螺纹强度计算
螺纹联接的强度计算

工作载荷不稳定时,F1=(0.6~1.0)F
F
Dp
D
12
各力定义:
1、预紧力F0(拧紧螺母后,作用在螺栓上的拉力和被联件 上压力)
2、工作拉力F(对螺栓联接施加的外载荷) 3、 残余预紧力F1 4、螺栓的总拉力F2
螺栓杆与孔壁的挤压强度条件:
p
F d0 Lmin
p
螺栓杆的剪切强度条件:
F
d02
4
Lmin——挤压面的最小高度, Lmin ≥1.25d0
d0 ——光杆直径
3
②当用普通螺栓联接时
因横向载荷是由预紧力在被联
接件间产生的摩擦力来抵抗的,所 以应满足:
F/2
F0
F0 f n F
F
F0
F f n
32
习 题: P101 5-4、5-9 、5-10
33
谢谢!
34
r
30
⑵从设计、装配、制 造上设法避免附加 应力的产生。
球面垫圈
腰环螺栓
切削加工支承面
被联接件变形太大 支承面不平
采用凸台或沉孔结构
31
4 采用合理的制造工艺方法
采用冷墩螺栓头部,滚压螺纹,使应力集中变小,金属流 线合理,冷作硬化硬表面留有残余应力。
滚压螺纹疲劳强度比切削提高30~40%,而且材料利用率 高,生产效率高,制造成本低。
F/2 F0 T1
4
预紧力F0(拉伸应力)+ 螺纹 摩擦力矩T1(扭转切应力)
F0 F/2
强度计算准则(与仅受预
紧力的螺栓联接相同)第四强 度理论:螺栓的计算应力为 :
螺纹连接强度计算

F 0FF '' FF '
b b
Qp Qp
m
'm
F
Q'p
Q'p
Qp Qp
Q'p Q'p
变形协调条件: 凸缘→压力减量
栓杆→拉力增量 变形协调条件——
F'F'' 变形缩小Δ δ2
F0 F' 变形放大Δδ1
δ12
∴由图可知,螺栓刚度:
C 1tg 1F 1' 1 F 0C 1F'
被联接件刚度:
12
3
4
1、防松目的 实际工作中,外载荷有振动、变化、材料高温蠕变等会造成 摩擦力减少,螺纹副中正压力在某一瞬间消失、摩擦力为零, 从而使螺纹联接松动,如经反复作用,螺纹联接就会松驰而失 效。因此,必须进行防松,否则会影响正常工作,造成事故
2、防松原理 消除(或限制)螺纹副之间的相对运动,或增大相对运 动的难度。
3、防松办法及措施
1)摩擦防松
双螺母、弹簧垫圈、尼 龙垫圈、自锁螺母等
螺螺
上上螺螺母母
栓栓
下下螺螺母母
弹簧垫圈
自锁螺母——螺母一端做成非圆形 收口或开峰后径面收口,螺母拧紧 后收口涨开,利用收口的弹力使旋 合螺纹间压紧
2)机械防松: 开槽螺母与开口销,圆螺母与止动垫圈,弹簧垫片,轴用
带翅垫片,止动垫片,串联钢丝等
5)导程(S)——同一螺旋线上相邻两牙在中径圆柱面的母线 上的对应两点间的轴向距离
6)线 数 n ——螺纹螺旋线数目,一般为便于制造n≤4 螺距、导程、线数之间关系:S=nP
7)螺旋升角ψ——中径圆柱面上螺旋线的切线与垂直于螺旋
8)牙型角α ——螺线a纹r轴c轴t线g向L的平平/面面d内的2螺夹纹角a牙rc型tg两侧ndP 边2的夹角
螺母螺纹牙的强度计算

螺母螺纹牙的强度计算螺纹牙多发生剪切和挤压破坏,一般螺母的材料强度低于螺杆,故只需校核螺母螺纹牙的强度。
如图5-47所示,如果将一圈螺纹沿螺母的螺纹大径D处展开,则可看作宽度为πD的悬臂梁。
假设螺母每圈螺纹所承受的平均压力为Q/u,并作用在以螺纹中径D为直径的圆周上,则螺纹牙危险截面a-a的剪切强度条件为2【5-50】螺纹牙危险截面a-a的弯曲强度条件为【5-51】式中:b——螺纹牙根部的厚度, mm,对于矩形螺纹,b=0.5P对于梯形螺纹,b一0.65P,对于30o锯齿形螺纹,b=0.75P,P为螺纹螺距;l——弯曲力臂;mm参看图 , l=(D-D)/2;2[τ]——螺母材料的许用切应力,MPa,见表;[σ]b——螺母材料的许用弯曲应力,MPa,见表。
当螺杆和螺母的材料相同时,由于螺杆的小径dl小于螺母螺纹的大径D,故应校核杆螺纹牙的强度。
此时,上式中的D应改为d1。
螺母外径与凸缘的强度计算。
在螺旋起重器螺母的设计计算中,除了进行耐磨性计算与螺纹牙的强度计算外,还要进行螺母下段与螺母凸缘的强度计算。
如下图所示的螺母结构形式,工作时,在螺母凸缘与底座的接触面上产生挤压应力,凸缘根部受到弯曲及剪切作用。
螺母下段悬置,承受拉力和螺纹牙上的摩擦力矩作用。
设悬置部分承受全部外载荷Q,并将Q增加20~30%来代替螺纹牙上摩擦力矩的作用。
则螺母悬置部分危险截面b-b内的最大拉伸应力为式中[σ]为螺母材料的许用拉伸应力,[σ]=0.83[σ]b ,[σ]b为螺母材料的许用弯曲应力,见表5-15。
螺母凸缘的强度计算包括:凸缘与底座接触表面的挤压强度计算式中[σ]p 为螺母材料的许用挤压应力,可取[σ]p=(1.5 1.7)[σ]b凸缘根部的弯曲强度计算式中各尺寸符号的意义见下图。
凸缘根部被剪断的情况极少发生,故强度计算从略。
螺杆的稳定性计算:对于长径比大的受压螺杆,当轴向压力Q大于某一临界值时,螺杆就会突然发生侧向弯曲而丧失其稳定性。
螺杆螺纹牙强度计算的标准

螺母螺纹牙的强度计算螺纹牙多发生剪切和挤压破坏一般螺母的材料强度低于螺杆故只需校核螺母螺纹牙的强度。
如图所示如果将一圈螺纹沿螺母的螺纹大径D处展开则可看作宽度为πD的悬臂梁。
假设螺母每圈螺纹所承受的平均压力为
Q/u并作用在以螺纹中径D2为直径的圆周上则螺纹牙危险截面a-a的剪切强度条件为
螺纹牙危险截面a-a的弯曲强度条件为
式中:
b—螺纹牙根部的厚度mm对于矩形螺纹b=0.5P对于梯形螺纹b一065P对
于300锯齿形螺纹,b=075PP为螺纹螺距
--弯曲力臂mm参看图=(D-D2)/2
[t]—螺母材料的许用切应力Mpa
[o]b—螺母材料的许用弯曲应力Mpa
当螺杆和螺母的材料相同时由于螺杆的小径dl小于螺母螺纹的大径D故应校核杆螺纹牙的强度。
此时风
式中的D应改为d1。
螺纹牙强度校核计算

普通螺纹螺栓拉断截面dc(mm)
H 3p 2
dc
d1
H 6
2 3 2.598076211
1.566987298
安全系数S
S=3~5
3
材料的屈服强度 s (MPa)
许用拉应力 (MPa)
计算拉应力 计算结果
s / S
4
F
d1
H 6
2
若< ,则合格,
反之不合格
4 1.333333333 0.518799311
计算值 28.58 28.52 24.22 26.82
弯曲力臂L(mm)
单圈外螺纹截面抗弯模量W(mm) 螺纹牙底宽度b(mm) 轴向力F(N) 螺距p(mm) 螺纹工作高度h(mm) 连接螺纹牙数z 安全系数S
材料的屈服强度 s(MPa)
许用拉应力 (MPa)
对螺杆,计算弯曲应力 b(Mpa)
235260
38
4.23
50
z=l/p
11.82033097
h=0.541p
2.28843
A=π*d2*h*z
3227.606
p F/A p s / n
72.88993762 345
如果p p ,则合格,
合格
反之则不合格
项目 轴向力F(N) 公扣时使用螺纹小径d1(mm) 母扣时使用螺纹大径D(mm) 连接螺纹牙数z
s / S
F d1bz
F Dbz
0.6
1.5 4.23 3.1725 517.5 345 56.28061362
207
计算结果
如果螺杆和螺母 ,则合格,
反之则不合格
项目 螺母大径D(mm) 螺杆大径d(mm) 公扣时使用螺纹小径d1(mm) 外螺纹中径d2(mm)
螺纹强度计算.

M24螺纹轻度 计算 P=70Mpa Pmax=105Mpa材料 60K [σs]≥414 [σb]≥586螺栓受力分析:设环境:当进行轻度试验时 液体进入阀体中,闸板密封作用。
关闭时阀杆中作用 在开启状态下,阀板关闭时的受力分析:在开启状态时,介质通过进口端阀座受压端面作用在阀板的作用力为F1,通过出口端阀座受压端面作用在阀板的作用力为F2,由于进出口端阀座结构及尺度完全一致,而此时两阀座所受的液体压力衡定,即进出口端阀座所受的轴向压力相等,则:F1=F2。
当要关闭闸阀,阀板下行时,必须克服阀板两密封面所产生的摩擦力,阀板才能运动。
此时阀杆受压。
从以上两种受力分析可以看出,关闭闸阀时,阀板所承受的作用力比开启闸阀所承受的作用力小。
所以在进行阀杆校核时,用关闭状态时,打开阀板产生的力作用在阀板的作用力为F1 F1=7004)2.72.8(14.34)(2222⨯-=⨯-P d D πkg/cm2 =8462kg 机械设计手册 介质直接对阀板的作用力为F2F2= kg cm kg P d 4.36948/70042.814.34222=⨯⨯=⨯π 表 5-88 序号2 《阀门设计手册》第2版出口端阀座承受的作用力为F1+F2:F1+F2=8426+36948.4=45374kg当要开启闸阀使阀板上行时,必须克服阀板两面的摩擦力F 。
F=[F1+(F1+F2)]f 表 3-26 密封面摩擦因素 《阀门设计手册》第2版式中f 为阀板与阀座的摩擦系数取 f=0.06F=[F1+(F1+F2)]f=[8426+45374] ×0.06=3228.34kg阀杆与密封填料间的摩擦力Qr (N )Qr=πdF1hR μPμ ——阀杆与密封调料间的摩擦系数。
对于橡胶填料,取μ=0.1dF1 ——接触介质阀杆直径(mm )设:dF1=35(mm )。
hR ——填料层高度(mm )。
由于阀杆、尾杆均有橡胶圈密封,hR=20(mm )Qr=3.14×3.5×2.0×0.1×700kg/cm2=1536.6kg开启阀门使阀板下行时,必须克服阀板两面的摩擦力F 和阀杆与密封填料间的摩擦力Qr 。
螺纹连接强度计算

螺纹连接强度计算新产品最新动态技术文章企业目录资料下载视频/样本反馈/论坛技术应用 | 基础知识 | 外刊文摘 | 业内专家 | 文章点评投稿发表科技文章螺纹联接设计:单个螺栓联接的强度计算newmaker螺纹联接根据载荷性质不同,其失效形式也不同:受静载荷螺栓的失效多为螺纹部分的塑性变形或螺栓被拉断;受变载荷螺栓的失效多为螺栓的疲劳断裂;对于受横向载荷的铰制孔用螺栓联接,其失效形式主要为螺栓杆剪断,栓杆或被联接件孔接触表面挤压破坏;如果螺纹精度低或联接时常装拆,很可能发生滑扣现象。
螺栓与螺母的螺纹牙及其他各部分尺寸是根据等强度原则及使用经验规定的。
采用标准件时,这些部分都不需要进行强度计算。
所以,螺栓联接的计算主要是确定螺纹小径d1,然后按照标准选定螺纹公称直径(大径)d,以及螺母和垫圈等联接零件的尺寸。
1. 受拉松螺栓联接强度计算图15.3松螺栓联接装配时不需要把螺母拧紧,在承受工作载荷前,除有关零件的自重(自重一般很小,强度计算时可略去。
)外,联接并不受力。
图1所示吊钩尾部的联接是其应用实例。
当螺栓承受轴向工作载荷(N)时,其强度条件为或式中:d1--螺纹小径,mm;σ1--松联接螺栓的许用拉应力,Mpa。
2. 受拉紧螺栓联接的强度计算接件的刚度,在预紧力F`的作用下,螺栓产生伸长变形δ1=F`/c1,被联接件产生压缩变形δ2=F`/c2。
图为螺栓受工作拉力F后的情况。
这时,螺栓拉力增大到F0,拉力增量为F0-F`,伸长增量为△δ1;而被联接件随之部分放松,其受压力减小到F"(称之为剩余预紧力),压缩减量为△δ2 。
根据螺栓的静力平衡条件得F0=F"+F(1)图15.7即螺栓所受的总拉力F0应等于剩余预紧力F"与工作拉力F之和。
如图15.7所示,图a为螺栓和被联接的受力和变形关系图,将两关系图合并得图b。
图为螺栓受工作载荷时的情况,根据螺栓与被联接件变形协调条件有△δ1 =△δ2 ,以和δ2=(F`-F")/c2代入得F"=F`-Fc2/(c1+c2)(15-12)F`=F"+Fc2/(c1+c2)(15-13)F0=F`+Fc1/(c1+c2)(15-14)式中c1/(c1+c2)称为螺栓的相对刚度系数。
螺纹连接强度计算

6)线 数 n ——螺纹螺旋线数目,一般为便于制造n≤4 螺距、导程、线数之间关系:S=nP
螺纹连接强度计算
7)螺旋升角ψ——中径圆柱面上螺旋线的切线与垂直于螺旋
8)牙型角α ——螺线a纹r轴c轴t线g向L的平平/面面d内的2螺夹纹角a牙rc型tg两侧ndP 边2的夹角
a)减载销 b)减载套筒 c)减载键
螺纹连接强度计算
(2)、轴向载荷受拉紧螺栓联接强度计算 ①工作特点:工作前拧紧,有F’;工作后加上工作载荷F 工作前、工作中载荷变化 ②工作原理:靠螺杆抗拉强度传递外载F
③解决问题: a) 保证安全可靠的工作,F’=? b) 工作时螺栓总载荷, F0=? ④分析: 图1,螺母未拧紧 螺栓螺母松驰状态
9)牙型斜角β——螺纹牙的侧边与螺纹轴线垂直平面的夹角
ddd dd2d22 dd1d11
PPP LL=L=n=nPnP(P(n(n=n2=)2=)2) LLL
ddddd2d22dd1d11
hhh
螺纹连接强度计算
§6—1 螺纹联接的类型及螺纹联接件
一、螺纹联接主要类型
1、螺栓联接 a) 普通螺栓联接(受拉螺栓连接)——被联接件不太厚,螺杆带
10 12200° C° C11 1 15 5° °
bb
3 30 0° °应槽用中时,b b带外d翅舌d0D0D垫嵌11 圈入内圆舌螺1155° 嵌母°入的轴槽
H
3 内30 0° ° ,螺3300° 母°即被锁bb 紧
HH
3300°°
斜斜 垫垫 圈圈
平 h 平 h 垫垫圈圈
斜斜垫垫圈圈
hh
d1 d1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 螺纹联接(含螺旋传动)3-1 基础知识 一、螺纹的主要参数现以圆柱普通螺纹的外螺纹为例说明螺纹的主要几何参数,见图3-1,主要有:1)大径d ——螺纹的最大直径,即与螺纹牙顶重合的假想圆柱面的直径,在标准中定为公称直径。
2)小径1d ——螺纹的最小直径,即与螺纹牙底相重合的假想圆柱面的直径,在强度计算中常作为螺杆危险截面的计算直径。
3)中径2d ——通过螺纹轴向界面内牙型上的沟槽和突起宽度相等处的假想圆柱面的直径,近似等于螺纹的平均直径,2d ≈11()2d d +。
中径是确定螺纹几何参数和配合性质的直径。
4)线数n ——螺纹的螺旋线数目。
常用的联接螺纹要求自锁性,故多用单线螺纹;传动螺纹要求传动效率高,故多用双线或三线螺纹。
为了便于制造,一般用线数n ≤4。
5)螺距P ——螺纹相邻两个牙型上对应点间的轴向距离。
6)导程S ——螺纹上任一点沿同一条螺旋线转一周所移动的轴向距离。
单线螺纹S =P ,多线螺纹S =nP 。
7)螺纹升角λ——螺旋线的切线与垂直于螺纹轴线的平面间的夹角。
在螺纹的不同直径处,螺纹升角各不相同。
通常按螺纹中径2d 处计算,即22arctanarctan S nPd d λππ== (3-1) 图3-18)牙型角α——螺纹轴向截面内,螺纹牙型两侧边的夹角。
螺纹牙型的侧边与螺纹轴线的垂直平面的夹角称为牙侧角,对称牙型的牙侧角β=α/2。
9)螺纹接触高度h——内外螺纹旋合后的接触面的径向高度。
二、螺纹联接的类型螺纹联接的主要类型有:1、螺栓联接常见的普通螺栓联接如图3-2a所示。
这种联接的结构特点是被联接件上的通孔和螺栓杆间留有间隙。
图3-2b是铰制孔用螺栓联接。
这种联接能精确固定被联接件的相对位置,并能承受横向载荷,但孔的加工精度要求较高。
图3-22、双头螺柱联接如图3-3a所示,这种联接适用于结构上不能采用螺栓联接的场合,例如被联接件之一太厚不宜制成通孔,且需要经常拆装时,往往采用双头螺柱联接。
图3-33、螺钉联接这种联接的特点是螺栓(或螺钉)直接拧入被联接件的螺纹孔中,不用螺母,在结构上比双头螺柱联接简单、紧凑。
4、紧定螺钉联接紧定螺钉联接是利用拧入零件螺纹孔中的螺钉末端顶住另一零件的表面(图3-4a)或钉入相应的凹坑中(图3-4b),以固定两个零件的相对位置,并可传递不大的力或转矩。
图3-4三、标准螺纹联接件螺纹联接件的类型很多,在机械制造中常见的螺纹联接件有螺栓、双头螺柱、螺钉、螺母和垫圈等。
这类零件的结构型式和尺寸都已标准化,设计时可以根据有关标准选用。
四、螺纹联接的预紧和防松1、螺纹联接的预紧在实用上,绝大多数螺纹联接在装配时都必须拧紧,使联接在承受工作载荷之前,预先受到力的作用,这个预加作用力称为预紧力。
预紧的目的在于增强联接的可靠性和紧密性,以防止受载后被联接件间出现缝隙或发生相对滑移。
为了保证联接所需要的预紧力,又不使螺纹联接件过载,对重要的螺纹联接,在装配时要控制预紧力。
通常规定,拧紧后螺纹联接件的预紧应力不得超过其材料的屈服极限S σ的80%。
对于一般联接用的钢制螺栓联接的预紧力0F ,推荐按下列关系确定:碳素钢螺栓 01(0.60.7)S F A σ≤ (3-2) 合金钢螺栓 01(0.50.6)S F A σ≤ (3-3)式中:S σ——螺栓材料的屈服极限;1A ——螺栓危险截面的面积,211/4A d π≈。
控制预紧力的方法很多,通常是借助侧力矩扳手(图3-5)或定力矩扳手(3-6),利用控制拧紧力矩的方法来控制预紧力的大小。
图3-5测力矩扳手图3-6定力矩扳手如图3-7所示,由于拧紧力矩T (T FL =)的作用,使螺栓和被联接件之间产生预紧力0F 。
对于M10M64粗牙普通螺纹的钢制螺栓,螺纹升角14232ψ''=︒︒;螺纹中径20.9d d ≈;螺旋副的当量摩擦角arctan1.155V f ϕ≈(f 为摩擦系数,无润滑时0.10.2f =);螺栓孔直径0 1.1d d ≈;螺母环形支承面的外径0 1.5D d =;螺母与支承面间的摩擦系数0.15C f =,可推导出00.2T F d ≈ (3-4)对于一定公称直径d 的螺栓,当所要求的预紧力0F 已知时,即可按式(3-4)确定扳手的拧紧力矩0T 。
图3-7螺旋副的拧紧力矩2、螺纹联接的防松螺纹联接件一般采用单线普通螺纹。
螺纹升角(14232ψ''=︒︒)小于螺旋副的当量摩擦角( 6.510.5V ϕ≈︒︒)。
因此,联接螺纹都能满足自锁条件(V ψϕ<)。
螺纹联接一旦出现松脱,轻者会影响机器的正常运转,重者会造成严重事故。
因此,为了防止联接松脱,保证联接安全可靠,设计时必须采取有效的防松措施。
防松的根本问题在于防止螺旋副在受载时发生相对转动。
防松的方法,按工作原理可分为摩擦防松、机械防松以及铆冲防松等。
一般说,摩擦防松简单、方便,但没有机械防松可靠。
对于重要联接,特别是机械内部不易检查的联接,应采用机械防松。
常用的防松方法见下表。
表3-1螺纹联接常用的防松方法防松方法 结构型式特点和应用摩 擦 防 松对 顶 螺 母两螺母对顶拧紧后,使旋合螺纹间始终受到附加的压力和摩擦力的作用。
工作载荷有变动时,该摩擦力仍然存在。
旋合螺纹间的接触情况如图所示,下螺母螺纹牙受力较小,其高度可小些,但为了防止装错,两螺母的高度取成相等为宜。
结构简单,适用于平稳、低速和重载的固定装置上的联接。
弹簧垫圈螺母拧紧后,靠垫圈压平而产生的弹性反力使旋合螺纹间压紧。
同时垫圈斜口尖端抵住螺母与被联接件的支撑面也有防松作用。
结构简单、使用方便,但由于垫圈的弹力不均在冲击、振动的工作条件下,其防松效果较差,一般用于不甚重要的联接自锁螺母螺母一端制成非圆形收口或开缝后径向收口。
当螺母拧紧后,收口胀开,利用收口的弹力使旋合螺纹间压紧。
结构简单,防松可靠,可多次装拆而不降低防松性能机械防松开口销与六角开槽螺母六角开槽螺母拧紧后,将开口销穿入螺栓尾部小孔和螺母的槽内,并将开口销尾部掰开与螺母侧面紧贴。
也可用普通螺母代替六角开槽螺母,但需拧紧螺母后再配钻销孔。
适用于较大冲击、振动的高速机械中运动部件的联接止动垫圈螺母拧紧后,将单耳或双耳止动垫圈分别向螺母和被联接件的侧面折弯贴紧,即可将螺母锁住。
若两个螺栓需要双连锁紧时,可采用双联止动垫圈,使两个螺母互相制动。
结构简单,使用方便,防松可靠。
串联钢丝用低碳钢丝穿入各螺钉头部的孔内,将各螺钉串联起来,使其相互制动。
使用时必须注意钢丝的穿入方向(上图正确,下图错误)适用于螺钉组联接,防松可靠,但装拆不便。
还有一些特殊的防松方法,例如在旋合螺纹间涂以液体胶粘剂或在螺母末端镶嵌尼龙环等。
此外,还可以采用铆冲方法防松。
螺母拧紧后把螺栓末端伸出部分铆死,或利用冲头在螺栓末端与螺母的旋合缝处打冲,利用冲点防松。
这种防松方法可靠,但拆卸后联接件不能重复使用。
五、螺纹联接的强度计算螺纹联接包括螺栓联接、双头螺柱联接和螺钉联接等类型。
下面以螺栓联接为代表讨论螺纹联接的强度计算方法。
所讨论的方法对双头螺柱联接和螺钉联接也同样适用。
对构成整个联接的螺栓组而言,所受的载荷可能包括轴向载荷、横向载荷、弯矩和转矩等。
但对其中每一个具体的螺栓而言,其受载的形式不外乎是受轴向力或横向力。
对于受拉螺栓,其主要破坏形式是螺栓杆螺纹部分发生断裂,因而其设计准则是保证螺栓的静力或疲劳拉伸强度;对于受剪螺栓其主要破坏形式是螺栓杆和孔壁的贴合面上出现压溃或螺栓杆被剪断,其设计准则是保证联接的挤压强度和螺栓的剪切强度,其中联接的挤压强度对联接的可靠性起决定性作用。
螺栓联接的强度计算,首先是根据联接的类型、联接的装配情况(预紧或不预紧)、载荷状态等条件,确定螺栓的受力;然后按相应的强度条件计算螺栓危险截面的直径(螺纹小径)或校核其强度。
螺栓的其它部分(螺纹牙、螺栓头、光杆)和螺母、垫圈的结构尺寸,是根据等强度条件及使用经验规定的,通常都不需要进行强度计算,可按螺栓螺纹的公称直径在标准中选定。
1、松螺栓联接强度计算松螺栓联接装配时,螺母不需要拧紧。
在承受工作载荷之前,螺栓不受力。
如图3-8所示,当联接承受工作载荷F 时,螺栓所受的工作拉力为F ,则螺栓危险截面[一般为螺纹牙根圆柱的横截面]的拉伸强度条件为21[]4Fd σσπ=≤ (3-5)或 4[]Fd πσ≥(3-6) 式中:F ——工作拉力,单位为N ;1d ——螺栓危险截面的直径,单位为mm ;[]σ——螺栓材料的许用拉应力,单位为MPa 。
2、紧螺栓联接强度计算 1)仅承受预紧力的紧螺栓联接紧螺栓联接装配时,螺母需要拧紧,在拧紧力矩作用下,螺栓除受预紧力0F 的拉伸而产生拉伸应力外,还受螺纹摩擦力矩1T 的扭转而产生扭转切应力,使螺栓处于拉伸与扭转的图3-8复合应力状态下。
因此,进行仅承受预紧力的紧螺栓强度计算时,应综合考虑拉伸应力和扭转切应力的作用。
螺栓危险截面的拉伸应力为:0214F d σπ=(3-7)螺栓危险截面的扭转切应力为:200232111tan()tan tan 221tan tan 164V V V d F F d d d d λϕλϕτππλϕ++==⋅⋅- (3-8)对于M10M64普通螺纹的钢制螺栓,可取tan 0.17V ϕ≈,121.04 1.08d d =,tan 0.05λ≈,由此可得:0.5τσ≈ (3-9)由于螺栓材料是塑性的,故可根据第四强度理论,求出螺栓预紧状态下的计算应力为222233(0.5) 1.3ca σστσσσ=+=+≈ (3-10)当普通螺栓联接承受横向载荷时,由于预紧力的作用,将在接合面间产生摩擦力来抵抗工作载荷(图3-9)。
这时,螺栓仅承受预紧力的作用,而且预紧力不受工作载荷的影响,在联接承受工作载荷后仍保持不变。
预紧力0F 的大小根据接合面部产生滑移的条件确定。
图3-9 承受横向载荷的普通螺栓联接螺栓危险截面的拉伸强度条件根据式(3-7)及(3-10)可写为211.3[]4caFdσσπ=≤(3-11)式中:F为螺栓所受的预紧力,单位为N;其余符号意义及单位同前。
2)承受预紧力和工作拉力的紧螺栓联接这种受力形式在紧螺栓联接中比较常见,因而也是最重要的一种。
这种紧螺栓联接承受轴向拉伸工作载荷后,由于螺栓和被联接件的弹性变形,螺栓所受的总拉力并不等于预紧力和工作拉力之和。
根据理论分析,螺栓的总拉力除和预紧力F、工作拉力F有关外,还受到螺栓刚度bC及被联接件刚度mC等因素的影响。
因此,应从分析螺栓联接的受力和变形的关系入手,找出螺栓总拉力的大小。
图3-10表示单个螺栓联接在承受轴向拉伸载荷前后的受力及变形情况。
图3-10a)是螺母刚好拧到和被联接件相接触,但尚未拧紧,此时,螺栓和被联接件都不受力,因而也不产生变形。