辽宁省沈阳市中考数学试卷全版及答案

合集下载

2022年辽宁省沈阳市中考数学试卷和答案

2022年辽宁省沈阳市中考数学试卷和答案

2022年辽宁省沈阳市中考数学试卷和答案一、选择题(下列各题的备选答案中,只有一个答案是正确的.每小题2分,共20分)1.(2分)计算5+(﹣3),结果正确的是()A.2B.﹣2C.8D.﹣82.(2分)如图是由4个相同的小立方体搭成的几何体,这个几何体的主视图是()A.B.C.D.3.(2分)下列计算结果正确的是()A.(a3)3=a6B.a6÷a3=a2C.(ab4)2=ab8D.(a+b)2=a2+2ab+b24.(2分)在平面直角坐标系中,点A(2,3)关于y轴对称的点的坐标是()A.(﹣2,﹣3)B.(﹣2,3)C.(2,﹣3)D.(﹣3,﹣2)5.(2分)调查某少年足球队全体队员的年龄,得到数据结果如下表:年龄/岁1112131415人数34722则该足球队队员年龄的众数是()A.15岁B.14岁C.13岁D.7人6.(2分)不等式2x+1>3的解集在数轴上表示正确的是()A.B.C.D.7.(2分)如图,在Rt△ABC中,∠A=30°,点D、E分别是直角边AC、BC的中点,连接DE,则∠CED的度数是()A.70°B.60°C.30°D.20°8.(2分)在平面直角坐标系中,一次函数y=﹣x+1的图象是()A.B.C.D.9.(2分)下列说法正确的是()A.了解一批灯泡的使用寿命,应采用抽样调查的方式B.如果某彩票的中奖概率是1%,那么一次购买100张这种彩票一定会中奖C.若甲、乙两组数据的平均数相同,S甲2=2.5,S乙2=8.7,则乙组数据较稳定D.“任意掷一枚质地均匀的骰子,掷出的点数是7”是必然事件10.(2分)如图,一条河的两岸互相平行,为了测量河的宽度PT(PT 与河岸PQ垂直),测量得P,Q两点间距离为m米,∠PQT=α,则河宽PT的长为()A.msinαB.mcosαC.mtanαD.二、填空题(每小题3分,共18分)11.(3分)因式分解:ay2+6ay+9a=.12.(3分)二元一次方程组的解是.13.(3分)化简:(1﹣)•=.14.(3分)如图,边长为4的正方形ABCD内接于⊙O,则的长是(结果保留π).15.(3分)如图,四边形ABCD是平行四边形,CD在x轴上,点B 在y轴上,反比例函数y=(x>0)的图象经过第一象限点A,且▱ABCD的面积为6,则k=.16.(3分)如图,将矩形纸片ABCD折叠,折痕为MN,点M,N 分别在边AD,BC上,点C,D的对应点分别为点E,F,且点F 在矩形内部,MF的延长线交边BC于点G,EF交边BC于点H.EN =2,AB=4,当点H为GN的三等分点时,MD的长为.三、答案题(第17小题6分,第18、19小题各8分,共22分)17.(6分)计算:﹣3tan30°+()﹣2+|﹣2|.18.(8分)为了调动同学们学习数学的积极性,班内组织开展了“数学小先生”讲题比赛,老师将四道备讲题的题号1,2,3,4,分别写在完全相同的4张卡片的正面,将卡片背面朝上洗匀.(1)随机抽取一张卡片,卡片上的数字是“4”的概率是;(2)小明随机抽取两张卡片,用画树状图或列表的方法求两张卡片上的数字是“2”和“3”的概率.19.(8分)如图,在△ABC中,AD是△ABC的角平分线,分别以点A,D为圆心,大于AD的长为半径作弧,两弧交于点M,N,作直线MN,分别交AB,AD,AC于点E,O,F,连接DE,DF.(1)由作图可知,直线MN是线段AD的.(2)求证:四边形AEDF是菱形.四、(每小题8分,共16分)20.(8分)某校积极落实“双减”政策,将要开设拓展课程.为让学生可以根据自己的兴趣爱好选择最喜欢的课程,进行问卷调查,问卷设置以下四种选项:A(综合模型)、B(摄影艺术)、C(音乐鉴赏)、D(劳动实践),随机抽取了部分学生进行调查,每名学生必须且只能选择其中最喜欢的一种课程,并将调查结果整理绘制成如下不完整的统计图.根据以上信息,答案下列问题:(1)此次被调查的学生人数为名;(2)直接在答题卡中补全条形统计图;(3)求拓展课程D(劳动实践)所对应的扇形的圆心角的度数;(4)根据抽样调查结果,请你估计该校800名学生中,有多少名学生最喜欢C(音乐鉴赏)拓展课程.21.(8分)如图,用一根60厘米的铁丝制作一个“日”字型框架ABCD,铁丝恰好全部用完.(1)若所围成的矩形框架ABCD的面积为144平方厘米,则AB 的长为多少厘米?(2)矩形框架ABCD面积的最大值为平方厘米.五、(本题10分)22.(10分)如图,四边形ABCD内接于⊙O,AD是⊙O的直径,AD,BC的延长线交于点E,延长CB交PA于点P,∠BAP+∠DCE=90°.(1)求证:PA是⊙O的切线;(2)连接AC,sin∠BAC=,BC=2,AD的长为.六、(本题10分)23.(10分)如图,在平面直角坐标系中,一次函数y=kx+b的图象与x轴交于点A,与y轴交于点B(0,9),与直线OC交于点C (8,3).(1)求直线AB的函数表达式;(2)过点C作CD⊥x轴于点D,将△ACD沿射线CB平移得到的三角形记为△A′C′D′,点A,C,D的对应点分别为A′,C′,D′,若△A′C′D′与△BOC重叠部分的面积为S,平移的距离CC′=m,当点A′与点B重合时停止运动.①若直线C′D′交直线OC于点E,则线段C′E的长为(用含有m的代数式表示);②当0<m<时,S与m的关系式为;③当S=时,m的值为.七、(本题12分)24.(12分)【特例感知】(1)如图1,△AOB和△COD是等腰直角三角形,∠AOB=∠COD=90°,点C在OA上,点D在BO的延长线上,连接AD,BC,线段AD与BC的数量关系是;【类比迁移】(2)如图2,将图1中的△COD绕着点O顺时针旋转α(0°<α<90°),那么第(1)问的结论是否仍然成立?如果成立,证明你的结论;如果不成立,说明理由.【方法运用】(3)如图3,若AB=8,点C是线段AB外一动点,AC=3,连接BC.①若将CB绕点C逆时针旋转90°得到CD,连接AD,则AD的最大值是;②若以BC为斜边作Rt△BCD(B,C,D三点按顺时针排列),∠CDB=90°,连接AD,当∠CBD=∠DAB=30°时,直接写出AD的值.八、(本题12分)25.(12分)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3经过点B(6,0)和点D(4,﹣3),与x轴的另一个交点为A,与y轴交于点C,作直线AD.(1)①求抛物线的函数表达式;②直接写出直线AD的函数表达式;(2)点E是直线AD下方的抛物线上一点,连接BE交AD于点F,连接BD,DE,△BDF的面积记为S1,△DEF的面积记为S2,当S1=2S2时,求点E的坐标;(3)点G为抛物线的顶点,将抛物线图象中x轴下方的部分沿x 轴向上翻折,与抛物线剩下的部分组成新的曲线记为C1,点C的对应点为C′,点G的对应点为G′,将曲线C1沿y轴向下平移n个单位长度(0<n<6).曲线C1与直线BC的公共点中,选两个公共点记作点P和点Q,若四边形C′G′QP是平行四边形,直接写出点P的坐标.答案一、选择题(下列各题的备选答案中,只有一个答案是正确的.每小题2分,共20分)1.【知识点】有理数的加法.【答案】解:5+(﹣3)=2,故选:A.2.【知识点】简单组合体的三视图.【答案】解:从正面看,底层有2个正方形,上层左边有1个正方形,故选:D.3.【知识点】完全平方公式;幂的乘方与积的乘方;同底数幂的除法.【答案】解:A.(a3)3=a9,因此选项A不符合题意;B.a6÷a3=a6﹣3=a3,因此选项B 不符合题意;C.(ab4)2=a2b8,因此选项C不符合题意;D.(a+b)2=a2+2ab+b2,因此选项D符合题意;故选:D.4.【知识点】关于x轴、y轴对称的点的坐标.【答案】解:点A(2,3)关于y轴的对称点坐标为(﹣2,3).故选:B.5.【知识点】众数.【答案】解:该足球队队员年龄13岁出现的次数最多,故众数为13岁.故选:C.6.【知识点】在数轴上表示不等式的解集.【答案】解:不等式2x+1>3的解集为:x>1,故选:B.7.【知识点】三角形中位线定理.【答案】解:在Rt△ABC中,∠A=30°,则∠B=90°﹣∠A=60°,∵D、E分别是边AC、BC的中点,∴DE是△ABC的中位线,∴DE∥AB,∴∠CED=∠B=60°,故选:B.8.【知识点】一次函数的图象.【答案】解:一次函数y=﹣x+1中,令x=0,则y=1;令y=0,则x=1,∴一次函数y=﹣x+1的图象经过点(0,1)和(1,0),∴一次函数y=﹣x+1的图象经过一、二、四象限,故选:C.9.【知识点】随机事件;全面调查与抽样调查;方差.【答案】解:A.了解一批灯泡的使用寿命,应采用抽样调查的方式,是正确的,因此选项A符合题意;B.如果某彩票的中奖概率是1%,那么一次购买100张这种彩票也不一定会中奖,因此选项B不符合题意;C.若甲、乙两组数据的平均数相同,S甲2=2.5,S乙2=8.7,则甲组数据较稳定,因此选项C不符合题意;D.“任意掷一枚质地均匀的骰子,掷出的点数是7”是不可能事件,因此选项D不符合题意;故选:A.10.【知识点】解直角三角形的应用.【答案】解:由题意得:PT⊥PQ,∴∠APQ=90°,在Rt△APQ中,PQ=m米,∠PQT=α,∴PT=PQ•tanα=mtanα(米),∴河宽PT的长度是mtanα米,故选:C.二、填空题(每小题3分,共18分)11.【知识点】提公因式法与公式法的综合运用.【答案】解:ay2+6ay+9a=a(y2+6y+9)=a(y+3)2.故答案为:a(y+3)2.12.【知识点】解二元一次方程组.【答案】解:,将②代入①,得x+4x=5,解得x=1,将x=1代入②,得y=2,∴方程组的解为,故答案为:.13.【知识点】分式的混合运算.【答案】解:(1﹣)•===x﹣1,故答案为:x﹣1.14.【知识点】弧长的计算;圆内接四边形的性质.【答案】解:连接OA、OB.∵正方形ABCD内接于⊙O,∴AB=BC=DC=AD,∴===,∴∠AOB=×360°=90°,在Rt△AOB中,由勾股定理得:2AO2=42,解得:AO=2,∴的长==π,故答案为:π.15.【知识点】反比例函数系数k的几何意义;反比例函数图象上点的坐标特征;平行四边形的性质;反比例函数的性质.【答案】解:作AE⊥CD于E,如图,∵四边形ABCD为平行四边形,∴AB∥x轴,∴四边形ABOE为矩形,∴S平行四边形ABCD=S矩形ABOE=6,∴|k|=6,而k>0,∴k=6.故答案为:6.16.【知识点】翻折变换(折叠问题);矩形的性质.【答案】解:当HN=GN时,GH=2HN,∵将矩形纸片ABCD折叠,折痕为MN,∴MF=MD,CN=EN,∠E=∠C=∠D=∠MFE=90°,∠DMN =∠GMN,AD∥BC,∴∠GFH=90°,∠DMN=∠MNG,∴∠GMN=∠MNG,∴MG=NG,∵∠GFH=∠E=90°,∠FHG=∠EHN,∴△FGH∽△ENH,∴==2,∴FG=2EN=4,过点G作GP⊥AD于点P,则PG=AB=4,设MD=MF=x,则MG=GN=x+4,∴CG=x+6,∴PM=6,∵GP2+PM2=MG2,∴42+62=(x+4)2,解得:x=2﹣4,∴MD=2﹣4;当GH=GN时,HN=2GH,∵△FGH∽△ENH,∴==,∴FG=EN=1,∴MG=GN=x+1,∴CG=x+3,∴PM=3,∵GP2+PM2=MG2,∴42+32=(x+1)2,解得:x=4,∴MD=4;故答案为:2﹣4或4.三、答案题(第17小题6分,第18、19小题各8分,共22分)17.【知识点】实数的运算;负整数指数幂;特殊角的三角函数值.【答案】解:原式=2﹣3×+4+2﹣=2﹣+4+2﹣=6.18.【知识点】列表法与树状图法;概率公式.【答案】解:(1)由题意得,随机抽取一张卡片,卡片上的数字是“4”的概率是.故答案为:.(2)画树状图如下:共有12种等可能的结果,其中两张卡片上的数字是“2”和“3”的结果有2种,∴小明随机抽取两张卡片,两张卡片上的数字是“2”和“3”的概率为.19.【知识点】作图—基本作图;线段垂直平分线的性质;菱形的判定.【答案】(1)解:根据作法可知:MN是线段AD的垂直平分线;故答案为:垂直平分线;(2)证明:∵MN是AD的垂直平分线,∴AF=DF,AE=DE,∴∠FAD=∠FDA,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠FDA=∠BAD,∴DF∥AB,同理DE∥AF,∴四边形AEDF是平行四边形,∵FA=FD,∴四边形AEDF为菱形.四、(每小题8分,共16分)20.【知识点】条形统计图;用样本估计总体;扇形统计图.【答案】解:(1)此次被调查的学生人数为:12÷10%=120(名),故答案为:120;(2)选择B的学生有:120﹣12﹣48﹣24=36(名),补全的条形统计图如图所示;(3)360°×=72°,即拓展课程D(劳动实践)所对应的扇形的圆心角的度数是72°;(3)800×=320(名),答:估计该校800名学生中,有320名学生最喜欢C(音乐鉴赏)拓展课程.21.【知识点】二次函数的应用;一元二次方程的应用.【答案】解:(1)设框架的长AD为xcm,则宽AB为cm,∴x•=144,解得x=12或x=18,∴AB=12cm或AB=8cm,∴AB的长为12厘米或8厘米;(2)由(1)知,框架的长AD为xcm,则宽AB为cm,∴S=x•,即S=﹣x2+20x=﹣(x﹣15)2+150,∵﹣<0,∴要使框架的面积最大,则x=15,此时AB=10,最大为150平方厘米.故答案为:150.五、(本题10分)22.【知识点】切线的判定与性质;解直角三角形;圆周角定理.【答案】(1)证明:∵四边形ABCD是⊙O的内接四边形,∴∠BAD+∠BCD=180°,∵∠BCD+∠DCE=180°,∴∠BAD=∠DCE,∵∠BAP+∠DCE=90°,∴∠BAP+∠BAD=90°,∴∠OAP=90°,∵OA是⊙O的半径,∴PA是圆O的切线;(2)连接BO并延长交⊙O于点F,连接CF,∵BF是⊙O的直径,∴∠BCF=90°,∵∠BAC=∠F,∴sin∠BAC=sinF=,在Rt△BCF中,BC=2,∴BF===6,∴AD=BF=6,故答案为:6.六、(本题10分)23.【知识点】一次函数综合题.【答案】解:(1)将点B(0,9),C(8,3)的坐标代入直线y =kx+b,∴,解得.∴直线AB的函数表达式为:y=﹣x+9;(2)①由(1)知直线AB的函数表达式为:y=﹣x+9,令y=0,则x=12,∴A(12,0),∴OA=12,OB=9,∴AB=15;如图1,过点C作CF⊥C′D′于点F,∴CF∥OA,∴∠OAB=∠FCC′,∵∠C′FC=∠BOA=90°,∴△CFC′∽△AOB,∴OB:OA:AB=C′F:CF:CC′=9:12:15,∵CC′=m,∴CF=m,C′F=m,∴C′(8﹣m,3+m),A′(12﹣m,m),D′(8﹣m,m),∵C(8,3),∴直线OC的解析式为:y=x,∴E(8﹣m,3﹣m).∴C′E=3+m﹣(3﹣m)=m.故答案为:m.②当点D′落在直线OC上时,有m=(8﹣m),解得m=,∴当0<m<时,点D′未到直线OC,此时S=C′E•CF=•m•m=m2;故答案为:m2.③分情况讨论,当0<m<时,由②可知,S=m2;令S=m2=,解得m=>(舍)或m=﹣(舍);当≤m<5时,如图2,设线段A′D′与直线OC交于点M,∴M(m,m),∴D′E=m﹣(3﹣m)=m﹣3,D′M=m﹣(8﹣m)=m﹣8;∴S=m2﹣•(m﹣3)•(m﹣8)=﹣m2+m﹣12,令﹣m2+m﹣12=;整理得,3m2﹣30m+70=0,解得m=或m=>5(舍);当5≤m<10时,如图3,S=S△A′C′D′=×4×3=6≠,不符合题意;当10≤m<15时,如图4,此时A′B=15﹣m,∴BN=(15﹣m),A′N=(15﹣m),∴S=•(15﹣m)•(15﹣m)=(15﹣m)2,令(15﹣m)2=,解得m=15+2>15(舍)或m=15﹣2.故答案为:或15﹣2.七、(本题12分)24.【知识点】几何变换综合题.【答案】解:(1)AD=BC.理由如下:如图1,∵△AOB和△COD是等腰直角三角形,∠AOB=∠COD =90°,∴OA=OB,OD=OC,在△AOD和△BOC中,,∴△AOD≌△BOC(SAS),∴AD=BC,故答案为:AD=BC;(2)AD=BC仍然成立.证明:如图2,∵∠AOB=∠COD=90°,∴∠AOB+∠AOC=∠AOC+∠COD=90°+α,即∠BOC=∠AOD,在△AOD和△BOC中,,°∴△AOD≌△BOC(SAS),∴AD=BC;(3)①过点A作AT⊥AB,使AT=AB,连接BT,AD,DT,BD,∵△ABT和△CBD都是等腰直角三角形,∴BT=AB,BD=BC,∠ABT=∠CBD=45°,∴==,∠ABC=∠TBD,∴△ABC∽△TBD,∴==,∴DT=AC=×3=3,∵AT=AB=8,DT=3,∴点D的运动轨迹是以T为圆心,3为半径的圆,∴当D在AT的延长线上时,AD的值最大,最大值为8+3,故答案为:8+3;②如图4,在AB上方作∠ABT=30°,过点A作AT⊥BT于点T,连接AD、BD、DT,过点T作TH⊥AD于点H,∵==cos30°=,∠ABC=∠TBD=30°+∠TBC,∴△BAC∽△BTD,∴==,∴DT=AC=×3=,在Rt△ABT中,AT=AB•sin∠ABT=8sin30°=4,∵∠BAT=90°﹣30°=60°,∴∠TAH=∠BAT﹣∠DAB=60°﹣30°=30°,∵TH⊥AD,∴TH=AT•sin∠TAH=4sin30°=2,AH=AT•cos∠TAH=4cos30°=2,在Rt△DTH中,DH===,∴AD=AH+DH=2+;如图5,在AB上方作∠ABE=30°,过点A作AE⊥BE于点E,连接DE,则==cos30°=,∵∠EBD=∠ABC=∠ABD+30°,∴△BDE∽△BCA,∴==,∴DE=AC=×3=,∵∠BAE=90°﹣30°=60°,AE=AB•sin30°=8×=4,∴∠DAE=∠DAB+∠BAE=30°+60°=90°,∴AD===;综上所述,AD的值为2+或.八、(本题12分)25.【知识点】二次函数综合题.【答案】解:(1)①∵抛物线y=ax2+bx﹣3经过点B(6,0)和点D(4,﹣3),∴,解得:,∴抛物线的函数表达式为y=x2﹣x﹣3;②由①得y=x2﹣x﹣3,当y=0时,x2﹣x﹣3=0,解得:x1=6,x2=﹣2,∴A(﹣2,0),设直线AD的函数表达式为y=kx+d,则,解得:,∴直线AD的函数表达式为y=x﹣1;(2)设点E(t,t2﹣t﹣3),F(x,y),过点E作EM⊥x轴于点M,过点F作FN⊥x轴于点N,如图1,∵S1=2S2,即=2,∴=2,∴=,∵EM⊥x轴,FN⊥x轴,∴EM∥FN,∴△BFN∽△BEM,∴===,∵BM=6﹣t,EM=﹣(t2﹣t﹣3)=﹣t2+t+3,∴BN=(6﹣t),FN=(﹣t2+t+3),∴x=OB﹣BN=6﹣(6﹣t)=2+t,y=﹣(﹣t2+t+3)=t2﹣t﹣2,∴F(2+t,t2﹣t﹣2),∵点F在直线AD上,∴t2﹣t﹣2=﹣(2+t)﹣1,解得:t1=0,t2=2,∴E(0,﹣3)或(2,﹣4);(3)∵y=x2﹣x﹣3=(x﹣2)2﹣4,∴顶点坐标为G(2,﹣4),当x=0时,y=3,即点C (0,﹣3),∴点C′(0,3),G′(2,4),∴向上翻折部分的图象解析式为y=﹣(x﹣2)2+4,∴向上翻折部分平移后的函数解析式为y=﹣(x﹣2)2+4﹣n,平移后抛物线剩下部分的解析式为y=(x﹣2)2﹣4﹣n,设直线BC的解析式为y=k′x+d′(k′≠0),把点B(6,0),C(0,﹣3)代入得:,解得:,∴直线BC的解析式为y=x﹣3,同理直线C′G′的解析式为y=x+3,∴BC∥C′G′,设点P的坐标为(s,s﹣3),∵点C′(0,3),G′(2,4),∴点C′向右平移2个单位,再向上平移1个单位得到点G′,∵四边形C′G′QP是平行四边形,∴点Q(s+2,s﹣2),当点P,Q均在向上翻折部分平移后的图象上时,则,解得:(不符合题意,舍去),当点P在向上翻折部分平移后的图象上,点Q在平移后抛物线剩下部分的图象上时,则,解得:或(不合题意,舍去),当点P在平移后抛物线剩下部分的图象上,点Q在向上翻折部分平移后的图象上时,则,解得:或(不合题意,舍去),综上所述,点P的坐标为(1+,)或(1﹣,).。

2023年辽宁省沈阳市中考数学真题(原卷版)

2023年辽宁省沈阳市中考数学真题(原卷版)

2023年辽宁省沈阳市中考数学试卷一、选择题(本大题共10小题,共20)1. 2的相反数是( ) A. 2B. -2C.12D. 12−2. 如图是由5个相同的小立方块搭成的几何体,这个几何体的主视图是( )A. B. C. D.3. 我国自主研发的500m 口径球面射电望远镜(FAST )有“中国天眼”之称,它的反射面面积约为22500000m .用科学记数法表示数据250000为( ) A. 60.2510×B. 42510×C. 42.510×D. 52.510×4. 下列计算结果正确的是( ) A. 824a a a ÷=B. 523−=ab abC. 222()a b a b −=−D. 3226()ab a b −=5. 不等式1x ≥的解集在数轴上表示正确的是( ) A. B. C.D.6. 某班级准备利用暑假去研学旅行,他们准备定做一批容量一致的双肩包.为此,活动负责人征求了班内同学的意向,得到了如下数据: 容量/L 23 25 27 29 31 33人数3 2 5 21 2 2则双肩包容量的众数是( ) A 21LB. 23LC. 29LD. 33L7. 下列说法正确的是( )A. 将油滴入水中,油会浮在水面上是不可能事件.B. 抛出篮球会下落是随机事件C. 了解一批圆珠笔芯的使用寿命,采用普查的方式D. 若甲、乙两组数据的平均数相同,22S 甲=,22.5S =乙,则甲组数据较稳定 8. 已知一次函数y kx b =+的图象如图所示,则k ,b 的取值范围是( )A. 0k >,0b <B. 0k <,0b <C. 0k <,0b >D. 0k >,0b >9. 二次函数2(1)2y x =−++图象的顶点所在的象限是( ) A. 第一象限B. 第二象限C. 第三象限D. 第四象限10. 如图,四边形ABCD 内接于O ,O 的半径为3,120D ∠=°,则 AC 的长是( )A.πB.23π C. 2πD. 4π二、填空题(本大题共6小题,共18分)11. 因式分解:322a a a ++=__________. 12. 当3a b +=时,代数式2(2)(35)5a b a b +−++的值为______ . 13. 若点()12,A y −和点()21,B y −都在反比例函数2y x=的图象上,则1y ______ 2y .(用“<”“>”或“=”填空)14. 如图,直线AB CD ∥,直线EF 分别与AB ,CD 交于点E ,F ,小明同学利用尺规按以下步骤作的图:(1)点E 为圆心,以任意长为半径作弧交射线EB 于点M ,交射线EF 于点N ; (2)分别以点M ,N 为圆心,以大于12MN 的长为半径作弧,两弧在BEF ∠内交于点P ; (3)作射线EP 交直线CD 于点G ;若29EGF ∠=°,则BEF ∠=______度. 15. 如图,王叔叔想用长为60m 栅栏,再借助房屋的外墙围成一个矩形羊圈ABCD ,已知房屋外墙足够长,当矩形ABCD 的边AB = ______ m 时,羊圈的面积最大.16. 如图,在Rt ABC 中,90ACB ∠=°,3AC BC ==,点D 在直线AC 上,1AD =,过点D 作DE AB ∥直线BC 于点E ,连接BD ,点O 是线段BD 的中点,连接OE ,则OE 的长为______ .三、解答题(本大题共9小题,共82)17. 计算:()2120234sin 303 −−+−°. 18. 为弘扬中华优秀传统文化,学校举办“经典诵读”比赛,将比赛内容分为“唐诗”“宋词”“元曲”三类(分别用A ,B ,C 依次表示这三类比赛内容).现将正面写有A ,B ,C 的三张完全相同的卡片背面朝上洗匀,由选手抽取卡片确定比赛内容.选手小明先从三张卡片中随机抽取一张,记下字母后放回洗匀,选手小梅再随机抽取一张,记下字母.请用画树状图或列表的方法,求小明和小梅抽到同一类比赛内容的概率. 19. 如图,在ABC 中,AB AC =,AD 是BC 边上的中线,点E 在DA 的延长线上,连接BE ,过点C 作CF BE ∥交AD 的延长线于点F ,连接BF 、CE ,求证:四边形BECF 是菱形.的20. “书香润沈城,阅读向未来”,沈阳市第十五届全民读书季启动之际.某中学准备购进一批图书供学生阅读,为了合理配备各类图书,从全体学生中随机抽取了部分学生进行了问卷调查.问卷设置了五种选项:A “艺术类”,B “文学类”,C “科普类”,D “体育类”,E “其他类”,每名学生必须且只能选择其中最喜爱的一类图书,将调查结果整理绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)此次被调查的学生人数为______ 名; (2)请直接补全条形统计图;(3)在扇形统计图中,A “艺术类”所对应的圆心角度数是______ 度;(4)据抽样调查结果,请你估计该校1800名学生中,有多少名学生最喜爱C “科普类”图书. 21. 甲、乙两人加工同一种零件,每小时甲比乙多加工2个这种零件,甲加工25个这种零件所用时间与乙加工20个这种零件所用的时间相等,求乙每小时加工多少个这种零件.22. 如图,AB 是O 的直径,点C 是O 上的一点(点C 不与点A ,B 重合),连接AC 、BC ,点D 是AB 上的一点,AC AD =,BE 交CD 的延长线于点E ,且BE BC =.的(1)求证:BE 是O 的切线; (2)若O 的半径为5,1tan 2E =,则BE 的长为______ . 23. 如图,在平面直角坐标系中,一次函数y kx b =+的图象交x 轴于点()8,0A ,交y 轴于点B .直线1322y x =−与y 轴交于点D ,与直线AB 交于点()6,C a .点M 是线段BC 上的一个动点(点M 不与点C 重合),过点M 作x 轴的垂线交直线CD 于点N .设点M 的横坐标为m .(1)求a 值和直线AB 的函数表达式;(2)以线段MN ,MC 为邻边作▱MNQC ,直线QC 与x 轴交于点E . ①当2405m ≤<时,设线段EQ 的长度为l ,求l 与m 之间的关系式; ②连接OQ ,AQ ,当AOQ △的面积为3时,请直接写出m 的值.24. 如图1,在ABCD 纸片中,10AB =,6AD =,60DAB ∠=°,点E 为BC 边上的一点(点E 不与点C 重合),连接AE ,将ABCD 纸片沿AE 所在直线折叠,点C ,D 的对应点分别为C ′、D ,射线C E ′与射线AD 交于点F .(1)求证:AF EF =; (2)如图2,当EFAF ⊥时,DF 的长为______ ;(3)如图3,当2CE =时,过点F 作FM AE ⊥,垂足为点M ,延长FM 交C D ′′于点N ,连接AN 、EN ,求ANE 的面积.的25. 如图,在平面直角坐标系中,二次函数213y x bx c =++的图象经过点()0,2A ,与x 轴的交点为点)B和点C .(1)求这个二次函数的表达式;(2)点E ,G 在y 轴正半轴上,2OG OE =,点D 在线段OC 上,OD =.以线段OD ,OE 为邻边作矩形ODFE ,连接GD ,设OE a =.①连接FC ,当GOD 与FDC △相似时,求a 的值;②当点D 与点C 重合时,将线段GD 绕点G 按逆时针方向旋转60°后得到线段GH ,连接FH ,FG ,将GFH 绕点F 按顺时针方向旋转(0180)αα°<≤°后得到G FH ′′ ,点G ,H 的对应点分别为G ′、H ′,连接DE .当G FH ′′ 的边与线段DE 垂直时,请直接写出点H ′的横坐标.。

2022年辽宁省沈阳市中考数学真题试题及答案

2022年辽宁省沈阳市中考数学真题试题及答案
1.A2. D3. D4. B5. C6. B7. B8. A9. A10. C
二、填空题(本大题共6小题,每小题3分,合计18分)
11.
12. 或
13. 或
14.
15.6
16. 或4
三、解答题(第17小题6分,第18、19题各8分,共22分)
17.解:原式=

18.
(1)解:一共4张卡片,卡片上的数字是4的有一张,
∴ ,
∴ ,即 ,
∴ (SAS),
∴AD=BC;
(3)①如图,
由题意得: ,
根据三角不等关系可知: ,
∴当A、C、D三点共线时取最大,
∴ ,
∵ , ,
∴ ,
∴AD的最大值为 ;
②过点C作CE⊥AB于点E,连接DE,过点B作BF⊥DE于点F,如图所示:
∴ ,
∴点C、D、B、E四点共圆,
∵ ,
∴ ,
∴ ,
∴点 ,
当点P,Q均在向上翻折部分平移后的图象上时,
,解得: (不合题意,舍去),
当点P在向上翻折部分平移后的图象上,点Q在平移后抛物线剩下部分的图象上时,
,解得: 或 (不合题意,舍去),
当点P在平移后抛物线剩下部分的图象上,点Q在向上翻折部分平移后的图象上时,
,解得: 或 (不合题意,舍去),
综上所述,点P的坐标为 .
18.老师将编号分别是1、2、3、4的四张完全相同的卡片将背面朝下洗匀.
(1)随机抽取一张卡片,卡片上 数字是4的概率______.
(2)小明随机抽取两张卡片,用画树状图或列表法,求两张卡片上的数字组合是2和3的概率.
19.如图,在△ABC中,AD是 的角平分线,分别以点A,D为圆心,大于 的长为半径作弧,两弧交于点M,N,作直线MN,分别交AB,AD,AC于点E,O,F,连接DE,DF.

最新版辽宁省沈阳市2022届中考数学试卷和答案解析详解完整版

最新版辽宁省沈阳市2022届中考数学试卷和答案解析详解完整版
D.“任意掷一枚质地均匀的骰子,掷出的点数是7”是必然事件
10.如图,一条河两岸互相平行,为测得此河的宽度PT(PT与河岸PQ垂直),测P、Q两点距离为m米, ,则河宽PT的长度是()
A. B. C. D.
二、填空题(每小题3分,共18分)
11.分解因式: ______.
12.二元一次方程组 的解是______.
一、选择题(下列各题的备选答案中,只有一个答案是正确的.每小题2分,共20分)
1.计算 正确的是()
A 2B. C.8D.
2.如图是由4个相同的小立方块搭成的几何体,这个几何体的主视图是( )
A. B.
C. D.
3.下列计算结果正确的是()
A B.
C. D.
4.在平面直角坐标系中,点 关于y轴对称的点的坐标是( )
③分情况讨论,
当0<m< 时,由②可知,S= m2;
令S= m2= ,解得m= > (舍)或m=﹣ (舍);
当 ≤m<5时,如图2,
设线段A′D′与直线OC交于点M,
∴M( m, m),
∴D′E= m﹣(3﹣ m)= m﹣3,
D′M= m﹣(8﹣ m)= m﹣8;
∴S= m2﹣ •( m﹣3)•( m﹣8)
1-10 ADDBC BBAAC
11.【答案】
12【答案】 ##
13【答案】 ##
14.【答案】
15.【答案】6
16.【答案】 或4
17.解:原式=

18【小问1详解】
解:随机抽取一张卡片,卡片上的数字是4的概率为 ,
故答案为: ;
【小问2详解】
解:画树状图如下:
共有12种等可能的结果,其中两张卡片上的数字是2和3的结果有2种,

2023年辽宁省沈阳市中考数学真题试卷(解析版)

2023年辽宁省沈阳市中考数学真题试卷(解析版)

2023年辽宁省沈阳市中考数学真题试卷及答案一、选择题(本大题共10小题,共20)1. 2的相反数是()A. 2B. -2C.D.【答案】B【解析】2的相反数是-2.故选:B.2. 如图是由个相同的小立方块搭成的几何体,这个几何体的主视图是()A. B. C. D.【答案】A【解析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中;解:此几何体的主视图从左往右分列,小正方形的个数分别是,,.故选:A【点拨】本题考查了简单组合体的三视图,主视图是从物体的正面看得到的视图3. 我国自主研发的口径球面射电望远镜()有“中国天眼”之称,它的反射面面积约为用科学记数法表示数据为()A. B. C. D.【答案】D【解析】科学记数法的表示形式为的形式,其中为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同,当原数绝对值时,n是正整数;当原数的绝对值时,n是负整数;解:,故选:D【点拨】此题考查科学记数法的表示方法,科学记数法的表示形式为的形式,其中为整数,表示时关键要正确确定a的值以及n的值4. 下列计算结果正确的是()A. B. C. D.【答案】D【解析】根据整式的加减运算法则,同底数幂的运算,完全平方公式,积的乘方运算即可求解.解:、,故此选项错误,不符合题意;B.,故此选项错误,不符合题意;C.,故此选项错误,不符合题意;D.,正确,符合题意.故选:.【点拨】本题主要考查整式的加减运算法则,同底数幂的运算,完全平方公式,积的乘方运算,掌握整式的混合运算是解题的关键.5. 不等式的解集在数轴上表示正确的是()A. B.C. D.【答案】C【解析】根据在数轴上表示不等式解集的方法求解即可.解:∵,∴1处是实心原点,且折线向右.故选:C.【点拨】题考查的是在数轴上表示不等式的解集,熟知“小于向左,大于向右”是解答此题的关键.6. 某班级准备利用暑假去研学旅行,他们准备定做一批容量一致的双肩包为此,活动负责人征求了班内同学的意向,得到了如下数据:容量人数则双肩包容量的众数是()A. B. C. D.【答案】C【解析】根据众数的定义求解即可.解:出现次,出现次数最多,众数是,故选:C.【点拨】本题考查了众数的定义,众数是一组数据中出现次数最多的数,众数可能没有,可能有1个,也可能有多个.7. 下列说法正确的是()A. 将油滴入水中,油会浮在水面上是不可能事件B. 抛出的篮球会下落是随机事件C. 了解一批圆珠笔芯的使用寿命,采用普查的方式D. 若甲、乙两组数据的平均数相同,,,则甲组数据较稳定【答案】D【解析】依据随机事件、必然事件、不可能事件、抽样调查以及方差的概念进行判断,即可得出结论.解:、将油滴入水中,油会浮在水面上是必然事件,故A不符合题意;B.抛出的篮球会下落是必然事件,故B不符合题意;C.了解一批圆珠笔芯的使用寿命,采用抽样调查的方式,故C不符合题意;D.若甲、乙两组数据的平均数相同,,,则甲组数据较稳定,故D符合题意;故选:.【点拨】本题主要考查了随机事件、必然事件、不可能事件、抽样调查以及方差的概念,方差是反映一组数据的波动大小的一个量.方差越大,则各数据与平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,解题的关键是掌握相应知识点的概念.8. 已知一次函数的图象如图所示,则,的取值范围是()A. ,B. ,C. ,D. ,【答案】A【解析】根据一次函数图象进行判断.解:一次函数的图象经过第一、三、四象限,,.故选:A.【点拨】本题考查一次函数的图象和性质,熟知一次函数的图象与系数的关系是解题的关键.9. 二次函数图象的顶点所在的象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B【解析】根据抛物线,可以写出该抛物线的顶点坐标,从而可以得到顶点在第几象限.解:,顶点坐标为,顶点在第二象限.故选:.【点拨】本题主要考查了二次函数的性质,掌握二次函数的性质是解题的关键.10. 如图,四边形内接于,的半径为,,则的长是()A. B. C. D.【答案】C【解析】根据圆内接四边形的性质得到,由圆周角定理得到,根据弧长的公式即可得到结论.解:四边形内接于,,,,的长.故选:.【点拨】本题考查的是弧长的计算,圆内接四边形的性质和圆周角定理,掌握圆内接四边形的对角互补是解题的关键.二、填空题(本大题共6小题,共18分)11. 因式分解:__________.【答案】a(a+1)2【解析】先提取公因式a,再对余下的项利用完全平方公式继续分解因式.完全平方公式:a±2ab+b=(a±b):a3+2a2+a,=a(a2+2a+1),=a(a+1)2.【点拨】此题考查提公因式法与公式法的综合运用,掌握运算法则是解题关键12. 当时,代数式的值为______ .【答案】2【解析】先将原式去括号,然后合并同类项可得,再把前两项提取,然后把的值代入可得结果.解:当时,原式,故答案为:.【点拨】此题主要是考查了整式化简求值,能够熟练运用去括号法则,合并同类项法则化简是解题的关键.13. 若点和点都在反比例函数的图象上,则______ .(用“”“”或“”填空)【答案】【解析】把和分别代入反比例函数中计算y的值,即可做出判断.解:∵点和点都在反比例函数的图象上,∴令,则;令,则,,,故答案为:.【点拨】本题考查了反比例函数图像上点的坐标特征,计算y的值是解题的关键.14. 如图,直线,直线分别与,交于点,,小明同学利用尺规按以下步骤作图:(1)点为圆心,以任意长为半径作弧交射线于点,交射线于点;(2)分别以点,为圆心,以大于的长为半径作弧,两弧在内交于点;(3)作射线交直线于点;若,则______度.【答案】58【解析】由作图得平分,再根据平行线的性质“两直线平行,内错角相等”易得,即可获得答案.解:由作图得:平分,∴,∵,∴,∴.故答案为:.【点拨】本题主要考查了尺规作图-基本作图以及平行线的性质,由作图得到平分是解题关键.15. 如图,王叔叔想用长为的栅栏,再借助房屋的外墙围成一个矩形羊圈,已知房屋外墙足够长,当矩形的边______ 时,羊圈的面积最大.【答案】15【解析】设为,则,根据矩形的面积公式可得关于x的二次函数关系式,配方后即可解.解:设为,面积为,由题意可得:,当时,取得最大值,即时,羊圈的面积最大,故答案为:.【点拨】本题考查了二次函数的性质在实际生活中的应用.最大面积的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值),也就是说二次函数的最值不一定在时取得.16. 如图,在中,,,点在直线上,,过点作直线于点,连接,点是线段的中点,连接,则的长为______ .【答案】或【解析】分两种情况当在延长线上和当在上讨论,画出图形,连接,过点作于,利用勾股定理解题即可解:当在线段上时,连接,过点作于,当在线段上时,,,,,点是线段的中点,,,,,,,,,,当在延长线上时,则,是线段的中点,,,,,,,,,,,,的长为或.故答案为:或.【点拨】本题考查等腰直角三角形的判定和性质,勾股定理,正确作出辅助线是解题的关键.三、解答题(本大题共9小题,共82)17. 计算:.【答案】10【解析】根据零指数幂和负整数指数幂运算法则,二次根式性质,特殊角的三角函数值,进行计算即可.解:.【点拨】本题主要考查了实数混合运算,解题的关键是熟练掌握零指数幂和负整数指数幂运算法则,二次根式性质,特殊角的三角函数值,准确计算.18. 为弘扬中华优秀传统文化,学校举办“经典诵读”比赛,将比赛内容分为“唐诗”“宋词”“元曲”三类(分别用,,依次表示这三类比赛内容).现将正面写有,,的三张完全相同的卡片背面朝上洗匀,由选手抽取卡片确定比赛内容选手小明先从三张卡片中随机抽取一张,记下字母后放回洗匀,选手小梅再随机抽取一张,记下字母请用画树状图或列表的方法,求小明和小梅抽到同一类比赛内容的概率.【答案】图见解析,【解析】用树状图法列举出所有等可能出现的结果,再根据概率的定义进行计算即可;解:用树状图法表示所有等可能出现的结果如下:共有种等可能出现的结果,其中小明和小梅抽到同一类比赛内容的有种,所以小明和小梅抽到同一类比赛内容的概率为.【点拨】本题考查列表法或树状图法,列举出所有等可能出现的结果是正确解答的关键19. 如图,在中,,是边上的中线,点在的延长线上,连接,过点作交的延长线于点,连接、,求证:四边形是菱形.【答案】证明见解析【解析】先根据等腰三角形的性质,得到垂直平分,进而得到,,,再利用平行线的性质,证明,得到,进而得到,即可证明四边形是菱形.证明:,是边上的中线,垂直平分,,,,,,,在和中,,,,,四边形是菱形.【点拨】本题考查了等腰三角形的性质,垂直平分线的性质,全等三角形的判定和性质,菱形的判定,灵活运用相关知识点解决问题是解题关键.20. “书香润沈城,阅读向未来”,沈阳市第十五届全民读书季启动之际某中学准备购进一批图书供学生阅读,为了合理配备各类图书,从全体学生中随机抽取了部分学生进行了问卷调查问卷设置了五种选项:“艺术类”,“文学类”,“科普类”,“体育类”,“其他类”,每名学生必须且只能选择其中最喜爱的一类图书,将调查结果整理绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)此次被调查的学生人数为______ 名;(2)请直接补全条形统计图;(3)在扇形统计图中,“艺术类”所对应的圆心角度数是______ 度;(4)据抽样调查结果,请你估计该校名学生中,有多少名学生最喜爱“科普类”图书.【答案】(1)100 (2)见解析(3)36 (4)720名【解析】(1)用B的人数除以对应百分比可得样本容量;(2)用样本容量减去其它四类的人数可得D类的人数,进而补全条形统计图;(3)用360乘A“艺术类”所占百分比可得对应的圆心角度数;(4)用总人数乘样本中C类所占百分比即可;(1)此次被调查的学生人数为:名,故答案为:;(2)类的人数为:名,补全条形统计图如下:;(3)在扇形统计图中,“艺术类”所对应的圆心角度数是:,故答案为:;(4)(名),答:估计该校名学生中,大约有名学生最喜爱“科普类”图书.【点拨】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键,条形统计图能清楚地表示出每个项目的数据,扇形统计图直接反映部分占总体的百分比大小21. 甲、乙两人加工同一种零件,每小时甲比乙多加工个这种零件,甲加工个这种零件所用的时间与乙加工个这种零件所用的时间相等,求乙每小时加工多少个这种零件.【答案】乙每小时加工个这种零件.【解析】设乙每小时加工个这种零件,则甲每小时加工个这种零件,利用“甲加工个这种零件所用的时间与乙加工个这种零件所用的时间相等”列分式方程即可求解.解:设乙每小时加工个这种零件,则甲每小时加工个这种零件,根据题意得:,解得:,经检验,是所列方程的解,且符合题意.答:乙每小时加工个这种零件.【点拨】本题主要考查了分式方程的应用,解题的关键在于能够根据题意找到等量关系列出方程进行求解.22. 如图,是的直径,点是上的一点(点不与点,重合),连接、,点是上的一点,,交的延长线于点,且.(1)求证:是的切线;(2)若的半径为,,则的长为______ .【答案】(1)证明见解析(2)8【解析】(1)利用圆周角定理,等腰三角形的性质定理,对顶角相等,三角形的内角和定理和圆的切线的判定定理解答即可得出结论;(2)利用直角三角形的边角关系定理得到设, 则, 利用x的代数式表示出线段,再利用勾股定理列出关于x的方程,解方程即可得出结论.(1)证明:是的直径,,,,,,,,,,,即.为的直径,是的切线;(2)解:,,,设,则,,,,,是的直径,,,,解得:不合题意,舍去或..故答案为:.【点拨】本题主要考查了圆的有关性质,圆周角定理,等腰三角形的性质,三角形的内角和定理,圆的切线的判定定理,勾股定理,直角三角形的边角关系定理,熟练掌握圆周角定理是解题的关键.23. 如图,在平面直角坐标系中,一次函数的图象交轴于点,交轴于点直线与轴交于点,与直线交于点点是线段上的一个动点(点不与点重合),过点作轴的垂线交直线于点设点的横坐标为.(1)求的值和直线的函数表达式;(2)以线段,为邻边作▱,直线与轴交于点.①当时,设线段的长度为,求与之间的关系式;②连接,,当面积为时,请直接写出的值.【答案】(1),(2)①;②或【解析】(1)根据直线的解析式求出点C的坐标,用待定系数法求出直线的解析式即可;(2)①用含m的代数式表示出的长,再根据得出结论即可;②根据面积得出l的值,然后根据①的关系式的出m的值.(1)点在直线上,,一次函数的图象过点和点,,解得,直线解析式为;(2)①点在直线上,且的横坐标为,的纵坐标为:,点在直线上,且点的横坐标为,点的纵坐标为:,,点,线段的长度为,,,,即;②的面积为,,即,解得,由①知,,,解得,即的值为或.【点拨】本题考查一次函数的知识,熟练掌握一次函数的图象和性质,待定系数法求解析式是解题的关键.24. 如图,在纸片中,,,,点为边上的一点(点不与点重合),连接,将纸片沿所在直线折叠,点,的对应点分别为、,射线与射线交于点.(1)求证:;(2)如图,当时,的长为______ ;(3)如图,当时,过点作,垂足为点,延长交于点,连接、,求的面积.【答案】(1)证明见解析;(2);(3)【解析】(1)根据平行四边形的性质和平行线的性质,得到,再根据折叠的性质,得到,然后结合邻补角的性质,推出,即可证明;(2)作,交的延长线于,先证明四边形是正方形,再利用特殊角的三角函数值,求出,进而得到,即可求出的长;(3)作,交的延长线于,作于,交的延长线于,作于,解直角三角形,依次求出、、、的值,进而求得的值,根据和,求得、,进而得出的值,解直角三角形,求出的值,进而得出的值,根据,得出,从而设,,进而表示出,最后根据,列出,求出,根据,得出,进而得到,即可求出的面积.(1)证明:四边形是平行四边形,,,由折叠性质可知,,,,,;(2)解:如图,作,交的延长线于,,,,,,,,四边形是矩形,由(1)可知:,矩形是正方形,,,,,,,故答案为:;(3)解:如图,作,交的延长线于,作于,交的延长线于,作于,四边形是平行四边形,,,,,,在中,,,,在中,,由(1)可知:,,,又纸片沿所在直线折叠,点,的对应点分别为,,,,,,,,,,,,,,在中,,,,,,,,,,设,,,,,,,,,,,,,,,,,,.【点拨】本题考查了平行四边形的性质,正方形的判定和性质,等腰三角形的性质,解直角三角形、轴对称的性质等知识,正确作辅助线,熟练解直角三角形是解题关键.25. 如图,在平面直角坐标系中,二次函数的图象经过点,与轴的交点为点和点.(1)求这个二次函数的表达式;(2)点,在轴正半轴上,,点在线段上,以线段,为邻边作矩形,连接,设.连接,当与相似时,求的值;当点与点重合时,将线段绕点按逆时针方向旋转后得到线段,连接,,将绕点按顺时针方向旋转后得到,点,对应点分别为、,连接当的边与线段垂直时,请直接写出点的横坐标.【答案】(1)(2)①或;②或或【解析】(1)利用待定系数法解答即可;(2)①利用已知条件用含a的代数式表示出点E,D,F,G的坐标,进而得到线段的长度,利用分类讨论的思想方法和相似三角形的性质,列出关于a的方程,解方程即可得出结论;②利用已知条件,点的坐标的特征,平行四边形的判定与性质,旋转的性质,全等三角形的判定与性质求得,和的长,利用分类讨论的思想方法分三种情形讨论解答利用旋转的性质,直角三角形的边角关系定理,勾股定理求得相应线段的长度即可得出结论;(1)二次函数的图象经过点,与轴的交点为点,解得:此抛物线的解析式为(2)令,则解得:或,∴.∵,∴四边形为矩形,∴∴∴Ⅰ当时,∴∴∴Ⅱ当时,∴∴∴综上,当与相似时,的值为或;点与点重合,∴∴∴四边形为平行四边形,和中,Ⅰ、当所在直线与垂直时,如图,,,三点在一条直线上,过点作轴于点,则∴此时点的横坐标为Ⅱ当所在直线与垂直时,如图,,,设的延长线交于点,过点作,交的延长线于点,过点作,交的延长线于点,则轴,.,,.,.,,此时点的横坐标为;Ⅲ当所在直线与垂直时,如图,,,,,,三点在一条直线上,则,过点作,交的延长线于点,,此时点的横坐标为.综上,当的边与线段垂直时,点的横坐标为或或.【点拨】本题主要考查了二次函数的图象与性质,抛物线上点的坐标的特征,矩形的性质,相似三角形的判定与性质,全等三角形的判定与性质,直角三角形的性质,勾股定理,直角三角形的边角关系定理,利用点的坐标表示出相应线段的长度和正确利用分类讨论的思想方法是解题的关键。

沈阳中考试题及答案数学

沈阳中考试题及答案数学

沈阳中考试题及答案数学在下面的文章中,我将为您提供关于沈阳中考数学试题及答案的详细内容。

文章将按照题目顺序组织,以清晰的格式呈现。

请您仔细阅读。

【沈阳中考数学试题及答案】1. 选择题1) 第一题:【题目】已知1月份全市降水量为45mm,2月份全市降水量为30mm,求1月份的降水量比2月份的降水量多多少。

【选项】A. 10mmB. 15mmC. 20mmD. 25mm【答案】A. 10mm2) 第二题:【题目】若a、b是两个互质的正整数,且a的奇数次方加上b的偶数次方等于10,则a与b的最大值为多少。

【选项】A. 1B. 2C. 3D. 4【答案】C. 32. 填空题1) 第一题:【题目】一个正三角形和一个正方形的面积相等,已知正方形的面积为16平方厘米,求正三角形的面积。

【答案】4√3 平方厘米2) 第二题:【题目】设集合A = {x | x是不大于10的正整数},则集合A的元素个数为__。

【答案】103. 计算题第一题:【题目】求解方程组:2x - 3y = 43x + 4y = 5【答案】x = 23/17y = -14/17第二题:【题目】计算以下等差数列的和:1, 5, 9, 13, ..., 101【答案】Sn = (a1 + an) * n / 2= (1 + 101) * 26 / 2= 13784. 解答题第一题:【题目】已知长方形ABCD的长为8cm,宽为6cm,P为长方形短边CD上一点,且PA垂直于AD,如图.1所示。

求线段BD的长度。

【解答】根据勾股定理得,BD² = AD² + AB²= 8² + 6²= 100因此,BD = √100 = 10cm。

第二题:【题目】已知三角形ABC中,∠ACB = 90°,CD是三角形斜边AB 上的垂线,AB = 20cm,AD = 16cm,求CD的长度。

【解答】根据勾股定理得,CD² = AD² - AC²= 16² - 12²= 256 - 144= 112因此,CD = √112 = 4√7 cm。

2024年辽宁省中考数学真题(学生版+解析版)

2024年辽宁省中考数学真题(学生版+解析版)

2024年辽宁省中考数学真题第一部分选择题(共30分)一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中;有一项是符合题目要求的)1.如图是由5个相同的小立方块搭成的几何体,这个几何体的俯视图是()2.亚洲、欧洲、非洲和南美洲的最低海拔如下表:大洲亚洲欧洲非洲南美洲最低海拔/m -415-28-156-40其中最低海拔最小的大洲是()A.亚洲B.欧洲C.非洲D.南美洲3.越山向海,一路花开.在5月24日举行的2024辽宁省高品质文体旅融合发展大型产业招商推介活动中,全省30个重大文体旅项目进行集中签约,总金额达532亿元.将53200000000用科学记数法表示为()A. 532xl08B. 53.2X109C. 5.32xlO 10D. 5.32X10114.如图,在矩形A8C 。

中,点E 在AQ 上,当一EBC 是等边三角形时,ZAEB 为()B. 45°5.下列计算正确的是()A. a 2 + a 3 = 2a 5 C. 60° D. 120°C.(疽)3=/D. = a 2 a B. q 2 .次二 /6. 一个不透明袋子中装有4个白球,3个红球,2个绿球,1个黑球,每个球除颜色外都相同.从中随机摸3出一个球,则下列事件发生的概率为一的是()10A.摸出白球B.摸出红球C.摸出绿球D.摸出黑球7.纹样是我国古代艺术中 瑰宝.下列四幅纹样图形既是轴对称图形又是中心对称图形的是()' " °^°C D 8.我国古代数学著作《孙子算经》中有“雉兔同笼”问题:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何? ”其大意:鸡兔同笼,共有35个头,94条腿,问鸡兔各多少只?设鸡有尤只,兔有》只,根据题意可列方程组为()x+y = 94A. <4% + 2y = 35x+y = 94B. <2x + 4y = 35x+ y = 35x+ y = 35D. <4x + 2y = 94 [2x + 4y = 949.如图,YABCD 的对角线 AC, BQ 相交于点。

辽宁省沈阳市中考数学试卷及答案

辽宁省沈阳市中考数学试卷及答案

辽宁省沈阳市中考数学试卷及答案一、选择题(下列各题的备选答案中,只有一个答案是正确的,将正确答案的序号填入题后的括号内,每小题2 分,共20 分)1.下列二次根式中与是同类二次根式的是()2.若∠ A 是锐角,有sin A =cos A ,则∠ A 的度数是()A.30°B.45°C.60°D.90°3.函数中,自变量x 的取值范围是()A.x ≥-1 B.x >-1 且x ≠2C.x ≠2 D.x ≥-1 且x ≠24.在Rt△ ABC 中,C =90°,∠ A =30°,b=,则此三角形外接圆半径为()5.半径分别为1 cm 和5 cm 的两个圆相交,则圆心距d 的取值范围是()A.d <6 B.4<d <6 C.4≤ d <6 D.1<d <56.面积为2 的△ ABC ,一边长为x ,这边上的高为y ,则y 与x 的变化规律用图象表示大致是()7.已知关于x 的方程x2-2 x +k =0 有实数根,则k 的取值范围是()A.k <1 B.k ≤1 C.k ≤-1 D.k ≥18.如图,PA 切⊙ O 于点A ,PBC 是⊙ O 的割线且过圆心,PA =4,PB =2,则⊙ O 的半径等于()A.3 B.4 C.6 D.89.两个物体A 、B 所受压强分别为P A(帕)与P B(帕)(P A、P B为常数),它们所受压力F (牛)与受力面积S(米2)的函数关系图象分别是射线l A、l B,如图所示,则()A.P A<P B B.P A=P B C.P A>P B D.P A≤ P B10.若x1,x 2是方程2x2-4x+1=0 的两个根,则的值为()A.6 B.4 C.3 D.二、填空题(每小题 2 分,共20 分)11.看图,描出点A 关于原点的对称点A′ ,并标出坐标.12.解方程时,设y=,则原方程化成整式方程是__________.13.计算=__________.14.如图,在Rt△ABC中,∠ C=90°,以AC 所在直线为轴旋转一周所得到的几何体是__________.15.一组数据6,2,4,2,3,5,2,3 的众数是__________.16.已知圆的半径为6.5 cm ,圆心到直线l 的距离为4 cm,那么这条直线l 和这个圆的公共点的个数有_____个.17.要用圆形铁片截出边长为4 cm的正方形铁片,则选用的圆形铁片的直径最小要_____cm.18.圆内两条弦AB和CD 相交于P 点,AB 把CD分成两部分的线段长分别为2和6,那么AP =__________ .19.△ ABC 是半径为2 cm的圆内接三角形,若BC =,则∠A 的度数为_______.20.如图,已知OA、OB 是⊙ O的半径,且OA =5,∠ AOB =15°,AC ⊥ OB 于C ,则图中阴影部分的面积(结果保留π )S =__________.三、(第21 小题6 分,第22、23 小题各10 分,共26 分)21.对于题目“化简并求值:甲.乙两人的解答不同.甲的解答是:乙的解答是:谁的解答是错误的?为什么?22.看图,解答下列问题.(1)求经过A 、B 、C 三点的抛物线解析式;(2)通过配方,求该抛物线的顶点坐标和对称轴;(3)用平滑曲线连结各点,画出该函数图象.23.初中生的视力状况受到全社会的广泛关注,某市有关部门对全市3 万名初中生视力状况进行了一次抽样调查,下图是利用所得数据绘制的频数分布直方图(长方形的高表示该组人数),根据图中提供的信息回答下列问题:(1)本次调查共抽测了解多少名学生;(2)在这个问题中的样本指什么;(3)如果视力在4.9∽5.1(含4.9、 5.1)均属正常,那么全市有多少初中生的视力正常?四、(8 分)24.如图,在小山的东侧A 处有一热气球,以每分钟28 米的速度沿着与垂直方向夹角为30°的方向飞行,半小时后到达C 处,这时气球上的人发现,在A 处的正西方向有一处着火点B ,5 分钟后,在D 处测得着火点B 的俯角是15°,求热气球升空点A 与着火点B 的距离.(结果保留根号,参照数据:sin15°=,cos15°=,)五、(10 分)25.已知:如图,AB 是⊙ O 的半径,C 是⊙ O 上一点,连结AC ,过点C 作直线CD ⊥ AB 于D(AD<DB ),点E 是DB 上任意一点(点D 、B 除外),直线CE 交⊙ O 于点 F ,连结AF 与直线CD 交于点G .(1)求证:AC2=AG · AF ;(2)若点E 是AD (点A 除外)上任意一点,上述结论是否仍然成立?若成立,请画出图形并给予证明;若不成立,请说明理由.六、(10 分)26.随着我国人口增加速度的减慢,小学入学儿童数量有所减少,下表中的数据近似地呈现了某地区入学儿童的变化趋势.试用你所学的函数知识解决下列问题:(1)求入学儿童人数y (人)与年份x (年)的函数关系试;(2)利用所求函数关系式,预测试地区从哪一年起入学儿童的人数不超过1000 人?七、(12 分)27.某书店老板去批发市场购买某种图书,第一次购用100 元,按该书定价2.8 元现售,并快售完.由于该书畅销,第二次购书时,每本的批发价已比第一次高0.5 元,用去了150 元,所购数量比第一次多10 本.当这批书售出4/5时,出现滞销,便以定价的5 折售完剩余的图书,试问该老板第二次售书是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?八、(14 分)28.已知:如图,⊙ P 与x 轴相切于坐标原点O ,点A (0,2)是⊙ P 与x 轴的交点,点B (,0)在x 轴上,连结BP 交⊙ P 于点C ,连结AC 并延长交际x 轴于点D .(1)求线段BC 的长;(2)求直线AC 的函数解析式;(3)当点B 在x 轴上移动时,是否存在点B,使△BOP 相似于△AOD?若存在,求出符合条件的点的坐标;若不存在,说明理由.参照答案及评分标准一、选择题(每题2 分,共20 分)二、填空题(每题2 分,共20 分)11.A ′ (3,-2)(图略)12.2 y2-5y+2=013.114.圆锥15.216.217.18.3 或419.60°或120°20.注:两个答案的,答出一个给1 分.三、(26 分)21.(6 分)解:乙的解答是错误的.23.(10 分)解:(1)本次调查共抽测了240 名学生(2)样本是指240 名学生的视力(3)全市有7500 名初中生的视力正常四、(8 分)24.解:由解可知AD=(30+5)×28=980 过D 作DH ⊥ BA 于H在Rt△ DAH 中,DH =AD · sin 60°=五、(10 分)25.(1)证明:六、(10 分)(1)解法一:设y =kx+b由于直线y =kx + b 过(2000,2520),(2001,2330)两点∴ y =-190x +382520又因为y =190 x+382520 过点(2002,2140),所以y =-190 x +382520 较好的描述了这一变化趋势.故所求函数关系式为y =-190x +382520.解法二:设y =ax2+bx +c由于y =ax2+bx +c 过(2000,2520),(2001,2330),(2002,2140)三点,解得a =0,b=-190,c =382520,∴y=-190 x +382520因为y =-190 x +382520 过(2000,2520),(2001,2330),(2002,2140)三点,所以y =-190 x+382520 较好的描述了这一变化趋势.故所求函数关系式为y =-190x +382520.(2)设x年时,入学人数为1000 人,由题意得:-190 x +382520=1000 人,解得x =2008答:从2008 年起入学儿童的人数不超过1000 人.七、(12 分)27.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

沈阳市2010年中等学校招生统一考试数 学 试 题试题满分150分,考试时间120分钟注意事项:1. 答题前,考生须用0.5mm 黑色字迹的签字笔在本试题卷规定位置填写自己的姓名、准考证号;2. 考生须在答题卡上作答,不能在本试题卷上做答,答在本试题卷上无效;3. 考试结束,将本试题卷和答题卡一并交回;4. 本试题卷包括八道大题,25道小题,共6页。

如缺页、印刷不清,考生须声明,否则后果自 负。

一、选择题 (下列各题的备选答案中,只有一个答案是正确的,每小题3分,共24分)1. 左下图是由六个相同的小立方块搭成的几何体,这个几何体的俯视图是2. 为了响应国家“发展低碳经济、走进低碳生活”的号召,到目前为止沈阳市共有60000户家庭建立了“低碳节能减排家庭档案”,则60000这个数用科学记数法表示为 (A) 60⨯104(B) 6⨯105 (C) 6⨯104 (D) 0.6⨯106 。

3. 下列运算正确的是 (A) x 2+x 3=x 5 (B) x 8÷x 2=x 4 (C) 3x -2x =1 (D) (x 2)3=x 6 。

4. 下列事件为必然事件的是 (A ) 某射击运动员射击一次,命中靶心 (B) 任意买一张电影票,座位号是偶数 (C) 从一个只有红球的袋子里面摸出一个球是红球 (D) 掷一枚质地均匀的硬币落地后正面朝上 。

5. 如图,在方格纸上建立的平面直角坐标系中,将Rt △ABC 绕点C 按顺时针方向旋转90︒,得到Rt △FEC ,则点A 的对应点F 的坐标是(A) (-1,1) (B) (-1,2) (C) (1,2) (D) (2,1)。

6. 反比例函数y = -x15的图像在 (A) 第一、二象限 (B) 第二、三象限 (C) 第一、三象限 (D) 第二、四象限 。

7. 在半径为12的 O 中,60︒圆心角所对的弧长是 (A) 6π (B) 4π (C) 2π (D) π. 。

8. 如图,在等边△ABC 中,D 为BC 边上一点,E 为AC 边上一点,且 ∠ADE =60︒,BD =3,CE =2,则△ABC 的边长为 (A) 9 (B) 12 (C) 15 (D) 18 。

二、填空题 (每小题4分,共32分)9. 一组数据3,4,4,6,这组数据的极差为 。

(A) (B) (C) (D)ABCE10. 计算:8⨯21-(3)0= 。

11. 分解因式:x 2+2xy +y 2= 。

12. 一次函数y = -3x +6中,y 的值随x 值增大而 。

13. 不等式组⎩⎨⎧-≥--≥32)1(24x x x 的解集是 。

14. 如图,在□ ABCD 中,点E 在边BC 上,BE :EC =1:2,连接AE 交BD 于点F ,则△BFE 的面积与△DF A 的面积之比为 。

15. 在平面直角坐标系中,点A 1(1,1),A 2(2,4),A 3(3,9),A 4(4,16),…,用你发现的规律确定点A 9的坐标为 。

16. 若等腰梯形ABCD 的上、下底之和为2,并且两条对角线所成的锐角为60︒,则等腰梯形ABCD 的面积为 。

三、 解答题(第17、18小题各8分,第19小题10分,共26分) 17. 先化简,再求值:32-x x +xx-3,其中x = -1。

18. 小吴在放假期间去上海参观世博会,小吴根据游客流量,决定第一天从中国馆 (A)、日本馆 (B)、西班牙馆 (C)中随机选一个馆参观,第二天从 法国馆 (D)、沙特馆 (E)、芬兰馆(F) 中随机选一个馆参观。

请你用列表法或画树形图 (树形图)法,求小吴恰好第一天参观中国馆(A)且第二天参观芬兰馆(F)的概率。

(各国家馆可用对应的字母表示) 19. 如图,菱形ABCD 的对角线AC 与BD 相交于点O ,点E 、F 分别为边 AB 、AD 的中点,连接EF 、OE 、OF 。

求证:四边形AEOF 是菱形。

四、(每小题10分,共20分)20. 2010年4月14日,国内成品油价格迎来今年的首次提价,某市93号汽油的价格由6.25元/升涨到了6.52元/升。

某报纸调查员就“关于汽油涨价对用车会造成的影响”这一问题向BCDE FAA B CDE F OBD E A24% 52%10% 4% 汽油涨价对用车会造成影响的扇形统计图汽油涨价对用车会造成影响的条形统计图人数(1) 结合上述统计图表可得:p = ,m = ; (2) 根据以上信息,请直接在答题卡中补全条形统计图;(3) 2010年4月末,若该市有机动车的私家车车主约200000人,根据上述信息,请你估计一下持有“影响不大,还可以接受”这种态度的车主约有多少人?21. 如图,AB 是 O 的直径,点C 在BA 的延长线上,直线CD 与 O 相切于点D ,弦DF ⊥AB 于点E ,线段CD =10,连接BD ; (1) 求证:∠CDE =2∠B ; (2) 若BD :AB =3:2,求 O 的半径及DF 的长。

五、(本题10分)22. 阅读下列材料,并解决后面的问题: ★ 阅读材料:(1) 等高线概念:在地图上,我们把地面上海拔高度相同的点连成的闭合曲线叫等高线。

例如,如图1,把海拔高度是50米、100米、150米的点分别连接起来,就分别形成50米、100米、150米三条等高线。

(2) 利用等高线地形图求坡度的步骤如下:(如图2)步骤一:根据两点A 、B 所在的等高线地形图,分别读出点A 、B 的高度;A 、B 两点的铅直距离=点A 、B 的高度差;步骤二:量出AB 在等高线地形图上的距离为d 个单位,若等高线地形图的比例尺为1:n ,则A 、B 两点的水平距离=dn ; 步骤三:AB 的坡度=水平距離鉛直距離=dnB A 的高度差點,;图1B小明家A小丁家C P 学校 100米200米 300米 400米图2图3★请按照下列求解过程完成填空,并把所得结果直接写在答题卡上。

某中学学生小明和小丁生活在山城,如图3(示意图),小明每天上学从家A 经过B 沿着公路AB 、BP 到学校P ,小丁每天上学从家C 沿着公路CP 到学校P 。

该山城等高线地形图的比例尺为1:50000,在等高线地形图上量得AB =1.8厘米,BP =3.6厘米,CP =4.2厘米。

(1) 分别求出AB 、BP 、CP 的坡度(同一段路中间坡度的微小变化忽略不计); (2) 若他们早晨7点同时步行从家出发,中途不停留,谁先到学校?(假设当坡度在101到81之 间时,小明和小丁步行的平均速度均约为1.3米/秒;当坡度在81到61之间时,小明和小丁步行的平均速度均约为1米/秒)解:(1) AB 的水平距离=1.8⨯50000=90000(厘米)=900(米),AB 的坡度=900100200-=91; BP 的水平距离=3.6⨯50000=180000(厘米)=1800(米),BP 的坡度=1800200400-=91;CP 的水平距离=4.2⨯50000=210000(厘米)=2100(米),CP 的坡度= ;(2) 因为101<91<81,所以小明在路段AB 、BP 上步行的平均速度均约为1.3米/秒。

因为 ,所以小丁在路段CP 上步行的平均速度约为 ● 米/秒,斜坡AB 的距离=22100900+≈906(米),斜坡BP 的距离=222001800+≈1811(米),斜坡CP 的距离=223002100+≈2121(米),所以小明从家到学校的时间=3.11811906+ =2090(秒)。

小丁从家到学校的时间约为 ❍ 秒。

因此, ⏹ 先到学校。

六、(本题12分)23. 某公司有甲、乙两个绿色农产品种植基地,在收获期这两个基地当天收获的某种农产品,一部份存入仓库,另一部分运往外地销售。

根据经验,该农产品在收获过程中两个种植基地累积总产量y (吨)与收获天数x (天)满足函数关系y =2x +3 (1≤x ≤10且x 为整数)。

该农产品在 收获过程中甲、乙两基地的累积产量分别占两基地累积总产量的百分比和甲、乙两基地累积的量;(2) 设在收获过程中甲、乙两基地累积存入仓库的该种农产品的总量为p (吨),请求出p (吨)与收获天数x (天)的函数关系式;(3) 在(2)的基础上,若仓库内原有该农产品42.6吨,为满足本地市场需求,在此收获期开始 的同时,每天从仓库调出一部分该种农产品投入本地市场,若在本地市场售出的该种农产品总量m (吨)与收获天数x (天)满足函数关系m = -x 2+13.2x -1.6 (1≤x ≤10且x 为整数)。

问在此收获期内连续销售几天,该农产品库存量达到最低值?最低库存量是多少吨?七、(本题12分)24. 如图1,在△ABC 中,点P 为BC 边中点,直线a 绕顶点A 旋转,若B 、P 在直线a 的异侧,BM ⊥直线a 于点M ,CN ⊥直线a 于点N ,连接PM 、PN ;(1) 延长MP 交CN 于点E (如图2)。

求证:△BPM ≅△CPE ; 求证:PM = PN ;(2) 若直线a 绕点A 旋转到图3的位置时,点B 、P 在直线a 的同侧,其它条件不变。

此时PM =PN 还成立吗?若成立,请给予证明;若不成立,请说明理由; (3) 若直线a 绕点A 旋转到与BC 边平行的位置时,其它条件不变。

请直接判断四边形MBCN的形状及此时PM =PN 还成立吗?不必说明理由。

aA BCPMNA BCM N aPA BCPNMa图1 图2 图3八、(本题14分)25. 如图1,在平面直角坐标系中,拋物线y =ax 2 c 与x 轴正半轴交于点F (16,0)、与y 轴正半轴交于点E (0,16),边长为16的正方形ABCD 的顶点D 与原点O 重合,顶点A 与点E 重合,顶点C 与点F 重合; (1) 求拋物线的函数表达式;(2) 如图2,若正方形ABCD 在平面内运动,并且边BC 所在的直线始终与x 轴垂直,抛物线始终与边AB 交于点P 且同时与边CD 交于点Q (运动时,点P 不与A 、B 两点重合,点Q 不与C 、D 两点重合)。

设点A 的坐标为(m ,n ) (m >0)。

当PO =PF 时,分别求出点P 和点Q 的坐标;在 的基础上,当正方形ABCD 左右平移时,请直接写出m 的取值范围;● 当n =7时,是否存在m 的值使点P 为AB 边中点。

若存在,请求出m 的值;若不存在,请说明理由。

图1 图2备用图沈阳市2010年中等学校招生统一考试数 学 试 题 答 案一、选择题:(每小题3分,共24分)1. A2. C3. D4. C5. B6. D7. B8. A二、填空题 (每小题4分,共32分)9. 3 10.2-1 11. (x +y )2 12. 减小 13. -1≤x ≤1 14. 1:9 15. (9,81) 16. 3或33 三、解答题 (第17、18小题各8分,第19小题10分,共26分) 17. [解] 原式=32-x x -3-x x =3-x x ,当x = -1时,原式=311---=41。

相关文档
最新文档