人脸识别综述

合集下载

《2024年基于深度学习的人脸识别方法研究综述》范文

《2024年基于深度学习的人脸识别方法研究综述》范文

《基于深度学习的人脸识别方法研究综述》篇一一、引言随着科技的进步,人脸识别技术已经成为了人工智能领域的研究热点。

基于深度学习的人脸识别方法以其高精度、高效率的特点,在众多领域得到了广泛应用。

本文旨在全面梳理和总结基于深度学习的人脸识别方法的研究现状、主要技术、应用领域及未来发展趋势。

二、人脸识别技术的发展历程人脸识别技术自诞生以来,经历了从传统的手工特征提取方法到基于深度学习方法的演变。

早期的人脸识别主要依靠人工设计的特征提取算法,如主成分分析(PCA)、线性判别分析(LDA)等。

随着深度学习技术的崛起,卷积神经网络(CNN)等人脸识别算法得到了广泛应用。

三、基于深度学习的人脸识别方法(一)深度卷积神经网络(Deep Convolutional Neural Network, DCNN)DCNN是目前应用最广泛的人脸识别方法之一。

通过训练大量的数据,DCNN可以自动学习和提取人脸特征,从而提高识别的准确性。

同时,DCNN具有较好的泛化能力,可以应对不同的人脸表情、光照、姿态等变化。

(二)深度学习与特征融合在人脸识别中,特征提取是关键的一步。

通过将深度学习与其他特征提取方法相结合,如基于局部二值模式(LBP)的特征提取方法,可以进一步提高人脸识别的准确性和鲁棒性。

此外,多模态特征融合技术也可以提高人脸识别的性能。

(三)基于深度学习的无约束人脸识别无约束人脸识别是近年来研究的热点。

由于实际应用中的人脸图像往往存在光照、姿态、表情等变化,因此基于深度学习的无约束人脸识别技术显得尤为重要。

该技术通过训练大量的无约束人脸数据,使得模型能够适应各种复杂的人脸变化。

四、主要技术应用领域(一)安防领域基于深度学习的人脸识别技术在安防领域得到了广泛应用。

例如,公安系统可以通过该技术对犯罪嫌疑人进行快速检索和比对,提高破案效率。

此外,该技术还可以应用于门禁系统、监控系统等场景。

(二)金融领域在金融领域,基于深度学习的人脸识别技术可以用于身份验证、支付等方面。

人脸识别技术大总结22篇

人脸识别技术大总结22篇

人脸识别技术大总结2人脸识别技术大总结2精选2篇(一)人脸识别技术是一种基于人脸特征的生物特征识别技术,通过分析和比对人脸图像来识别和验证人的身份。

随着计算机视觉和模式识别技术的发展,人脸识别技术在各个领域得到了广泛应用。

下面将对人脸识别技术的原理、方法、应用以及面临的挑战进行总结。

人脸识别技术的原理主要基于人脸的独特性,即每个人的脸部特征都是独一无二的。

人脸识别技术的主要步骤包括人脸检测、人脸对齐、特征提取和特征比对等。

在人脸检测阶段,系统会通过图像处理技术找到图像中可能存在的人脸区域。

在人脸对齐步骤中,系统会将检测到的人脸准确地对齐,以保证后续的特征提取和比对的准确性。

在特征提取阶段,系统会通过各种算法和技术提取人脸图像中的重要特征,常用的特征提取方法包括局部二值模式(LBP)、主成分分析(PCA)和线性判别分析(LDA)等。

最后,在特征比对阶段,系统会将提取到的特征与数据库中的已知特征进行比对,从而识别和验证人的身份。

人脸识别技术的方法主要分为基于图像的方法和基于视频的方法。

在基于图像的方法中,系统只需要获取一个静态的人脸图像进行识别。

这种方法适用于对图像进行身份验证,例如解锁手机或门禁系统等。

而在基于视频的方法中,系统需要获取一段连续的视频进行识别。

这种方法适用于对视频中的人脸进行跟踪和识别,例如视频监控和人脸签到等。

人脸识别技术在许多领域得到了广泛应用。

在公安领域,人脸识别技术可以用于犯罪嫌疑人的追踪和抓捕,以及失踪人员的寻找和找回。

在安防领域,人脸识别技术可以用于门禁系统、智能家居和智能安防设备等,提高安全性和便利性。

在金融领域,人脸识别技术可以用于银行的身份验证和交易安全,保护用户的财产和隐私。

在医疗领域,人脸识别技术可以用于识别和追踪病人和医务人员,提高服务效率和医疗质量。

在娱乐领域,人脸识别技术可以用于人脸换脸和面部表情识别等,增加娱乐性和趣味性。

然而,人脸识别技术也面临一些挑战。

人脸识别技术综述

人脸识别技术综述

一、计算机人脸识别技术的基本 原理
计算机人脸识别技术的基本原理是利用图像处理和模式识别的方法,通过对人 脸图像进行预处理、特征提取和分类器设计,来对人脸进行识别。
1、人脸预处理
人脸预处理是计算机人脸识别技术的第一步,它的目的是去除图像中的噪声、 光照、表情等因素,使得人脸图像更加清晰和规整。人脸预处理的方法包括灰 度化、二值化、去噪、归一化等。
人脸识别技术综述
基本内容
随着科技的不断发展,人脸识别技术已经成为了日常生活中不可或缺的一部分。 从安防领域的身份认证到金融风控领域的风险控制,再到人机交互和智能客服 领域的用户体验优化,人脸识别技术都有着广泛的应用。本次演示将对人脸识 别技术进行综述,探讨其发展历程、现状、优缺点、挑战和未来发展方向。
相信在未来的发展中,人脸识别技术将会不断完善和提升,为人类的生活和工 作带来更加便捷和安全的应用体验。
参考内容
基本内容
随着科技的进步,计算机人脸识别技术得到了广泛的应用和发展。人脸识别技 术是一种利用计算机视觉技术来对人脸进行识别和认证的技。术,它的应用范 围已经涉及到安全监控、门禁系统、身份认证、人机交互等众多领域。本次演 示将对计算机人脸识别技术进行综述,介绍其基本原理、实现方法和发展趋势。
2、特征提取
特征提取是人脸识别的关键步骤之一,它的目的是从预处理后的图像中提取出 有效的特征,用于区分不同的人脸。特征提取的方法包括基于几何特征的方法、 基于统计特征的方法和基于深度学习的方法等。
3、分类器设计
分类器设计是人脸识别的最后一步,它的目的是利用已经训练好的分类器对人 脸特征进行分类和识别。分类器设计的方法包括支持向量机、神经网络、决策 树等。
随着人们对个人隐私保护的重视,未来的人脸识别技术将会更加注重隐私保护, 例如采用盲生化和隐私保护技术来保护用户的隐私。

(word完整版)人脸识别综述

(word完整版)人脸识别综述

人脸识别综述1 引言人脸识别技术的研究始于20世纪50年代,当时的研究人员主要涉及的是社会心理学领域;最早AFR(Auto Face Recognition)的研究论文见于 1965 年陈(Chan)和布莱索(Bledsoe)在Panoramic Research Inc.发表的技术报告。

近年来,人脸识别研究得到了诸多研究人员的青睐,涌现出了诸多技术方法。

尤其是 1990 年以来,人脸识别更得到了长足的发展。

几乎所有知名的理工科大学和主要IT产业公司都有研究组在从事相关研究。

人脸识别研究的发展可分为以下三个阶段:第一阶段(1964 年~1990年)。

这一阶段人脸识别通常只是作为一个一般性的模式识别问题来研究,所采用的主要技术方案是基于人脸几何结构特征(Geometric feature based)的方法。

第二阶段(1991 年~1997年)。

这一阶段尽管时间相对短暂,但却是人脸识别研究的高潮期,可谓硕果累累:不但诞生了若干代表性的人脸识别算法,美国军方还组织了著名的 FERET 人脸识别算法测试,并出现了若干商业化运作的人脸识别系统,比如最为著名的 Visionics(现为Identix)的 FaceIt 系统。

美国麻省理工学院(MIT)媒体实验室的特克(Turk)和潘特(Pentland)提出的“特征脸”方法无疑是这一时期内最负盛名的人脸识别方法。

第三阶段(1998 年~现在)。

FERET’96 人脸识别算法评估表明:主流的人脸识别技术对光照、姿态等由于非理想采集条件或者对象不配合造成的变化鲁棒性比较差。

因此,光照、姿态、表情、遮挡问题逐渐成为研究热点。

人脸识别是一项既有科学研究价值,又有广泛应用前景的研究课题.国际上大量研究人员几十年的研究取得了丰硕的研究成果,自动人脸识别技术已经在某些限定条件下得到了成功应用,人脸识别技术的研究对模式识别,人工智能,计算机视觉,图像处理等领域的发展有巨大的推动作用。

人脸识别方法综述

人脸识别方法综述

人脸识别方法综述一、引言随着人工智能技术的不断发展,人脸识别技术已经成为了一个非常热门的领域。

在各个领域中,都有着广泛的应用,比如安防、金融、医疗等等。

本文将对人脸识别方法进行综述,包括传统的方法和深度学习方法。

二、传统方法1. 特征提取特征提取是人脸识别过程中最重要的一步。

传统的特征提取算法主要包括LBP(局部二值模式)、HOG(方向梯度直方图)和SIFT(尺度不变特征变换)等。

2. 降维由于原始图像数据维数较高,需要进行降维处理。

PCA(主成分分析)和LDA(线性判别分析)是两种常见的降维算法。

3. 分类器分类器是将输入样本映射到输出类别的关键组件。

常见的分类器包括SVM(支持向量机)、KNN(k近邻算法)和决策树等。

三、深度学习方法1. 卷积神经网络卷积神经网络是目前应用最广泛的深度学习算法之一。

卷积神经网络主要包括卷积层、池化层和全连接层等。

其中,卷积层和池化层可以提取图像的特征,全连接层则用于分类。

2. 人脸检测人脸检测是人脸识别过程中的第一步。

常见的人脸检测算法包括Haar 特征和基于深度学习的方法,比如Faster R-CNN、YOLO(You Only Look Once)和SSD(Single Shot MultiBox Detector)等。

3. 人脸对齐由于不同人的面部特征存在差异,需要进行人脸对齐处理。

常见的人脸对齐算法包括基于特征点的方法和基于深度学习的方法。

4. 人脸识别在完成前面三个步骤后,就可以进行人脸识别了。

常见的深度学习模型包括FaceNet、DeepID系列和VGGFace等。

四、总结本文对传统方法和深度学习方法进行了综述。

传统方法主要包括特征提取、降维和分类器等步骤;而深度学习方法则主要采用卷积神经网络进行特征提取和分类。

无论是传统方法还是深度学习方法,都有着广泛的应用前景。

在未来,人脸识别技术将会在更多领域中发挥重要作用。

人脸识别方法综述

人脸识别方法综述

人脸识别方法报告人脸识别(Face Recognition)是指给定一个静止或动态图像,利用已有的人脸数据库来确认图像中的一个或多个人。

人脸自动识别系统包括人脸检测与定位和特征提取与人脸识别两个主要技术环节,如图所示:1.人脸检测与定位部分检测图像中是否有人脸图像,若有,将其从背景中分割出来,并确定其在图像中的位置。

在某些控制拍摄条件的场合,如证件照等,背景相对简单,定位比较容易。

而在复杂背景下获得的图像,由于人脸在图像中的位置是未知的,此时人脸的检测与定位将受到以下诸因素的影响:( 1)人脸在图像中的位置、旋转角度和尺度的变化;( 2)发型和化妆会遮盖某些特征;( 3)图像中的噪声。

2.特征提取与人脸识别这部分主要分为三个部分,分别是图像预处理、特征提取、人脸识别。

图像预处理:为了更精确地获得图像的有效特征信息,在特征提取前一般需要对图像做几何归一化和灰度归一化的处理。

前者是指根据人脸定位结果将图像中的人脸位置、尺度调整到同一位置和同样大小;后者主要是采用光照补偿等处理方法解决光照变化对检测的影响。

特征提取:进行特征提取时根据所采取识别方法的不同,具体提取的特征形式也不相同。

如在基于几何特征的识别方法中,需要提取特征点,然后构造特征矢量;在基于统计的特征脸方法中则是提取图像相关矩阵的特征矢量来构造特征脸;在模板匹配法中提取相关系数做为特征;而在基于神经网络的识别中一般不需要专门的特征提取过程.人脸识别:特征提取结束后,下一步就是人脸识别。

在数据库中预先存放了已知的人脸图像或有关的特征值,识别的目的就是将待识别的图像或特征与数据库中数据进行匹配。

识别任务分为两类:人脸辨认,确定输入图像为库中哪一个;人脸证实,验证某人的身份是否属实。

常用的人脸识别方法有:1.基于几何特征的人脸识别方法基于几何特征的人脸识别方法,是在抽取人脸图像上显著特征的相对位置及其参数的基础上进行识别。

早期的人脸识别是用手工确定人脸特征点的位置并将其输人计算机中,其工作的流程:检测出面部特征点,通过测量这些关键点之间的相对距离(欧式距离),得到描述每个脸的特征矢量,如眼睛、鼻子和嘴的位置和宽度,眉毛的厚度和弯曲程度等,以及这些特征之间的关系.用这些特征来表示人脸,未知脸和库中已知脸中的特征矢量比较,寻找最佳匹配。

人脸识别文献综述

人脸识别文献综述

人脸识别文献综述
人脸识别技术的文献综述可以从以下几个方面展开:
1.人脸识别技术的发展历程:介绍人脸识别技术的起源、发展历程以及各个阶段的技术特
点和应用领域。

2.人脸识别的基本原理:阐述人脸识别的基本原理,包括人脸检测、特征提取和匹配识别
等关键技术。

3.人脸识别的应用领域:介绍人脸识别技术在各个领域的应用情况,如安全、金融、交通、
教育等。

4.人脸识别的技术挑战和解决方案:分析人脸识别技术面临的技术挑战,如光照、角度、
面部朝向、面部表情等,并介绍各种解决方案和技术进展。

5.人脸识别的未来展望:预测人脸识别技术的发展趋势和未来发展方向,包括深度学习、
多模态融合、隐私保护等方面的技术发展。

6.在撰写人脸识别技术的文献综述时,需要全面收集和阅读相关文献,包括学术论文、专
利、技术报告等,并对各种文献进行分类和整理。

同时,需要对各种技术和方法进行比较和分析,总结出它们的优缺点和应用场景。

最后,需要结合自己的理解和见解,对人脸识别技术的未来发展进行预测和展望。

需要注意的是,人脸识别技术是一个跨学科的领域,涉及到计算机视觉、机器学习、模式识别等多个学科。

因此,在撰写文献综述时需要有一定的专业背景和技术基础,以便更好地理解和分析相关文献。

《2024年基于深度学习的人脸识别方法综述》范文

《2024年基于深度学习的人脸识别方法综述》范文

《基于深度学习的人脸识别方法综述》篇一一、引言随着人工智能技术的飞速发展,人脸识别技术已成为当今社会关注的热点。

作为计算机视觉领域的重要分支,人脸识别技术在安全监控、身份认证、智能交互等多个领域得到了广泛应用。

深度学习技术的出现为人脸识别提供了新的解决方案,使得人脸识别的准确性和效率得到了显著提升。

本文旨在综述基于深度学习的人脸识别方法,分析其原理、技术特点及发展趋势。

二、深度学习在人脸识别中的应用深度学习是一种模拟人脑神经网络结构的机器学习方法,通过构建多层神经网络来提取数据的深层特征。

在人脸识别领域,深度学习主要应用于特征提取和分类识别两个阶段。

1. 特征提取特征提取是人脸识别的关键步骤,其目的是从原始图像中提取出能够表征人脸特征的有效信息。

深度学习通过构建卷积神经网络(CNN)等模型,自动学习从原始图像中提取出高维度的特征表示,这些特征对于人脸识别任务具有较好的鲁棒性和区分性。

2. 分类识别分类识别是利用已提取的特征进行人脸匹配和识别的过程。

深度学习通过构建全连接层、支持向量机(SVM)等模型,对提取的特征进行分类和识别。

在人脸识别任务中,深度学习可以有效地提高识别的准确性和效率。

三、基于深度学习的人脸识别方法基于深度学习的人脸识别方法主要包括基于深度神经网络的人脸识别方法和基于深度学习的三维人脸识别方法。

1. 基于深度神经网络的人脸识别方法该方法通过构建多层神经网络模型,对人脸图像进行特征提取和分类识别。

常见的模型包括卷积神经网络(CNN)、深度置信网络(DBN)等。

这些模型能够自动学习和提取出高维度的特征表示,提高了人脸识别的准确性和鲁棒性。

2. 基于深度学习的三维人脸识别方法该方法利用三维信息来提高人脸识别的准确性和鲁棒性。

通过构建三维模型来获取人脸的立体信息,再结合深度学习技术进行特征提取和分类识别。

这种方法对于姿态变化、表情变化等复杂场景具有较好的适应性和鲁棒性。

四、技术特点及发展趋势基于深度学习的人脸识别方法具有以下技术特点:1. 高效性:深度学习能够自动学习和提取出高维度的特征表示,提高了人脸识别的效率和准确性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人脸识别综述1引言人脸识别技术的研究始于20世纪50年代,当时的研究人员主要涉及的是社会心理学领域;最早AFR (Auto Face Recognition)的研究论文见于1965年陈(Chan)和布莱索(Bledsoe)在Panoramic Research Inc•发表的技术报告。

近年来,人脸识别研究得到了诸多研究人员的青睐,涌现出了诸多技术方法。

尤其是1990年以来,人脸识别更得到了长足的发展。

几乎所有知名的理工科大学和主要IT产业公司都有研究组在从事相关研究。

人脸识别研究的发展叮分为以下三个阶段:第一阶段(1964年~1990年)。

这一阶段人脸识别通常只是作为一个一般性的模式识别问题来研究,所采用的主要技术方案是基于人脸几何结构特征(Geometric feature based)的方法。

第二阶段(1991年~1997年)。

这一阶段尽管时间相对短暂,但却是人脸识别研究的高潮期,可谓硕果累累:不但诞生了若干代表性的人脸识别算法,美国军方还组织了著名的FERET人脸识别算法测试,并出现了若干商业化运作的人脸识别系统,比如最为著名的Visionics (现为Identix)的Facelt系统。

美国麻省理工学院(MIT)媒体实验室的特克(Turk)和潘特(Pentland)提出的“特征脸”方法无疑是这一时期内最负盛名的人脸识别方法。

第三阶段(1998竿现在)。

FERET' 96人脸识别算法评估表明:主流的人脸识别技术对光照、姿态等由于非理想采集条件或者对象不配合造成的变化鲁棒性比较差。

因此,光照、姿态、表情、遮挡问题逐渐成为研究热点。

人脸识别是一项既有科学研究价值,又有广泛应用前景的研究课题。

国际上大量研究人员几十年的研究取得了丰硕的研究成果,自动人脸识别技术已经在某些限定条件下得到了成功应用,人脸识别技术的研究对模式识别,人工智能,计算机视觉,图像处理等领域的发展有巨大的推动作用。

人脸识别问题可以定义成:输入(查询)场景中的静止图像或者视频,使用人脸数据库识别或验证场景中的一个人或者多个人。

基于静止图像的人脸识别通常是指输入(查询)一幅静止的图像,使用人脸数据库进行识别或验证图像中的人脸。

而基于视频的人脸识别是指输入(查询)一段视频,使用人脸数据库进行识别或验证视频中的人脸。

如不考虑视频的时间连续信息,问题也可以变成采用多幅图像(时间上不一定连续)作为输入(查询)进行识别或验证。

人脸自动识别系统包括三个主要模块[1]:首先是图像预处理模块,由于实际成像系统多少存在不完善的地方以及外界光照条件等因素的影响,在一定程度上增加了图像的噪声,使图像变得模糊、对比度低、区域灰度不平衡等。

为了提高图像的质量,保证提取特征的有有效性,进而提高识别系统的识别率,在提取特征之前,有必要对图像进行预处理操作;其次人脸的检测和定位模块,即从预处理的图像中,利用人类检测器(目前人脸检测方法主要以Adaboost算法为主,0PENCV在这方面做的比较好)找出人脸及人脸所在的位置,并将人脸从背景中分割出来,对库中所有的人脸图像大小和各器官的位置归一化;最后是对归一化的人脸图像进行特征提取(提取局部特征已逐渐成为主流),建立特征描述子,将图像之间的特征进行匹配进而完成识别。

2概述人脸识别方法大致分为以下几种:基于几何特征、基于代数特征[2]、基于神经网络模型以及基于三维模型。

(1)基于几何特征基于几何特征的人脸识别方法是在抽取人脸图像上显著特征的相对位置及其参数的基础上进行识别。

最早的人脸识别是用手工的方法确定人脸特征点的位置并将其输入计算机中。

识别工作的流程大体如下:首先检测出面部特征点,通过测量这些关键点之间的相对距离(欧式距离、马氏距离等),得到描述每个脸的特征矢量,比如眼睛、鼻子和嘴的位置和宽度,眉毛的厚度和弯曲程度等,以及这些特征之间的关系,用这些特征来表示人脸。

比较未知脸和库中已知脸中的这些特征矢量,来决定最佳匹配[3]。

基于小模板匹配的方法属于几何特征识别,是已知一个小模板,在人脸的大图像中进行匹配,如果匹配成功,就可以确定其坐标位置[4]。

基于几何特征的缺点显而易见,对获得的图像要求很高,特征点的定位非常重要,通常人脸特征点的定位会存在误差,这种方法对正面人脸可以取得一定识别效果,如果人脸姿态存在一定的偏转或有遮挡都会很大程度上影响识别的准确性。

(2)基于代数特征基于代数特征的人脸识别方法具有代表性的是PCA (主元分析法)[5]、K-L(卡胡南一列夫)[6]变换和SVD (奇异值分解)[7]等方法。

其主要思想:对于 一副由N 个象素组成的图像,可以看作是一个N 维矢量空间,采用不同的变换方 法,能够有效的提取主分量,通过对人脸样本集的自相关矩阵的特征矢量的选取, 构成一个正交的低维人脸空间,从而达到降低冗余、提高识别率的目的。

利用主元分析法(Principle Component Analysis 简称PCA )进行识别是由 Anderson 和Kohonen 提出的。

PCA 方法最早由Sirovitch 和Kirb [8, 9]引入人脸 识别领域,并因为它的有效很快流行起来。

简单地说,它的原理就是将一高维的 向量,通过一个特殊的特征向量矩阵,投影到一个低维的向量空间中,表征为一 个低维向量,并不会损失任何有用信息。

也就是说,通过低维表征的向量和这个 特征向量矩阵,可以完全重构出所对应的原来的高维向量。

K-L 变换与SVD 分解的思想同PCA 都差不多,降维到低维向量空间后要运算 的分量大大地减少了。

采用代数特征识别人脸具有以下的特征:良好的稳定性;位移不变性;特征 向量与图像的高度成比例变化;转置不变性等。

但是代数特征对表情不能很好地 描述,难以用于表情分析和表情识别。

(3)基于神经网络模型神经网络由许多并行运算的功能简单的单元组成,是一个非线性动力学系 统,其特色在于信息的分布式存储的并行协同处理,具有良好的容错能力。

神经 网络主要的应用是对已经提取主特征的特征值进行分类。

比较成熟的是 PCA+ANN (主元分析+人工神经网络),用K-L+ANN (K-L 变换+人工神经网络)[10]、 SVD+ANN (奇异值分解+人工神经网络),也有直接用NN+NN (神经网络+神经网络) 进行人脸识别的,不过这样所要计算的分量太大了,训练与工作的时间要长很多。

有代表性的神经网络模型有:BP 网络、RBF 网络、Hopfield 模型等。

如图所 示的是PCA+BP 神经网络的例子,其中输入层结点的个数与主元分析后低维向量的个数相等输入到BP 神经网络的输入层结点中,隐层结点的个数在构造BP 网络 时就已经定义好了,输出层结点的个数与样本的数量有关,要能达到分类的目的。

基于神经网络的方法,结构上类似于人脑,但由于原始灰度图像数据量十分 低维分量作为输入向量庞大,神经元数目通常很多,训练时间很长,而基于冯诺伊曼结构也受到了限制。

(4)基于三维模型三维人脸识别[11]最初是从几何方法发展来的,出发点是希望利用三维的人脸识别处理技术,解决传统二维照片识别中因为人脸的姿态、光照等对识别造成的干扰问题,在三维的基础上进行特征的提取和识别将有更为丰富灵活详尽的信息可以利用。

三维数据获取已经成为可能(如三维激光扫描技术、CT成像技术、结构光方法等),使得图形技术得到了应用的可能,可以完成人头三维面貌数据获取。

在合成特定人的头部模型时,需要一个基本头部模型,该模型是一个通用的模型,特定人的模型都可以通过对该模型的修改得到。

人类面部特征的位置、分布基本上是一样的,因而特定人脸的模型可以通过对一个原始模型中的特征和其型,以后所有特定模型的建立都是基于这个原始模型。

它一些网络点位置进行自动或交互调整而得到o系统的内部有一个原始的人头模基于三维模型的识别方法是未来的对人进行识别的方向,因为在三维模型中,可以对人的头部从任意角度获得信息,具有良好的抗干扰能力,该方法的重点和难点是如何建立人脸三维模型以及如何在模型之间实现匹配。

基于三维的人脸识别还需要做很多的工作,目前还没有什么实质性的研究应用成果。

由文献[12]看出早期的图像目标识别技术采用基于模型的方法,这种方法需要以目标的三维模型作为系统的输入,由于图像中通常存在遮挡、背景干扰以及光照等成像条件变化,建立目标的三维模型往往比较困难,因此基于模型的方法通常在图像背景较简单的情况下可以取得较好的效果。

文献[13-26]看出人们逐渐将研究的重点转向了基于目标表象的识别方法。

其中文献[13] [14] [15]是基于全局特征的方法,根据图像整体的信息建立模型,因此这类方法对于图像中的背景干扰和遮挡比较敏感,当待识别图像中背景干扰和遮挡影响较小,或者待识别目标可以较好地从待识别图像中分割出来时,这类方法可以取得理想的识别效果。

文献[16-26]是基于局部特征的方法。

其中[17] [18] [22] [23] [24] [25] [26]是基于局部不变特征的方法,此方法利用从图像中提取的局部不变特征来对图像目标建模,可以有效克服背景杂波以及遮挡等的影响,综合近年文献资料及VOC (Visual Object Class Challenge) 竞赛报告不难看出,基于外观表象的局部不变特征方法已经取代全局特征方法成为了主流方法。

文献[27] [28] [29] [30] [31]介绍了在图像局部不变特征提取的基础上,基于词汇包(Bow)的图像表征和目标建模方法是目前的典型方法。

文献[32]利用奇异值提取人脸的全局特征和6个关键部分的局部特征进行加权融合得出特征融合矩阵有效解决了SVD识别率不高和LDA小样本空间问题。

文献[33,34]采用的人脸识别方法都是以提取SIFT (Scale Invariant Feature Transform)特征为基础。

其中文献[33]基于SIFT算子识别方法,结合K-means聚类的模式匹配策略,采用局部相似性和全局相似性的计算方法对人脸图像进行相似度匹配,并在匹配过程中使用基于概率统计的权值赋予方案和相似度的平方来提高识别的准确性。

文献[34]提出一种基于尺度不变特征变换(SIFT)和增强Hough变换的人脸识别方法。

利用SIFT的位置、尺度、方向和描述符4个信息,通过增强Hough变换消除错配,将候选匹配点和离散点距离进行加权累计获得高辨别力的匹配分。

文献[35]中介绍了在随着目标数目及特征样本数量的增加,关键特征词类属概率倾向性逐渐减弱的情况下,采用基于S0M神经网络的聚类树方法对近500 类目标5万多幅图片提取的2百多万个SIFT特征描述子进行聚类,得到了25300 多个特征词汇。

文献[35]提出了一种基于RS0M ( recursive sel-f organizing mapping, RSOM )树、利用SIFT ( scale invariant feature trans-form )特征为索引的海量图像集中K近邻的求解方案。

相关文档
最新文档