点线面之间的位置关系的知识点总结

合集下载

点、直线、平面之间的位置关系(知识点汇总)大全

点、直线、平面之间的位置关系(知识点汇总)大全

必修2第二章 点、直线、平面之间的位置关系1.四个公理:公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内(此公理可以用来判断直线是否在平面内)。

符号语言:,,,A l B l A B l ααα∈∈∈∈ ⇒ ∈且。

公理2:过不在一条直线上的三点,有且只有一个平面。

三个推论:① 经过一条直线和这条直线外一点,有且只有一个平面; ② 经过两条相交直线,有且只有一个平面; ③ 经过两条平行直线,有且只有一个平面; (它们给出了确定一个平面的依据)。

公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线(这条公共直线即为两个平面的交线)。

符号语言:,,P P l P l αβαβ∈∈⇒=∈ 且。

公理4:平行于同一直线的两条直线互相平行(平行线的传递性)。

符号语言://,////a l b l a b ⇒且。

2.空间中直线与直线之间的位置关系(1)位置关系:两条直线⎧⎧⎪⎨⎨⎩⎪⎩相交直线:同一平面内,有且只有一个公共点;共面直线平行直线:同一平面内,没有公共点;异面直线:不同在任何一个平面内,没有公共点(2)异面直线:把不在任何一个平面内的两条直线叫做异面直线。

(3)两条异面直线所成的角:已知两条异面直线,a b ,经过空间任意一点O 作直线//,//a a b b '',我们把a '与b '所成的锐角(或直角)叫异面直线,a b 所成的角(或夹角)。

(易知:夹角范围090θ<≤︒)(4)等角定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补。

3.空间中直线与平面之间的位置关系直线l 与平面α//l l A l ααα⊂⎧⎪=⎧⎨⎨⎪⎩⎩直线在平面内()有无数个公共点直线与平面相交()有且只有一个公共点直线在平面外直线与平面平行()没有公共点4.空间中平面与平面之间的位置关系平面α与平面β//l αβαβ⎧⎨=⎩两个平面平行()没有公共点两个平面相交()有一条公共直线5.直线与平面平行的判定及其性质定理定理 定理内容 符号表示直线与平面 平行的判定平面外的一条直线与平面内的一条直线平行,则该直线与此平面平行ααα////a b a b a ⇒⎪⎭⎪⎬⎫⊂⊄ 平面与平面平行的判定 一个平面内的两条相交直线与另一个平面平行,则这两个平面平行βαααββ//////⇒⎪⎪⎪⎭⎪⎪⎪⎬⎫=⊂⊂P b a b a b a 直线与平面平行的性质一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行b a b a a ////⇒⎪⎭⎪⎬⎫=⊂βαβα平面与平面平行的性质如果两个平行平面同时和第三个平面相交,那么它们的交线平行b a b a ////⇒⎪⎭⎪⎬⎫==βγαγβα(1)线面平行的其它判定方法 ①定义:直线与平面无公共点;②若两个平面平行,则在其中一个平面内的任意一条直线平行于另一个平面; 符号语言:αββα////a a ⇒⎭⎬⎫⊂; (2)面面平行的其它判定方法 ①定义:两个平面无公共点;②垂直于同一条直线的两个平面平行;符号语言:βαβα//⇒⎭⎬⎫⊥⊥a a ; ③平行于同一个平面的两个平面平行;符号语言:βαγβγα//////⇒⎭⎬⎫; ④如果一个平面内的两条相交直线平行于另一个平面内的两条相交直线,那么这两个平面互相平行;符号语言:βαβα//,,////⇒⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫==⊂⊂B d b A c a d b c a dc b a ;6.直线与平面所成的角(1)直线与平面垂直:如果直线l 与平面α内的任意一条直线都垂直,我们就说直线l 与平面α垂直,记作l α⊥。

点线面之间的位置关系的知识点汇总

点线面之间的位置关系的知识点汇总

点线面之间的位置关系的知识点汇总————————————————————————————————作者:————————————————————————————————日期:高中空间点线面之间位置关系知识点总结第二章 直线与平面的位置关系2.1空间点、直线、平面之间的位置关系2.1.11 平面含义:平面是无限延展的2 平面的画法及表示(1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图)(2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。

3 三个公理:(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 符号表示为A ∈LB ∈L => L α A ∈α B ∈α公理1作用:判断直线是否在平面内(2)公理2:过不在一条直线上的三点,有且只有一个平面。

符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。

公理2作用:确定一个平面的依据。

(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。

符号表示为:P ∈α∩β =>α∩β=L ,且P ∈L 公理3作用:判定两个平面是否相交的依据2.1.2 空间中直线与直线之间的位置关系1 空间的两条直线有如下三种关系:相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点同一条直线的两条直线互相平行。

符号表示为:设a 、b 、c 是三条直线 a ∥b 。

2 公理4:平行于 c ∥b强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。

公理4作用:判断空间两条直线平行的依据。

3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补4 注意点:① a'与b'所成的角的大小只由a 、b 的相互位置来确定,与O 的选择无关,为简便,点O 一般取在两直线中的一条上; ② 两条异面直线所成的角θ∈(0, );③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a ⊥b ;④ 两条直线互相垂直,有共面垂直与异面垂直两种情形;D C BAα LA ·α C ·B·A· α P · α Lβ 共面=>a ∥2⑤计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。

点线面间的位置关系知识点总结(含题)(

点线面间的位置关系知识点总结(含题)(

点线面间的位置关系知识点总结一、三个公理公理1如果一条直线上的两点在一个平面内,那么_________________________________________公理2:过________________________ 的三个点,有且只有一个平面公理3:如果两个不重合的平面有一个公共点,那么它们有且只有_____________________________二、空间两条直线间的位置关系分类为:______________ , ______________ ,_______________ ;其中__________ , _________ 合称为______________三、空间直线与平面间的位置关系分类为:__________________ ,____________ ,__________________ ;其中__________ , _________ 合称为______________四、空间平面与平面间的位置关系分类为:______________ ,当两个平面成90。

时,属于____________ 关系常用证明技巧一、线面平行列1 (2IH1年怀化楓蝌)如图所示*已知几0是单位止方WABCn-A^.C^的面A^BA和面』肮2>的中心*求证:卩总〃平面ncr^n.练习1. 正方形ABCD与正方形ABEF所在平面相交于AB,在AE、BD上各有一点P、Q且AP = DQ. 求证:PQ//平面BCE.2・妇匿,四棱链/一乩噸一平面所裁*截面为平厅四边形吕他求证,m/zz面日捌3* (加10年彌考■陕丙雜)如图’在四棱饰P ABCD中.底血ABCD^矩形「只4 丄平SLUJC/h .lP-.Ltf, BP-IiC-1, E, F分别&l f B T PC 的中点.门)证明* EF//平血知";卩)求二棱锥E—.【号「的休枳匚(2)1/3二、线面垂直1、(2006年北京卷)如图,在底面为平行四边形的四棱锥P ABCD中,AB 点E是PD的中点•(I)求证:AC PB ; (n)求证:PB〃平面AEC ;2、( 2006年浙江卷)如图,在四棱锥P-ABCD中,底面为直角梯形BAD=90 ° ,PA丄底面ABCD,且PA= AD=AB=2BC,M、N 分别为PC、PB 求证:PB丄DM;3、(2006年福建卷)如图,四面体ABCD中,0、E分别是BD、BC的中点,CA(I)求证:AO 平面BCD;AC , PA 平面ABCD,且PA AB , CB CD BD 2, AB AD . 2.,AD // BC, /的中点•ADOE4、( 2006年重庆卷)如图,在四棱锥P—ABCD中,PA 底面ABCD, PC、DAB 为直角,AB II CD,AD=CD=24B,E、F 分另U为CD的中点.(I)试证:CD 平面BEF;5、(全国H ?理?9题)如图,在四棱锥SCS-ABCD中,底面ABCD为正方形,侧棱SD丄底面ABCD , E、F分别是AB、的中点。

知识清单点线面之间的位置关系

知识清单点线面之间的位置关系

1 / 3专题五:点、直线与平面的位置关系姓名 班级一、四个公理:(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.符号语言: 图形语言:公理1作用:判断直线是否在平面内.(2)公理2:过不在一条直线上的三点,有且只有一个平面.符号语言: 图形语言:公理2作用:确定一个平面的依据.推论:①一条直线和其外一点确定一个平面②两条相交直线确定一个平面 ③两条平行直线确定一个平面(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线符号语言: 图形语言:公理3作用:①判定两个平面相交; ②确定点在直线上(4)公理4:平行于同一条直线的两条直线互相平行符号语言: 图形语言:公理4作用:判断空间两条直线平行的依据二、平行1.直线与平面平行的判定定理平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行 简记为:线线平行则线面平行符号语言: 图形语言:2.平面与平面平行的判定定理一个平面内的两条相交直线与另一个平面平行,则这两个平面平行 简记为:线线平行则线面平行符号语言: 图形语言:abca2 / 33.直线与平面平行的性质定理一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行 简记为:线面平行则线线平行 符号语言: 图形语言:4.平面与平面平行的性质定理如果两个平行的平面同时与第三个平面相交,那么它们的交线平行 简记为:面面平行则线线平行 符号语言: 图形语言:三、垂直1.直线与平面垂直的判定定理符号语言:2.平面与平面垂直的判定定理一个平面过另一个平面的垂线,则这两个平面垂直符号语言: 图形语言:3.直线与平面垂直的性质定理(1)基本性质:一条直线垂直一个平面,那么 这条直线垂直于这个平面内的任意一条直线符号语言:(2)性质定理:垂直于同一个平面的两条直线平行 符号语言: 图形语言:4.两个平面垂直的性质定理两个平面垂直,则一个平面内垂直于交线的直线与另一 个平面垂直符号语言: 图形语言:四、空间直线、平面的位置关系1.空间的两条直线有三种位置关系:2.直线与平面有三种位置关系:3.平面与平面的位置关系:五、判断平行、垂直的方法1.2.3.3 / 3。

(完整word版)点线面之间的位置关系的知识点总结,推荐文档

(完整word版)点线面之间的位置关系的知识点总结,推荐文档

高中空间点线面之间位置关系知识点总结第二章 直线与平面的位置关系2.1空间点、直线、平面之间的位置关系2.1.11 平面含义:平面是无限延展的2 平面的画法及表示(1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图)(2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。

3 三个公理:(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 符号表示为A ∈LB ∈L => L α A ∈α B ∈α公理1作用:判断直线是否在平面内(2)公理2:过不在一条直线上的三点,有且只有一个平面。

符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。

公理2作用:确定一个平面的依据。

(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。

符号表示为:P ∈α∩β =>α∩β=L ,且P ∈L 公理3作用:判定两个平面是否相交的依据2.1.2 空间中直线与直线之间的位置关系1 空间的两条直线有如下三种关系:相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点同一条直线的两条直线互相平行。

符号表示为:设a 、b 、c 是三条直线 a ∥b 。

2 公理4:平行于 c ∥b强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。

公理4作用:判断空间两条直线平行的依据。

3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补4 注意点:① a'与b'所成的角的大小只由a 、b 的相互位置来确定,与O 的选择无关,为简便,点O 一般取在两直线中的一条上; ② 两条异面直线所成的角θ∈(0, );③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a ⊥b ;④ 两条直线互相垂直,有共面垂直与异面垂直两种情形;D CBAα LA ·α C ·B·A · α P· αLβ 共面直线=>a ∥c2⑤计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。

点线面之间的位置关系

点线面之间的位置关系

公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内。

公理2:过不在一条直线上的三点,有且只有一个平面。

公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。

公理4:平行于同一条直线的两条直线互相平行。

定理空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。

定理平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

定理一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。

定理一条直线与一个平面平行则过这条直线的任意一平面与此平面的交线与该直线平行。

定理如果两个平行平面同时和第三个平面相交,那么它们的交线平行。

点线面位置关系定理总结

点线面位置关系定理总结

培优辅导,陪你更优秀!
//a b //a b
1.线面平行判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。

(简述为线线平行线面平行) 表述及图示
2.线面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行。

(简述为线面平行线线平行)
//a a b
α
β
αβ⊂⋂= 3.平面平行判定定理:如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行。

////a b a b a b P
β
β
αα
⊂⊂⋂=//αβ
4.平面平行性质定理:如果两个平行平面都和第三个平面相交,那么它们的交线平行
//a b
αβ
γαγβ⋂=⋂=
5.线面垂直的判定定理:一条直线与一个平面内的两条相交直线都垂直,那么这条直线就垂直于这个
平面。

a b
a c
b c A b c α
α
⊥⊥⋂=⊂⊂a α⊥
6.线面垂直性质定理:垂直于同一平面的两条直线平行。

a b α
α⊥⊥ 7.面面垂直判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。

简述为“线面垂直,则面面垂直”。

a a αβ
⊂⊥αβ⊥ 8.面面垂直性质定理:如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。

l a a l αβ
αβα
⊥⋂=⊂⊥αβ⊥ //a b a b α
α⊄
⊂//a
α
//a
b。

高一数学下册《点线面之间的位置关系》常考知识点整理

高一数学下册《点线面之间的位置关系》常考知识点整理

高一数学下册《点线面之间的位置关系》常考知识点整理高一数学下册《点线面之间的位置关系》常考知识点整理上学的时候,说到知识点,大家是不是都习惯性的重视?知识点在教育实践中,是指对某一个知识的泛称。

那么,都有哪些知识点呢?下面是店铺为大家整理的高一数学下册《点线面之间的位置关系》常考知识点整理,欢迎大家借鉴与参考,希望对大家有所帮助。

1、直线在平面内的判定(1)利用公理1:一直线上不重合的两点在平面内,则这条直线在平面内。

(2)若两个平面互相垂直,则经过第一个平面内的一点垂直于第二个平面的直线在第一个平面内,即若α⊥β,A∈α,AB⊥β,则ABα。

(3)过一点和一条已知直线垂直的所有直线,都在过此点而垂直于已知直线的平面内,即若A∈a,a⊥b,A∈α,b⊥α,则aα。

(4)过平面外一点和该平面平行的直线,都在过此点而与该平面平行的平面内,即若Pα,P∈β,β∥α,P∈a,a∥α,则aβ。

(5)如果一条直线与一个平面平行,那么过这个平面内一点与这条直线平行的直线必在这个平面内,即若a∥α,A∈α,A∈b,b∥a,则bα。

2、存在性和唯一性定理(1)过直线外一点与这条直线平行的直线有且只有一条;(2)过一点与已知平面垂直的直线有且只有一条;(3)过平面外一点与这个平面平行的平面有且只有一个;(4)与两条异面直线都垂直相交的直线有且只有一条;(5)过一点与已知直线垂直的平面有且只有一个;(6)过平面的一条斜线且与该平面垂直的平面有且只有一个;(7)过两条异面直线中的一条而与另一条平行的平面有且只有一个;(8)过两条互相垂直的异面直线中的一条而与另一条垂直的平面有且只有一个。

3、射影及有关性质(1)点在平面上的射影自一点向平面引垂线,垂足叫做这点在这个平面上的射影,点的射影还是点。

(2)直线在平面上的射影自直线上的两个点向平面引垂线,过两垂足的直线叫做直线在这平面上的射影。

和射影面垂直的直线的射影是一个点;不与射影面垂直的直线的射影是一条直线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中空间点线面之间位置关系知识点总结第二章直线与平面的位置关系2.1空间点、直线、平面之间的位置关系2.1.11平面含义:平面是无限延展的2平面的画法及表示(1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成45°,且横边画成邻边的2倍长(如图)(2)平面通常用希腊字母a、B、Y等表示,如平面a、平面B等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC平面ABCD等。

3 三个公理:(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内符号表示为公理1作用:判断直线是否在平面内(2)公理2 :过不在一条直线上的三点,有且只有一个平面。

符号表示为:AB、C三点不共线=> 有且只有一个平面a, 使A€a、B€a、C€a。

公理2作用:确定一个平面的依据。

(3)公理3 :如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。

符号表示为:P€aQB => aPp =L,且P€ L公理3作用:判定两个平面是否相交的依据2.1.2空间中直线与直线之间的位置关系1空间的两条直线有如下三种关系:f相交直线:同一平面内,有且只有一个公共点; 共面直线 Yl平行直线:同一平面内,没有公共点;异面直线:不同在任何一个平面内,没有公共点同一条直线的两条直线互相平行。

符号表示为:设a、b、c是三条直线强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用公理4作用:判断空间两条直线平行的依据。

3等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补4注意点:①a'与b'所成的角的大小只由a、b的相互位置来确定,与0的选择无关,为简便,点0 —般取在两直线中的一条上;②两条异面直线所成的角(0,);③当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a丄b;a//b2公理4:平行=>a //c④两条直线互相垂直,有共面垂直与异面垂直两种情形;⑤计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角2.1.3 —2.1.4空间中直线与平面、平面与平面之间的位置关系1、直线与平面有三种位置关系:(1)直线在平面内一一有无数个公共点(2 )直线与平面相交一一有且只有一个公共点(3)直线在平面平行一一没有公共点指岀:直线与平面相交或平行的情况统称为直线在平面外,可用 a a来表示―a a a Qa =A a Ila2.2.直线、平面平行的判定及其性质2.2.1直线与平面平行的判定1、直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

简记为:线线平行,则线面平行。

符号表示:a a.j. -■■■b B => a , Iaa Ib - ■2.2.2平面与平面平行的判定1、两个平面平行的判定定理:一个平面内的两条交直线与另一个平面平行,则这两个平面平行符号表示:a B 匸b B匸a Qb = P B/Iaa lab //a2、判断两平面平行的方法有三种:(1 )用定义;(2)判定定理;(3 )垂直于同一条直线的两个平面平行。

2.2.3 —1、定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。

简记为:线面平行则线线平行。

符号表示:a //a ra 匸B a Ib aQB = b 丿作用:利用该定理可解决直线间的平行问题。

2、定理:如果两个平面同时与第三个平面相交,那么它们的交线平行。

符号表示:a//BaQY = a a //toBQ Y = b -作用:可以由平面与平面平行得岀直线与直线平行2.3直线、平面垂直的判定及其性质二面角的概念:表示从空间一直线出发的两个半平面所组成的图形两个平面互相垂直的判定定理: 一个平面过另一个平面的垂线,则这两个平面垂直。

2.3.3 — 2.3.4直线与平面、平面与平面垂直的性质 1、定理:垂直于同一个平面的两条直线平行。

2性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。

\异面直线所成的角是指经过空间任意一点作两条分别和异面的两条直线平行的 直线所成的 锐角(或直角)•一般通过平移后转化到三角形中求角,注意角的范 围.[例1]在正方体 ABCD-^ B 1C 1D 1中,0是底面 ABCD 勺中心,M N 分别是棱 DD 1 > D 1 C 1的中点,则直线 0M ().A .是AC 和MN 的公垂线.B . 垂直于AC 但不垂直于 MN. C .垂直于 MN 但不垂直于 AC.D .与AC 、MN 都不垂直. 错解:B.错因:学生观察能力较差,找不出三垂线定理中的射影 .正解:A.1、定义 如果直线L 与平面a 内的任意一条直线都垂直,我们就说直线 L 与平面a 互相垂直,记作 L 丄a,直线L 叫做平面a 的2、 垂线,平面a 叫做直线 L 的垂面。

如图,直线与平面垂直时 ,它们唯一公共点 P 叫做垂足 注意点: 判定定理: b )定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想。

[例2]如图,已知在空间四边形ABCD 中 ,E,F 分别是AB,AD 的中点,分别是 BC,CD 上的点,且BG GC DH占八、、■ 错解:证明: E 、F 分别是AB,AD 的中点, 丄 EF II BD,EF= 2 BD,2 ,求证:直线EG,FH,AC 相交于1、3、I- B 或 a -AB- B1GH// BD,GH=3 BD,四边形EFGH 是梯形,设两腰 EG,FH 相交于一点T,EG 平面ABC,FH 平面ACD,T 面ABC,且T 面ACD,又平面ABC 平面ACD=AC, T AC ,直线EG,FH,AC 相交于一点T.[例3]在立方体 ABCD- A 1B 1C 1D1中,(1) 找出平面AC 的斜线BD 在平面AC 内的射影; (2) 直线BD 和直线AC 的位置关系如何? (3) 直线BD 和直线AC 所成的角是多少度?解:⑴ 连结BD,交AC 于点O DD 1 平面AC, BD 就是斜线BD 1在平面AC 上的射影(2)BD i 和AC 是异面直线.⑶过O 作BD i 的平行线交 DD i 于点M ,连结MA 、MC ,则/ MOA 或其补角即为异面直线 AC 和BD i 所成的角 不难得到 MA = MC ,而O 为AC 的中点,因此 MO 丄AC ,即/ MOA = 90°, •••异面直线BD i 与AC 所成的角为90 °.[例4] a 和b 为异面直线,则过 a 与b 垂直的平面(). A •有且只有一个 B .一个面或无数个 C •可能不存在D•可能有无数个错解:A.错因:过a 与b 垂直的平面条件不清.正解:C.平面BBO.四边形EFGH 是梯形,设两腰 EG,FH 相交于一点T,DC2,F 分别是AD. AC 与FH 交于一点.直线EG,FH,AC 相交于一点 正解:证明: E 、F 分别是AB,AD 的中点,1EF// BD,EF= 2 BD,又 GC DC又 BG DH 乂GC HC[例5]在正方体 ABCD — ABCC 中, E 、F 分别是棱 AB BC 的中点, O 是底面ABCD 勺中点.求证: EF 垂直1GH// BD,GH=3 BD,2,证明:如图,连接AC BD,贝U O为AC和BD的交点. •/ E、F分别是AB BC的中点,••• EF>△ ABC的中位线,••• EF// AC.•/ B i B丄平面ABCD,AC 平面ABCD•AC丄BB,由正方形ABCD知:AC丄B0,又B0与BB是平面BBO上的两条相交直线,•AC丄平面BBO(线面垂直判定定理)•/ AC// EF, • EF丄平面BBO.[例6]如图,在正方体ABCD-ABiGD中,E是BB的中点,0是底面正方形ABCD的中心,求证: 面ACD .分析:本题考查的是线面垂直的判定方法•根据线面垂直的判定方法,要证明面ACD内找两条相交直线与0E垂直.证明:连结BD、AD、BD,在△ BiBD中,•/ E,0分别是BB和DB的中点,•E0// B i D .•/ BA 面AADD ,•DA为DB在面AADD内的射影.又••• AD A i D ,•AD DB同理可证BD DC .又••• AD CD1D1, AD,D i C 面ACD ,•BD 平面ACD .•/ BD// 0E ,0E 平只要在平0E 平面ACD ,••• OE 平面 ACD .点评:要证线面垂直可找线线垂直,这是立体几何证明线面垂直时常用的转化方法.在证明线线垂直 时既要注意三垂线定理及其逆定理的应用,也要注意有时是从数量关系方面找垂直,即勾股定理或余弦定 理的应用. [例7].如图,正方体 ABCD-ABCD 中,点N 在BD 上,点M 且 CM=DN 求证:MN//平面 AAB i B. 证明: 证法一.如图,作ME/ BC,交BB 于E,作NF// AD,交AB 于F,连 平面AAB i B. 在BC 上,EF 则 EFME BN NF■BC "BD A D ,ME=NF 又ME/ BC// AD// NF, MEFt 为平行四边形 MIN/ EF.MN//平面 AABB. P,连 B i P,则 BPDN CN NDC s NBP, NB NP.证法二.如图,连接并延长 CN 交BA 延长线于点CM 又 CM=DN,BC=BD, M B ?MN //B ?P .B i P 平面 AAB i B, MN/平面 AAB i B. 平面AAB i B.DN CN NB NP - 证法三.如图,作MP// BB,交BC 于点P,连NP. MP/ BB,CM CP MB iPB . BD=BC,DN=CM, BN. NP// CD// AB. 面 MNP/ 面 AAB i B. MN/平面 AAB i B.点、线、面之间的位置关系单元测试第i 题.下列命题正确的是()A.经过三点确定一个平面E.经过一条直线和一个点确定一个平面C.四边形确定一个平面D.两两相交且不共点的三条直线确定一个平面答案:D.第2题.如图,空间四边形ABCD中,E , F , G , H分别是AB , BC , CD , DA的中点.求证:四边形EFGH是平行四边形.答案:证明:连接BD.因为EH是厶ABD的中位线,1所以EH // BD,且EH BD21同理,FG // BD,且FG BD .2因为EH // FG,且EH FG .所以四边形EFGH为平行四边形.第3题.如图,已知长方体ABCD ABC D中,AB 2.3,AD 2、_3,AA 2 .(1)BC和AC所成的角是多少度?(2)AA和BC所成的角是多少度?答案:(1) 45 ; (2) 60 .第4题.下列命题中正确的个数是( )①若直线I上有无数个点不在平面内,则I // .②若直线I与平面平行,则I与平面内的任意一条直线都平行.③如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行.④若直线I与平面平行,则I与平面内的任意一条直线都没有公共点.A. 0B. 1C. 2D. 3答案:B.第5题.若直线a不平行于平面,且a ,则下列结论成立的是( )A.内的所有直线与a异面B.内不存在与a平行的直线C.内存在唯一的直线与a平行D.内的直线与a都相交答案:B.第6题.已知a,b,c是三条直线,角a // b,且a与c的夹角为,那么b与c夹角为______________ 答案:第7题.如图,AA是长方体的一条棱,这个长方体中与AA垂直的棱共________ 条.答案:8条.第8题.如果a,b是异面直线,直线c与a,b都相交,那么这三条直线中的两条所确定的平面共有个.答案:2个.第9题.已知两条相交直线a , b , a //平面则b与的位置关系是 _______________ .答案:b // a,或b与a相交.第10题.如图,三条直线两两平行且不共面,每两条确定一个平面,一共可以确定几个平面?如果三条直线相交于一点,它们最多可以确定几个平面?答案:3个,3个.第11题.如图是正方体的平面展开图,则在这个正方体中:①BM与ED平行. ②CN与BE是异面直线.③CN与BM成60?角. ④ DM与BN垂直.以上四个命题中,正确命题的序号是()A.①,②,③ E.②,④C.③,④D.②,③,④答案:C.第12题.下列命题中,正确的个数为()①两条直线和第三条直线成等角,则这两条直线平行;②平行移动两条异面直线中的任何一条,它们所成的角不变;③过空间四边形ABCD的顶点A引CD的平行线段AE,则BAE是异面直线AB与CD所成的角;④四边相等,且四个角也相等的四边形是正方形A. 0B.1C. 2D. 3答案:E.第13题.在空间四边形ABCD中,N,M分别是BC , AD的中点,贝U 2MN与AB CD的大小关系是.答案:2MN AB CD第14题.已知a,b是一对异面直线,且a,b成70°角,P为空间一定点,则在过P点的直线中与a, b所成的角都为70°的直线有条'答案:4 .第15题.已知平面// , P是平面,外的一点,过点P的直线m与平面,分别交于A, C两点,过点P的直线n与平面,分别交于B,D两点,若PA 6, AC 9,PD 8,24则BD的长为•答案:24或5第16题.空间四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点,若AC BD a,且AC与BD所成的角为90°,则四边形EFGH的面积是 _______________________ .1 2答案:丄a2.4第17题.已知正方体ABCD A1B1C1D1中,E,F分别为DQ,GB的中点,AC I BD P,AG I EF Q .求证:(1) D , B , F , E 四点共面;(2) 若A i C 交平面DBFE 于R 点,贝U P , Q , R 三点共线. 答案:证明:如图.(1) Q EF 是厶 D.3G 的中位线, EF // BQ ,.在正方体 AC i 中,BD // BD , EF // BD .EF 确定一个平面,即 D , B , F , E 四点共面.(2)正方体 AC i 中,设 AACC i 确定的平面为Q Q A 1C 1, Q .又 Q EF , Q则Q 是与的公共点,I PQ . 又 ACI R , R AC .第21题.三条直线相交于一点,可能确定的平面有( ) A. 1个 B. 2个 C. 3个 D. 1个或3个R ,且 R ,则 R PQ .故P ,Q ,R 三点共线.第18题.已知下列四个命题:① 很平的桌面是一个平面;②一个平面的面积可以是4m 2 ;③平面是矩形或平行四边形;④两个平面叠在一起比一个平面厚.其中正确的命题有() A. 0个B. 1个C. 2个D. 3个 答案:A. 第19题.给岀下列命题:和直线a 都相交的两条直线在同一个平面内;三条两两相交的直线在同一平面内;有三个不同公共点的两个平面重合;两两平行的三条直线确定三个平面.其中正确命题的个数是() A. 0 B. 1C. 2D. 3 答案:A.第20题.直线11 // 12,在11上取3点,12上取2点,由这A. 9个B. 6个C. 3个D. 1个 答案:D.,又设平面BDEF 为5点能确定的平面有( )答案:D.第22题.下列命题中,不正确的是()①一条直线和两条平行直线都相交,那么这三条直线共面;②每两条都相交但不共点的四条直线一定共面;③两条相交直线上的三个点确定一个平面;④两条互相垂直的直线共面.A.①与② E.③与④ C.①与③答案:E.第23题.分别和两条异面直线都相交的两条直线一定是(A.异面直线 E.相交直线 C.不相交直线答案:D.第24题.在长方体ABCD A i B i C i D i中,点0 , O i分别是四边形ABCD , A, B i C i D i的对角线的交点,点E , F分别是四边形AA|D i D,BB i C i C的对角线的交点,点G,H分别是四边形A i ABB i,GCDD i的对角线的交点.求证:△ OEG O i FH . D i答案:证明:如图,连结AD i,AC,CD i,C i A i,C i B,BA i.1 i由三角形中位线定理可知0E丄C D ,,O,F丄 BA .2 2又BA,丄CD,,二OE丄O i F •同理可证EG丄FH . 由等角定理可得OEG O,FH••• △ OEG QFH第25题.若a,b是异面直线,b,c也是异面直线,则A.异面 E.相交或平行 C.平行或异面答案:D.第26题.a,b是异面直线,A,B是a上两点,C,中点,则MN和a的位置关系是()A.异面直线 E.平行直线 C.相交直线a与c的位置关系是()D.相交或平行或异面D是b上的两点,M , N分别是线段AC和BD的D.平行、相交或异面答案:A.第27题.如下图是正方体的平面展开图,在这个正方体中①BM与ED平行;②CN与BE是异面直线;③CN与BM成60角;④DM与BN垂直.以上四个命题中,正确命题的序号是()A.①②③ E.②④ C.③④ D.②③④答案:C.第28题.直线与平面平行的条件是这条直线与平面内的(刁1D.②与④)D.不平行直线A. —条直线不相交E.两条直线不相交C.任意一条直线不相交D.无数条直线不相交答案:C.第29 题. 如果直线a 平行于平面,则()A.平面内有且只有一直线与a平行E.平面内有无数条直线与a平行c.平面内不存在与a平行的直线D.平面内的任意直线与直线a都平行答案:E.。

相关文档
最新文档