直接写出△MBN的形状为;②设△MBN的面积为S1,△ODB的面积为是S2.当S1=S2时,求点M的坐标;(3)如图3,在(2)的结论下,过点B作BE⊥BN,交NM的延长线于点E,线段BE绕点B逆时针旋转,旋转角为α(0°<α<120°)得到线段BF,过点F作FK∥x轴,交射线BE于点K,∠KBF的角平分线和∠KFB的角平分线相交于点G,当BG=2时,请直接写出点G的坐标为.2020年辽宁省沈阳市中考数学试卷参考答案一.选择题(下列各题的备选答案中,只有一个答案是正确的.每小题2分,共20分)1.A;2.CD;3.D;4.C;5.B;6.A;7.A;8.B;9.D;10.C;二、填空题(每小题3分,共18分)11.x(2x+1);12.;13.乙;14.6;15.8;16.或1;三、解答题(第17小题6分,第18、19小题各8分,共22分)17.;18.;19.;。

2024年辽宁省沈阳市皇姑区中考数学调研试卷及参考答案

2024年辽宁省沈阳市皇姑区中考数学调研试卷及参考答案

2024年辽宁省沈阳市皇姑区中考数学调研试卷一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)若有意义,则a的值可以是()A.﹣1B.0C.2D.62.(3分)下列水平放置的几何体中,主视图是圆形的是()A.B.C.D.3.(3分)古典园林中的花窗通常利用对称构图,体现对称美.下面四个花窗图案,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.(3分)下列计算正确的是()A.2a﹣a=2B.(a2)3=a5C.a3÷a=a3D.a2•a4=a6 5.(3分)如图,转盘中四个扇形的面积都相等,任意转动这个转盘1次,当转盘停止转动时,指针落在灰色区域的概率是()A.B.C.D.6.(3分)已知2a2﹣a﹣3=0,则(2a+3)(2a﹣3)+(2a﹣1)2的值是()A.6B.﹣5C.﹣3D.47.(3分)在同一平面直角坐标系中,一次函数y1=ax+b(a≠0)与y2=mx+n(m≠0)的图象如图所示,则下列结论错误的是()A.y1随x的增大而增大B.b<nC.当x<2时,y1>y2D.关于x,y的方程组的解为8.(3分)元朝朱世杰所著的《算学启蒙》中,记载了这样一道题:良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之?其大意是:快马每天行240里,慢马每天行150里,慢马先行12天,快马几天可追上慢马?若设快马x天可追上慢马,由题意得()A.=B.=﹣12C.240(x﹣12)=150x D.240x=150(x+12)9.(3分)如图,在平面直角坐标系中,点A的坐标为(9,0),点C的坐标为(0,3),以OA,OC为边作矩形OABC.动点E,F分别从点O,B同时出发,以每秒1个单位长度的速度沿OA,BC向终点A,C移动.当移动时间为4秒时,AC•EF的值为()A.B.9C.15D.3010.(3分)如图,△ABC中,∠BAC=55°,将△ABC逆时针旋转α(0°<α<55°),得到△ADE,DE交AC于F.当α=40°时,点D恰好落在BC上,此时∠AFE等于()A.80°B.85°C.90°D.95°二、填空题(本题共5小题,每小题3分,共15分)11.(3分)因式分解:3ma2﹣6mab+3mb2=.12.(3分)方程x2﹣4x﹣m=0有两个相等的实数根,则m的值为.13.(3分)如图是平面直角坐标系中的一组直线,按此规律推断,第5条直线与x轴交点的横坐标是.14.(3分)如图,在直线l:y=x﹣4上方的双曲线y=(x>0)上有一个动点P,过点P 作x轴的垂线,交直线l于点Q,连接OP,OQ,则△POQ面积的最大值是.15.(3分)如图,将菱形纸片ABCD沿过点C的直线折叠,使点D落在射线CA上的点E 处,折痕CP交AD于点P.若∠ABC=30°,,则线段CA的长等于.三、解答题(本题共8小题,共75分,解答应写出文字说明、演算步骤或推理过程)16.(10分)计算.(1)计算:;(2)解不等式组:.17.(8分)某集团有限公司生产甲乙两种电子产品,准备销往东南亚国家和地区.已知2件甲种电子产品与3件乙种电子产品的销售额相同,3件甲种电子产品比2件乙种电子产品多销售1500元.求甲种电子产品与乙种电子产品销售单价各多少元?18.(8分)某初中学校为加强劳动教育,开设了劳动技能培训课程.为了解培训效果,学校对七年级320名学生在培训前和培训后各进行一次劳动技能检测,两次检测项目相同,评委依据同一标准进行现场评估,分成“合格”、“良好”、“优秀”3个等级,依次记为2分、6分、8分(比如,某同学检测等级为“优秀”,即得8分).学校随机抽取32名学生的2次检测等级作为样本,绘制成如图的条形统计图:(1)这32名学生在培训前得分的中位数对应等级应为;(填“合格”、“良好”或“优秀”)(2)求这32名学生培训后比培训前的平均分提高了多少?(3)利用样本估计该校七年级学生中,培训后检测等级为“良好”与“优秀”的学生人数之和是多少?19.(8分)如图①是某红色文化主题公园内的雕塑,将其抽象成如图②所示的示意图,已知点B,A,D,E在同一直线上,AB=AC=AD,测得BC=1.71m,DE=2m,∠B=55°.(1)连接CD,求证:∠BCD=90°;(2)求雕塑的高(即点E到直线BC的距离).(精确到0.1m,参考数据:sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)20.(8分)为推进全民健身设施建设,某体育中心准备改扩建一块运动场地.现有甲、乙两个工程队参与施工,具体信息如下:信息一工程队每天施工面积(单位:m2)每天施工费用(单位:元)甲x+3003600乙x2200信息二甲工程队施工1800m2所需天数与乙工程队施工1200m2所需天数相等.(1)求x的值;(2)该工程计划先由甲工程队单独施工若干天,再由乙工程队单独继续施工,两队共施工22天,且完成的施工面积不少于15000m2.该段时间内体育中心至少需要支付多少施工费用?21.(9分)如图,在△ABC中,∠ACB=90°,点D是AB上一点,且∠BCD=∠A,点O在BC上,以点O为圆心的圆经过C,D两点.(1)求证:AB是⊙O的切线;(2)若,⊙O的半径为3,求AC的长.22.(12分)△ABC中,∠BAC=90°,AB=2,AC=4.点P从点C出发,沿射线CA方向运动,速度为每秒1个单位长度,同时点Q以相同的速度从点B出发,沿射线BA方向运动.设运动时间为x(x≠2且x≠4)秒,△APQ的面积为S.(1)当0<x<2时,如图①,求S与x的函数关系式;(2)当2<x<4时,如图②,求S的最大值;(3)若在运动过程中,存在两个时刻x1,x2,对应的点P和点Q分别记为P1,P2和Q1,Q2,对应的△AP1Q1和ΔAP2Q2的面积分别记为S1和S2,且当CP1=P1P2时S1=S2,请求出x1的值.23.(12分)【问题初探】数学课上,老师提出如下问题:如图①,AD是△ABC的中线,M是AD的中点,BM的延长线交AC于N,求证:CN =2AN.经过思考,甲、乙两名同学分别给出如下解题思路:甲同学的思路:如图②,过点D作DK∥AC,交BM于点K,利用全等将AN与CN的数量关系转化为DK与CN之间的关系;乙同学的思路:如图③,过点A作BC的平行线交BM的延长线于点K,利用相似将AN 与CN的数量关系转化为AK与BC之间的关系.(1)请你选择一名同学的思路,写出证明过程;(2)【类比分析】老师发现两名同学都利用了转化思想.为了帮助同学更好地利用转化思想解决问题提出:如图④,在△ABC中,AD是BC边上的中线,N,K是AC的三等分点,BN交AD于M,BK交AD于P,求MP:PD的值.请你写出解答过程;(3)【学以致用】在△DEC中,ED=EC.在直线CD上取点B,使BC=2CD,连接BE,在线段BE上取点A,连接AC,直线AC交直线DE于F,当AB=AC时,求AF:FC的值.请你写出解答过程.2024年辽宁省沈阳市皇姑区中考数学调研试卷参考答案一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.D;2.C;3.C;4.D;5.C;6.D;7.C;8.D;9.D;10.B 二、填空题(本题共5小题,每小题3分,共15分)11.3m(a﹣b)2;12.﹣4;13.10;14.3;15.+﹣1三、解答题(本题共8小题,共75分,解答应写出文字说明、演算步骤或推理过程)16.(1)3;(2)x<1.;17.甲种电子产品的销售单价是900元,乙种电子产品的销售单价是600元.;18.合格;19.(1)证明见解答;(2)雕塑的高约为4.1m.;20.(1)x的值为600;(2)该段时间内体育中心至少需要支付56800元施工费用.;21.(1)见解析;(2)6.;22.(1)S=x2﹣3x+4(0<x<2);(2)S的最大值为:;(3)x1=.;23.(1)证明见解析;(2);(3)或.。

2020年辽宁省沈阳市中考数学试卷(含详细解析)

2020年辽宁省沈阳市中考数学试卷(含详细解析)
(1)如图,当 时,
①求证: ;
②求 的度数:
(2)如图2,当 时,请直接写出 和 的数量关系为__________;
(3)当 时,若 时,请直接写出点 到 的距离为__________.
25.如图,在平面直角坐标系中, 是坐标原点,抛物线 经过点 和点 ,
(1)求抛物线的表达式;
(2)如图,线段 绕原点 逆时针旋转30°得到线段 .过点 作射线 ,点 是射线 上一点(不与点 重合),点 关于 轴的对称点为点 ,连接
22.如图,在 中, ,点 为 边上一点,以点 为圆心, 长为半径的圆与边 相交于点 ,连接 ,当 为 的切线时.
(1)求证: ;
(2)若 的半径为1,请直接写出 的长为__________.
23.如图,在平面直角坐标系中, 的顶点 是坐标原点,点 的坐标为 ,点 的坐标为 ,动点 从 开始以每秒1个单位长度的速度沿 轴正方向运动,设运动的时间为t秒( ),过点 作 轴,分别交 于点 , .
C.没有实数根D.无法确定
9.一次函数 的图象经过点 ,点 ,那么该图象不经过的象限是( )
A.第一象限B.第二象限
C.第三象限D.第四象限
10.如图,在矩形 中, , ,以点 为圆心, 长为半径画弧交边 于点 ,连接 ,则 的长为( )
A. B. C. D.
评卷人
得分
二、填空题
11.因式分解: __________.
19.如图,在矩形 中,对角线 的垂直平分线分别与边 和边 的延长线交于点 , ,与边 交于点 ,垂足为点 .
(1)求证: ;
(2)若 , ,请直接写出 的长为__________.
20.某市为了将生活垃圾合理分类,并更好地回收利用,将垃圾分为可回收物、厨余垃圾、有害垃圾和其他垃圾四类.现随机抽取该市 吨垃圾,将调查结果制成如下两幅不完整的统计图:

2020年辽宁省沈阳市中考数学试卷(含详细解析)

2020年辽宁省沈阳市中考数学试卷(含详细解析)

正面4・下列运算正确的是()A. a 2+ci =a 5B. a~ ∙a^ = a ,'C. (2町=&/'D. a' ÷a = a'5・如图,Ma ABIlCD ,且AC 丄CB 于点C,若Z^AC = 35°.则ZBCD 的度数为保密★启用前 2020年辽宁省沈阳市中考数学试卷题号 一 二三总分得分注意事项: 1.答题前填写好自己的姓需、班级、考号等信息 2 •请将答案正确填写在答题卡上 评卷人 得分一、单选题1.下列有理数中,比0小的数是( A. -2 ) C ・2 D ・3 2・2020年5月,中科院沈阳自动化所主持研制的“海斗一号”万米海试成功,下潜深 度超10900米,刷新我国潜水器最大下潜深度记录.将数据10900用科学记数法表示为 ( ) A. 1.09×103 B. 1.09XlO 4 C. 10.9×105 D. 0.109XlO 53・下图是由四个相同的小立方块搭成的几何体,这个几何体的主视图是( )A. 65oB. 55oC. 45o 6・不等式2x≤6的解集是()A. χ≤3 B. χ≥3 C. χ<3D. 35°D. χ>37・下列事件中,是必然事件的是()A・从一个只有白球的盒子里摸出一个球是白球B.任意买一张电影票,座位号是3的倍数C・掷一枚质地均匀的硬币,正而向上D.汽车泄过一个红绿灯路口时,前方正好是绿灯8. 一元二次方程X2-2Λ +1= O的根的情况是()A・有两个不相等的实数根C.没有实数根B.有两个相等的实数根D.无法确上9. 一次函数y = kx+b伙HO)的图象经过点A(-3,0),点3(0,2),那么该图象不经过的象限是()A.第一象限C・第三象限B.第二象限D.第四彖限10.如图,在矩形ABCD中,AB = y∕3. BC = I9以点A为圆心,AD长为半径画弧交边3C于点连接AE^则DE的长为()B. π评卷人得分二、填空题11・因式分解:lχ2+χ=_______________∙∙∙O,Ll•••••…熬. ........O…※※国※※他※※-E※※垃※※⅛※※煞※※灼※※张※※÷※※≡※※…O.....亠令・:•x+ y = 512. 二元一次方程组{c 'I尙勺解是 ____________ C2x-y = 113. 甲、乙两人在相同条件下进行射击练习,每人10次射击成绩的平均值都是7环,方差分别为⅛=2.9,S2=1.2,则两人成绩比较稳定的是 ______________________ .(填“甲”或 “乙”)14. 如图,在平而直角坐标系中,O 是坐标原点,在A Q4B 中,AO = AB, AC 丄OB于点C,点人在反比例函数y =-伙Ho )的图象上,若OB=4, AC=3,则R 的值为 X16.如图,在矩形ABCD 中,AB = G. BC = B.对角线AcBD 相交于点0,点P 为边AQ 上一动点,连接0P ,以OP 为折痕,将MOP 折叠,点A 的对应点为点E ,线段PE 与OD 相交于点F ・若为直角三角形,则DP 的长 ____________________________ ・c>评卷人得分F 分别是3M,CM 中点,若EF = 6,则AM 的长为 ________________________三.解答题∙∙• •17.计算:2sin60°+(-* +(^-2020)"+∣2-√3∣18.沈阳市图书馆推岀“阅读沈阳书香盛京”等一系列线上线下相融合的阅读推广活动,需要招募学生志愿者.某校甲、乙两班共有五划学生报冬,甲班一需男生,一需女生:乙班一名男生,两划女生.现从甲、乙两班各随机抽取一名学生作为志愿者,请用列表法或画树状图法求抽出的两名学生性別相同的槪率.(温馨提示:甲班男生用A表示,女生用3表示;乙班男生用α表示,两名女生分别用勺,6表示)19.如图,在矩形ABCD中,对角线AC的垂直平分线分别与边AB和边CD的延长线交于点M , N ,与边AD交于点E,垂足为点0.(1)求证:ΛAOM ^ΛCON:20.某市为了将生活垃圾合理分类,并更好地回收利用,将垃圾分为可回收物、厨余垃圾、有害垃圾和其他垃圾四类.现随机抽取该市加吨垃圾,将调査结果制成如下两幅不完整的统计图:各类垃圾数里的扇形统计图各类垃熾里的条形统计图•…報…••……•・:躱…・・∙∙∙・•・••・•・∙∙・∙∙・・•…報…••…-S…••∙••••・•∙・•・・∙⅛....O•…熬. .............O……O..........W…•根据统计图提供的信息,解答下列问题:(1) ___________ 冊= _______________ , H= ; (2) 根据以上信息直接在答题卡中补全条形统计图;(3) ____________________________________________________ 扇形统计图中,厨余垃圾所对应的扇形圆心角的度数为 ________________________________________________ 度:(4) 根据抽样调査的结果,请你估计该市200吨垃圾中约有多少吨可回收物. 21.某工程队准备修建一条长3000加的盲道,由于采用新的施工方式,实际每天修建 盲道的长度比原计划增加25%,结果提前2天完成这一任务,原计划每天修建盲道多少 米?22. 如图,在A A3C 中,ZACB = 90。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

辽宁省沈阳市中考数学试卷及答案
一、选择题(下列各题的备选答案中,只有一个答案是正确的,将正确答案的序号填入题后的括号内.每小题2 分,共20 分)
1.在下列各组根式中,是同类二次根式的是()
2.在平面直角坐标系中,点P(-1,1)关于x 轴的对称点在()
A.第一象限B.第二象限C.第三象限D.第四象限
3.已知⊙O 1和⊙O 2的半径分别为1 和5,圆心距为3,则两圆的位置关系是()A.相交B.内含C.内切D.外切
4.在下面四种正多边形中,用同一种图形不能平面镶嵌的是()
5.已知2 是关于x 的方程的一个根,则2a- 1的值是()
A.3 B.4 C.5 D.6
6.关于x 的方程有两个不相等的实数根,则k 的取值范围是()A.k>-1 B.k≥-1 C.k>1 D.k≥0
7.如图,在同心圆中,两圆半径分别为2、1,∠AOB=120°,则阴影部分的
面积为()
A.4π B.2π C.D.π
8.已知一次函数y=kx+b 的图象经过第一、二、四象限,则反比例函数的图象在A.第一、二象限B.第三、四象限()
C.第一、三象限D.第二、四象限
9.已知圆锥的侧面展开图的面积是15π cm 2,母线长是5cm,则圆锥的底面半径为()A.3/2cm B.3cm C.4cm D.6cm
10.如图,射线l 甲、l 乙分别表示甲、乙两名运动员在自行车比赛中所走路程与时间的函数关系,则他们行进的速度关系是()
A.甲比乙快B.乙比甲快C.甲、乙同速D.不一定
二、填空题(每小题2 分,共20 分)
11.在函数中,自变量x 的取值范围是_______________ .
12.若方程的两根分别为
13.一组数据9,5,7,8,6,8 的众数和中位数依次是_______________ .
14.如图,AB 是⊙O 的直径,弦CD⊥AB,E 为垂足,若AB=9,BE=1,则CD=________.15.如果一个正多边形的内角和是900°,则这个多边形是正______边形.
16.已知圆的直径为13cm,圆心到直线l 的距离为6cm,那么直线l 和这个圆的公共点的个数是____________.
17.用换元法解方程,若设,则原方程可化成关
于y 的整式方程为__________.
18.如图,在△ABC 中,∠C=90°,AB=10,AC=8,以AC 为直径作
圆与斜边交于点P,则BP 的长为__________ .
19.如图,施工工地的水平地面上,有三根外径都是1 米的水泥管,两两
相切地堆放在一起,则其最高点到地面的距离是__________.
20.在半径为1 的⊙O 中,弦AB、AC 分别是3和2 ,则∠BAC的度
数为__________.
三、(第21 题6 分,第22 题6 分,第23 题10 分,共22 分)
21.当x=2,y=3 时,求代数式的值.
22.如图,已知:AB.
求作:(1)确定AB 的圆心O.
(2)过点A 且与⊙O 相切的直线.
(注:作图要求利用直尺和圆规,不写作法,但要求保留作图痕迹)
23.为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有900 名学生参加了这次竞赛.为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取正整数,满分为100 分)进行统计.请你根据下面尚未完成并有局部污损的频率分布表和频率分布直方图,解答下列问题:
(1)填充频率分布表中的空格;
(2)补全频率分布直方图;
(3)在该问题中的样本容量是多少?
答:_____________________________________________ .
(4)全体参赛学生中,竞赛成绩落在哪组范围内的人数最多?(不要求说明理由)
答:_____________________________________________ .
(5)若成绩在90 分以上(不含90 分)为优秀,则该校成绩优秀的约为多少人?
答:_____________________________________________ .
四、(10 分)
24.如图,山上有一座铁塔,山脚下有一矩形建筑物ABCD,且建筑物周围没有开阔平整地带.该建筑物顶端宽度AD 和高度DC 都可直接测得,从A、D、C 三点可看到塔顶端H.可供使用的测量工具有皮尺、测倾器.
(1)请你根据现有条件,充分利用矩形建筑物,设计一个测量塔顶端到地面高度HG 的方案.具体要求如下:
①测量数据尽可能少;
②在所给图形上,画出你设计的测量平面图,并将应测数据标记在图形上(如果测A、D 间距离,用m 表示;如果测D、C 间距离,用n 表示;如果测角,用α、β、γ 表示).(2)根据你测量的数据,计算塔顶端到地面的高度HG(用字母表示,测倾器高度忽略不计).
五、(10 分)
25.某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过程.下面的二次函数图象(部分)刻画了该公司年初以来累积利润s(万元)与销售时间t (月)之间的关系(即前t 个月的利润总和s 与t 之间的关系).
根据图象提供的信息,解答下列问题:
(1)由已知图象上的三点坐标,求累积利润s(万元)与时间t(月)之间的函数关系式;(2)求截止到几月末公司累积利润可达到30 万元;
(3)求第8 个月公司所获利润是多少万元?
六、(12 分)
26.某博物馆每周都吸引大量中外游客前来参观.如果游客过多,对馆中的珍贵文物会产生不利影响.但同时考虑到文物的修缮和保存费用问题,还要保证一定的门票收入.因此,博物馆采取了涨浮门票价格的方法来控制参观人数.在该方法实施过程中发现:每周参观人数与票价之间存在着如图所示的一次函数关系.在这样的情况下,如果确保每周 4 万元的门票收入,那么每周应限定参观人数是多少?门票价格应是多少元?
七、(12 分)
27.(1)如图(a),已知直线AB 过圆心O,交⊙O 于A、B,直线AF 交⊙O 于F (不与B 重合),直线l 交⊙O 于C、D,交AB 于E,且与AF 垂直,垂足为G,连结AC、AD.
求证:①∠BAD=∠CAG;②AC·AD=AE·AF.
(2)在问题(1)中,当直线l 向上平行移动,与⊙O 相切时,其他条件不变.
①请你在图(b)中画出变化后的图形,并对照图(a),标记字母;
②问题(1)中的两个结论是否成立?如果成立,请给出证明
八、(14 分)
28.已知:如图,⊙D 交y 轴于A、B,交x 轴于C,过点C 的直线:
与y 轴交于P.
(1)求证:PC 是⊙D 的切线;
(2)判断在直线PC 上是否存在点E,使得S △ EOP=4S △ CDO,若存在,求出点E 的坐标;若不存在,请说明理由;
(3)当直线PC 绕点P 转动时,与劣弧交于点F(不与A、C 重合),连结OF,设
PF=m,OF=n,求m、n 之间满足的函数关系式,并写出自变量n 的取值范围.。

相关文档
最新文档