初一上册数学第二单元《知识点总结归纳

合集下载

人教版七年级数学上册第二章知识点

人教版七年级数学上册第二章知识点

第二章整式的加减2.1整式学习目标:1.用含有字母的式子表示数量关系,找出实际问题中的数量关系。

2.掌握单项式及单项式的系数、次数的概念,准确迅速地确定一个单项式的系数和次数。

3.掌握整式、多项式、多项式的项和次数以及常数项等概念。

知识点1 单项式单项式:对数字和若干个字母施行有限次乘法运算,所得的代数式叫做单项式.单独一个数或一个字母也是单项式。

系数:单项式中的数字因数叫做这个单项式的系数。

单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。

例1列车在冻土地段的行驶速度是100千米/时,根据速度时间和路程之间的关系“路程=速度×时间”填空.(1)列车2小时行驶的路程是200千米,列车3小时行驶的路程是300千米,列车t 小时行驶的路程是100t千米.(2)字母t表示时间有什么意义?如果用v表示速度,列车行驶的路程是多少?用字母t表示时间,字母t可以像数一样参与运算,并且可以简明表示列车行驶的路程与时间、速度的关系.如果用v表示速度,列车行驶的路程为vt千米.例2上面(1)(2)中的100t,vt都是用字母表示数的式子,回顾从前你所学的知识,你还能举出用字母表示数或数量关系的例子吗?能,若苹果每千克1.5元, 则买t千克苹果需花1.5t元;若苹果每千克m元,则买n 千克苹果需花mn元.(1)用字母表示数后,可以用含有字母的式子把数量关系简明地表示出来,更适合于一般规律的表述.(2)用字母表示数的特点:①任意性:字母可任意表示数或式;②限制性:字母取值应使具体式子有意义;③确定性:字母取值一旦确定,式子的值也随之确定;④一般性:字母取代数更准确地反映事物的规律,更具一般性.含有字母的式子的一般书写格式:(1)如果出现乘号,数字与字母、字母与字母之间通常将乘号写成“·”或省略不写.例如100×x,可以写成100·x或100x(3)如果出现除号,通常将式子写成分数的形式.例如x÷2,可以写成x/2.(4)单项式分母中不含字母;含运算符号“+”或“-”的式子不是单项式,如0.5m+n例31. 以下四个单项式:1/3a2h, 2πr, abc, -m2,它们的数字因数分别是1/3, 2π, 1, -1,各单项式中所有字母指数的和分别是3, 1, 3,2.2. 一个单项式中的数字因数叫作这个单项式的系数。

七年级上册数学第二单元知识点

七年级上册数学第二单元知识点

七年级上册数学第二单元知识点七年级上册数学第二单元知识点:第二章有理数解读有理数的有关概念一、正数与负数:1.正数:大于0的数叫正数。

像+1.8,+420、+30、+10%等带有理数“+”号的数叫做正数。

为了强调正数,前面加上“+”号,也可以省略不写。

2.负数:小于0的数叫负数。

像-3、-4754、-50、-0.6、-15%等。

※而负数前面带“-”号,而且不能省略。

3.零既不是正数也不是负数,它是正数与负数的分界点。

注意:对于正数与负数,不能简单地理解为:带“+”号的数是正数,带“-”号的数是负数。

例如-a不一定是负数,因为字母a代表任何一个有理数,当a是0时,-a是0,当a是负数时,-a是正数。

二、有理数及其分类:有理数:整数与分数统称为有理数。

整数包括三类:正整数、零、负整数。

分数包括两类:正分数和负分数。

注意:小学学过的零表示没有,而引入负数后,就不能把“零”完全当作没有了,如0℃就是一个特定的温度;现在我们学过的数,除p和与p有关的数外,其他的数都是有理数;引入负数后,数的范围扩大为有理数,奇数和偶数的外延也由自然数扩大到整数。

三、数轴:1.数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴。

注意:①数轴是一条直线,可以向两端无限延伸;②数轴有三要素:原点、正方向、单位长度三者缺一不可;③原点的位置、正方向的取向、单位长度的大小的选定,都是根据实际需要而定的。

2.数轴的画法:1一条水平的直线;2直线的适当位置选取一点作为原点,并用0表示这点;3定向右为正方向,用箭头表示出来;4选取适当的长度作为单位长度,从原点向右,每隔一个单位长度取一点,依次为1,2,3,从原点向左,每隔一个单位长度取一点,依次为-1,-2,-3。

四、相反数:代数意义:只有符号不同的两个数互为相反数。

如-2和2.规定零的相反数是零。

几何意义:位于原点的两侧且与原点的距离相等的点所表示的两个数。

注意:相反数是成对出现的,不能单独存在,如+2与-2互为相反数,说明+2的相反数是-2,-2的相反数是+2,单独一个数不能说相反数;“只有”的含义说明像+5与-3这样的两个数不是互为相反数。

七年级数学上册第二章知识点总结

七年级数学上册第二章知识点总结

第二章整式的加减整式的概念: 单项式与多项式统称整式。

(分母含有字母的代数式不是整式)一、单项式:都是数或字母的积的式子叫做单项式。

1.单项式的系数:单项式中的数字因数。

2.单项式的次数:一个单项式中所有字母的指数的和 。

注意① 圆周率π是常数;② 只含有字母因式的单项式的系数是1或-1,“1”通常省略不写。

例:x 2,-a 2b 等;③ 单项式次数只与字母指数有关。

例:23πa 6的次数为 。

④ 单项式的系数是带分数时,应化成假分数。

⑤ 单项式的系数包括它前面的符号。

例:h 2.1-系数是 。

⑥ 单独的一个数字是单项式,它的系数是它本身;非零常数的次数是0。

考点:1.在代数式:n2,33-m ,22-,32m -,22b π,0中,单项式的个数有( )A. 1个B.2个C.3个D.4个2.单项式-3224c ab 的系数与次数别离是( )A. -2, 6B.2, 7C.32-, 6 D.32-, 7 3.25ab π-的系数是_____________.4.判定以下式子是不是是单项式,是的√,不是的打Xx ab 2 ; a ; 25ab - ; y x + ; 85.0- ; 21+x ; 2x;0 ;7x ; 2(1)a - ;62a - ; 1xy ; x π ; x π5.写出以下单项式的系数和次数3a-的系数是______,次数是______; 25ab 的系数是______,次数是______;a 2bc 3的系数是_____,次数是_____;237x y π的系数是_____,次数是_____;3y x -2的系数是______,次数是______; 23xy z -的系数是_____,次数是_____;53x 2y 的系数是_____,次数是______; 6.若是12b x -是一个关于x 的3次单项式,那么b=_______;若6a -1-m b 是一个4次单项式,那么m=_____;已知28m x y -是一个6次单项式,求210m -+的值。

七年级上册数学第二单元知识点

七年级上册数学第二单元知识点

七年级上册数学第二单元知识点本文主要介绍七年级上册数学第二单元的知识点,包括整数和小数的基本概念、运算法则以及应用等内容。

希望对同学们的学习有所帮助。

一、整数的基本概念整数是指正整数、负整数和0的总称,用“Z”表示。

在数轴上,正整数位于原点右侧,负整数位于原点左侧。

如果两个数在数轴上的位置相对,那么它们的大小关系也相应确定。

二、整数的加减法1. 整数的加法:同号相加,异号相减,绝对值大的数的符号不变,绝对值小的数的符号跟另一个数的符号相同。

2. 整数的减法:转换成加法运算,即被减数加上减数的相反数。

三、小数的基本概念小数是指整数部分和小数部分组成的数,小数部分由小数点后的数位组成,常用的分数形式为分母为10的分数,用“D”表示。

整数可以看成是小数部分为0的小数。

四、小数的加减法小数的加减法是在小数点对齐的基础上,按位相加或相减,最后保留相应位数的小数位。

若有整数,整数也要参与运算。

五、小数的乘除法1.小数的乘法:先将小数乘数的乘积按位对齐,然后进行普通的乘法运算,最后保留相应位数的小数位。

2.小数的除法:先将小数除数乘以相应的倍数,使其变为整数,然后进行普通的除法运算,最后根据需要保留相应位数的小数位。

六、应用问题在实际生活中,整数和小数都有广泛的应用。

例如:货币、温度、身高、体重等数据都是以小数或整数的形式表示。

在计算过程中,我们也需要掌握处理这些数据的方法。

七、总结整数和小数是我们日常生活中经常使用的概念,在学习过程中,我们需要掌握它们的基本概念、运算法则以及应用方法。

希望同学们能够认真学习,并能够灵活运用所学知识。

七年级上册数学第二章知识点总结

七年级上册数学第二章知识点总结

七年级上册数学第二章知识点总结一、有理数1. 有理数的概念-整数和分数统称为有理数。

-有理数可分为正有理数、0、负有理数。

2. 有理数的分类-按定义分类:-有理数分为整数和分数。

-整数包括正整数、0、负整数。

-分数包括正分数、负分数。

-按性质分类:-有理数分为正有理数、0、负有理数。

-正有理数包括正整数和正分数。

-负有理数包括负整数和负分数。

3. 数轴-规定了原点、正方向和单位长度的直线叫做数轴。

-任何一个有理数都可以用数轴上的一个点来表示。

-数轴上两个点表示的数,右边的总比左边的大。

4. 相反数-只有符号不同的两个数叫做互为相反数。

- 0 的相反数是0。

-若a、b 互为相反数,则a+b=0。

5. 绝对值-数轴上表示数a 的点与原点的距离叫做数a 的绝对值。

-一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0 的绝对值是0。

即:-当a>0 时,|a|=a;-当a=0 时,|a|=0;-当a<0 时,|a|=-a。

二、有理数的加减法1. 有理数的加法法则-同号两数相加,取相同的符号,并把绝对值相加。

-绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加得0。

-一个数同0 相加,仍得这个数。

2. 有理数的加法运算律-加法交换律:a+b=b+a。

-加法结合律:(a+b)+c=a+(b+c)。

3. 有理数的减法法则-减去一个数,等于加上这个数的相反数。

即a-b=a+(-b)。

三、有理数的乘除法1. 有理数的乘法法则-两数相乘,同号得正,异号得负,并把绝对值相乘。

-任何数与0 相乘,都得0。

2. 有理数的乘法运算律-乘法交换律:ab=ba。

-乘法结合律:(ab)c=a(bc)。

-乘法分配律:a(b+c)=ab+ac。

3. 有理数的除法法则-除以一个不等于0 的数,等于乘这个数的倒数。

即a÷b=a×1/b(b≠0)。

-两数相除,同号得正,异号得负,并把绝对值相除。

七年级数学第二单元知识点

七年级数学第二单元知识点

1.数和代数
-数的分类:自然数、整数、有理数、无理数、实数-数轴和数线
-绝对值的概念、性质和表示方法
2.整数的加法和减法
-同号整数相加、异号整数相加的规律及计算方法-整数的加法和减法运算法则
-整数的运算性质:交换律、结合律、分配律
3.整数的乘法和除法
-同号整数相乘、异号整数相乘的规律及计算方法-整数的乘法和除法运算法则
-乘法的分配律在整数中的运用
4.合并同类项和计算简单的代数式
-合并同类项的概念和方法
-常数项、相同字母项、系数、指数
-计算和化简代数式的方法和步骤
5.方程和不等式
-方程和等式的概念及解方程的基本方法
-使用逆运算解方程
-不等式的概念及解不等式的基本方法
6.坐标系和二元一次方程
-点的坐标及坐标系的概念
-点在坐标系中的位置及对应的坐标值
-线性关系的概念和特点
-一元一次方程和二元一次方程的概念及解法
7.倍数和约数
-倍数的概念及求倍数的方法
-最小公倍数和最大公约数的概念及求法
8.实际问题的数学表达
-将实际问题用代数式表示
-从实际问题中提取出数学关系
-利用数学知识解决实际问题
9.统计与概率
-统计的基本概念:数据、频数、频率、平均数
-绘制和分析各类统计图表
-事件的概念和概率的计算
以上是七年级数学第二单元的知识点概述,包括数和代数、整数的运算、代数式、方程与不等式、坐标系、倍数和约数、实际问题的数学表达、
统计与概率等。

需要详细学习和理解每个知识点的定义、性质、规律和解题方法,才能更好地掌握这一单元的内容。

七年级上册数学第二单元知识点归纳

七年级上册数学第二单元知识点归纳

七年级上册数学第二单元知识点归纳
一、整式。

1. 单项式。

- 由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也是单项式。

- 单项式中的数字因数叫做这个单项式的系数。

- 一个单项式中,所有字母的指数的和叫做这个单项式的次数。

2. 多项式。

- 几个单项式的和叫做多项式。

- 在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。

- 多项式里,次数最高项的次数,叫做这个多项式的次数。

3. 整式。

- 单项式和多项式统称为整式。

二、整式的加减。

1. 同类项。

- 所含字母相同,并且相同字母的指数也相同的项叫做同类项。

几个常数项也是同类项。

2. 合并同类项。

- 把多项式中的同类项合并成一项,叫做合并同类项。

- 合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母连同它的指数不变。

3. 去括号法则。

- 括号前是“+”,把括号和它前面的“+”去掉后,原括号里各项的符号都不改变。

- 括号前是“-”,把括号和它前面的“-”去掉后,原括号里各项的符号都要改变。

4. 整式的加减运算。

- 一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。

七年级上册数学第二单元知识点全面解析2024人教版

七年级上册数学第二单元知识点全面解析2024人教版

七年级上册数学第二单元知识点全面解析2024人教版一、引言七年级上册数学第二单元主要涉及有理数及其运算、整式的加减、一元一次方程、图形的认识、数据的收集与整理等内容。

这些知识点不仅是初中数学学习的基础,也是学生们在日常生活中常常会用到的数学知识。

本文将对这些知识点进行详细的归纳和解析,帮助学生们更好地理解和掌握。

二、有理数及其运算1. 有理数的概念有理数包括正整数、负整数、零、正分数和负分数。

它们可以表示为分数的形式,其中分子和分母都是整数,且分母不为零。

2. 有理数的分类有理数可以分为整数和分数。

整数包括正整数、负整数和零;分数包括正分数和负分数。

3. 有理数的运算有理数的运算包括加法、减法、乘法和除法。

以下是各类运算的具体规则:加法:同号相加,取相同的符号,绝对值相加;异号相加,取绝对值较大的符号,绝对值相减。

减法:减去一个数等于加上这个数的相反数。

乘法:同号相乘得正,异号相乘得负,绝对值相乘。

除法:除以一个数等于乘以这个数的倒数。

4. 有理数的性质有理数具有以下性质:交换律:a + b = b + a;a × b = b × a结合律:a + (b + c) = (a + b) + c;a ×(b ×c) = (a ×b) × c分配律:a ×(b + c) = a × b + a × c三、整式的加减1. 整式的概念整式是由数字和字母通过加、减、乘、除(除法中除数不含字母)以及乘方运算组成的代数式。

整式包括单项式和多项式。

2. 单项式单项式是由数字和字母的乘积组成的代数式,如3a、-5xy²等。

单项式的系数是数字部分,次数是所有字母指数的和。

3. 多项式多项式是由几个单项式相加组成的代数式,如3a + 5b、-2x²+ 4x 7等。

多项式的项数是单项式的个数,最高次项的次数是多项式的次数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一上册数学第二单元《知识点总结归纳初一数学上册第二单元的知识点汇总:
1、单项式:表示数字或字母乘积的式子,单独的一个数字或字母也叫单项式。

2、单项式的系数与次数:单项式中的数字因数,称单项式的系数;
单项式中所有字母指数的和,叫单项式的次数。

3、多项式:几个单项式的和叫多项式。

4、多项式的项数与次数:多项式中所含单项式的个数就是多项式的。

项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;
5、同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项。

6、合并同类项法则:系数相加,字母与字母的指数不变。

7、去(添)括号法则:
去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号。

8、整式的加减:一找:(划线);二“+”(务必用+号开始合并)三合:(合并)
9、多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列)。

相关文档
最新文档