石墨烯在涂料中的应用_王清海

石墨烯在涂料中的应用_王清海
石墨烯在涂料中的应用_王清海

石墨烯的制备方法与应用

石墨烯的制备方法与应用 摘要: 石墨烯是目前发现的唯一存在的二维自由态原子晶体, 它是构筑零维富勒烯、一维碳纳米管、三维体相石墨等sp2 杂化碳的基本结构单元, 具有很多奇异的电子及机械性能。因而吸引了化学、材料等其他领域科学家的高度关注。本文介绍了近几年石墨烯的研究进展, 包括石墨烯的合成、去氧化、化学修饰及应用前景等方面的内容。石墨烯由于其特殊的电学、热学、力学等性质以及在纳米电子器件、储能材料、光电材料等方面的潜在应用,引起了科学界新一轮的热潮。关键字: 石墨烯, 制备, 应用,氧化石墨烯,传感器 石墨烯的定义 石墨烯是碳原子紧密堆积成单层二维蜂窝状晶格结构的一种碳质新材料,厚度只有0.335纳米,仅为头发的20万分之一,是构建其它维数碳质材料(如零维富勒烯、一维纳米碳管、三维石墨)的基本单元,具有极好的结晶性、力学性能和电学质量。 石墨烯的结构 完美的石墨烯是二维的, 它只包括六角元胞(等角六边形)。 如果有五角元胞和七角元胞存在,那么他们构成石墨烯的缺陷。如果少量的五角元胞细胞会使石墨烯翘曲; 12个五角元胞的会形成富勒烯。碳纳米管也被认为是卷成圆桶的石墨烯; 可见,石墨烯是构建其它维数碳质材料(如零维富勒烯、一维纳米碳管、三维石墨)的基本单元。

单原子层石墨晶体薄膜。 每个原胞中两个碳原子,每个原子与最相邻三个碳原子形成三个σ键。 每个碳原子贡献一个多余p电子,垂直于graphene平面,形成未成键的π电子——良好的导电性。 石墨烯的性能 最薄——只有一个原子厚 强度最高——美国哥伦比亚大学的专家为了测试石墨烯的强度,先在一块硅晶体板上钻出一些直径一微米的孔,每个小孔上放置一个完好的石墨烯样本,然后用一个带有金刚石探头的工具对样本施加压力。结果显示,在石墨烯样品微粒开始断裂前,每100纳米距离上可承受的最大压力为2.9 微牛左右。按这个结果测算,要使1 米长的石墨烯断裂,需要施加相当于55 牛顿的压力,也就是说,用石墨烯制成的包装袋应该可以承受大约两吨的重量。 没有能隙——良好的半导体 良好的导热性 热稳定性——优于石墨 较大的比表面积 优秀导电性——电子的运动速度达到了光速的1/300,远远超过了电子在一般导体中的运动速度--电子的“光速”移动碳原子有四个价电子,这样每个碳原子都贡献一个未成键的π电子,这些π电子与平面成垂直的方向可形成轨道,π电子可在晶体中自由移动,赋予

石墨烯防腐涂料

海洋工程石墨烯防腐涂料应用 目录 1. 我国海洋工程和防腐现状 (1) 2. 影响海洋工程腐蚀的因素 (1) 2.1 盐度 (1) 2.2 温度 (1) 2.3 pH值 (1) 2.4 海洋微生物腐蚀 (2) 3. 海洋工程在海洋环境各腐蚀带中的腐蚀机理 (2) 4. 海洋工程表面防护 (3) 4.1 耐腐蚀材料 (3) 4.2 电化学保护 (3) 4.3 表面涂层保护 (3) 5. 石墨烯防腐涂料 (4) 5.1 海洋防腐涂料性能要求 (4) 5.2 海洋工程石墨烯防腐涂料 (4) 5.3 海洋工程石墨烯防腐涂料发展过程中遇到的困难 (5) 6. 海洋工程石墨烯防腐涂料的工业化进程 (5)

1.我国海洋工程和防腐现状 我国是海洋大国,我国有1.8万公里海岸线,约300万平方公里的海洋面积,拥有丰富的海洋资源和蓬勃发展的海洋产业。随着经济的不断发展,海洋油气平台、海底管线、海上风电、船舶运输、跨海大桥、海洋交通设施等不断增加,沿海更拥有大量的海港码头、滨海电厂等设施。但海洋装备和工程材料长期处于海洋环境下工作,无法回避腐蚀损伤和磨蚀失效的问题。据统计,我国海洋腐蚀一年损失1.6万亿元,占全国GDP的3%,超过所有台风、洪涝等灾害总和的6倍。因此,海洋腐蚀与防护已成为我国经济发展中急需解决的问题。面对苛刻的海洋工作环境,研制具有良好防腐和耐磨性能的高性能涂料,是解决海洋材料腐蚀和磨蚀问题最有效的途径之一。另外,随着国家的发展和科技的进步,越来越多的海洋资源被人们发现并开采利用,利用海洋对于国家经济的发展和人类社会的进步具有深远的意义,那么海洋防腐的重要性就显得尤为重要。然而,我国海洋工程的防腐措施薄弱,亟需加强腐蚀保护。 2.影响海洋工程腐蚀的因素 海洋工程构筑物大致分为:海岸工程(钢结构、钢筋混凝土)、近海工程(海洋平台、钻井、采油、储运)、深海工程(海洋平台、钻井、采油、储运)、海水淡化、舰船(船体、压载舱、水线以上),简称为船舶与海洋工程结构。 海洋工程在海水的腐蚀十分复杂,不同的部位所处的腐蚀环境不同,腐蚀情况也不相同。大体来讲,海洋工程在海水中的腐蚀主要受海水的盐度、温度、pH 值、大气环境、微生物等因素的影响。这些因素相互作用构成了对海洋工程的腐蚀。 2.1 盐度 盐度是海水最典型的特征之一,海水中的盐离子主要包括Na+、Mg2+、Cl-等。其中,NaCl 的浓度一般在3%左右,在这个浓度附近复试速度表现为最大值。当盐的浓度较低时,腐蚀速度随含盐量的增加而急速增加,主要由于Cl-的增加促进了阳极反应造成。另外,随着盐浓度的增加使氧的溶解度降低,当溶液中的盐度再继续增加时腐蚀速度明显下降。 2.2 温度 海水温度越高,就越能加快腐蚀的进行。海洋的温度和海水所处纬度有直接的联系,从赤道到两极的温度浮动从28 ℃~2 ℃。尽管有时局部的水温会高达35 ℃,但是陆地相比,水温几乎不受天气的影响。海水表面温度变化较大,这是由日照、辐射、降水、蒸发、热交换等原因造成的。 2.3 pH值 海水pH升高,有利于抑制海水对钢铁的腐蚀,但由于碳(CO2、HCO3-、CO32-)平衡的存在,海水的pH值稳定保持在8.0~8.3之间,不会对钢铁海水腐蚀产生明显的影响。在有微生物活动的海洋区域,微生物的一些产物(H2S)会导致pH下降,或者由于海藻的存在会导致pH 下降。温度对pH值也会产生影响,通常随pH 值随温度升高而降低,随温度降低而升高。海

石墨烯在催化方面的应用

石墨烯在催化方面的应用 1、石墨烯纳米光催化复合材料的研究 纳米材料被认为是“二十一世纪最有前途的材料”。石墨烯是一种由单层碳原子紧密排列成的二维蜂窝状晶格结构的纳米材料,由于它具有特殊的纳米结构以及优异的性能,石墨烯的复合材料已在电子学、光学、磁学、生物医学、催化等诸多领域显示出了巨大的应用潜能。光催化技术具有工艺简单,能耗低,操作条件容易控制和降解彻底的特点,被认为是具有良好发展前景的环保新技术。以光催化剂/石墨烯纳米复合材料为研究对象,通过不同的复合工艺,制备了三种石墨烯纳米复合材料。 1)以天然鳞片石墨为原料,采用Hummers法制备氧化石墨,并用热剥离成石墨烯,或者利用超声波分散剥离为氧化石墨烯,再化学还原成石墨烯。 2)二氧化钛/石墨烯纳米复合材料,二氧化钛和石墨烯复合效果较好。 3)以氧化石墨烯为基体,醋酸锌为锌源,采用溶胶法制备了氧化锌/石墨烯纳米复合材料。 研究发现了石墨烯的光催化性能,结果表明石墨烯/氧化锌有较高的催化效率,可以测定复合材料的荧光效应。 2、石墨烯负载Pt催化剂的催化氧化发光性能 Pt纳米颗粒可以很好地分散在石墨烯表面,因此合成了石墨

烯负载Pt纳米颗粒的Pt/石墨烯催化剂.并有较快的催化反应速率,Pt颗粒越小催化发光强度越大。当不同Pt负载量(0.4%-1.6%(w,质量分数)的催化剂作用于40%(φ,体积分数)以下浓度的CO/空气体系时,产生的催化发光强度均与CO浓度成正比。该催化剂在一定条件下,不但对CO氧化有较好的催化发光性能,还对乙醚、无水甲醇和甲苯有不同程度的催化氧化发光活性;但二氧化碳、甲醛、戊二醛、丙酮、乙酸乙酯、三氯甲烷、水蒸气均无响应信号。 3、与传统的Pd/Vulcan XC-72相比,Pd/石墨烯催化剂对碱性介质中乙醇电氧化的催化活性有了极大的提高,石墨烯-SnO2复合物(SnO2-GNS)可以负载高分散的Pd作为纳米颗粒催化剂,电化学测试表明,与Pd/石墨烯(Pd/GNS)相比,Pd/SnO2-GNS 催化剂对乙醇电氧化的催化活性有了很大的提高。当加入的前驱盐SnCl2·2H2O与氧化石墨的质量比为1:2时,Pd/SnO2-GNS催化剂获得最好的催化活性。 4、用石墨烯(G)代替Vulcan XC-72炭(XC)作Ir的载体制备石墨烯载Ir(Ir/G)催化剂.电化学的测量结果表明,Ir/G催化剂对氨氧化的电催化性能优于XC炭载Ir(Ir/XC)催化剂。 5、利用溶胶-凝胶法原位制备了二氧化钛/石墨烯(TiO2-GE)复合光催化剂,研究了纯TiO2以及不同方法制备的TiO2-GE复合光催化剂对亚甲基蓝及罗丹明B光催化降解性能.结果表明:石墨烯的引入提高了TiO2的光催活性,这主要是得益于石墨烯优

石墨烯碳纳米管散热涂料技术

石墨烯碳纳米管散热涂料技术 (1)项目背景 碳材料是目前人类认知的材料中功能最全、性能最优越、形式最多样的材料,是目前所有已知划时代材料所有不能比拟的,继硅时代之后21世纪甚至有望成为碳材料时代。尤其是纳米碳材料丰富的形态,涵盖从零维、一维到二维结构, 每一次纳米碳材料的出现都引领了纳米科技的快速发展。其中,碳纳米管可看成是一种石墨片卷曲结构,超强的C-C键使碳纳米管具有超强的力学性能和热传 导性能,理论计算和实际测量表明,单壁碳纳米管拉伸强度可达150 GPa,弹性模量1TPa,是钢铁的100倍,密度却只有其1/6,被誉为终极碳纤维。同时单壁碳纳米管室温导热系数高达6000W/m.K,多壁碳纳米管的室温导热系数也达3000W/m.K,是热导率最高的材料。同时,碳纳米管比表面积大,被誉为世界上 最黑的物质,这种物质对光线的折射率只有0.045%,吸收率高达99.5%以上,辐射系数接近绝对黑体的 1.0。另外还具有优异的导电性能和超高的载流子输送 密度,导电率接近金属,载流能力超过金属铜。众多优异综合性能使碳纳米管自发现以来受到极大关注,是纳米材料和纳米技术的最典型代表,是散热涂料和复合材料最理想的功能填料。 碳纳米管在功能涂料领域主要发挥以下主要作用: (1)导电填料:碳纳米管的导电阈值低至0.1wt%,而传统炭黑却高达15wt%以上,碳纳米管可以在极少量添加的情况下即达到目前炭黑型导电涂料的 性能,避免大量无机炭黑添加对涂料工艺性的负面影响。因此,碳纳米管在抗静电涂料、电磁屏蔽涂料、重防腐涂料等领域具有显著优势。同时还能利用其电致发热的作用,开发新型的节能加温、保温涂料,在家居地暖加温、仪器设备保温等新型市场具有极大的商业前景。 (2)散热填料:碳纳米管不仅具有超高的热导率,同时还具有接近理论黑体的辐射率,以此加强其红外辐射散热功能,因此新型散热涂料将有望改变目 前散热模式,大大提高热交换能力。 (3)力学增强填料:充分发挥碳纳米管一维结构的优势,在涂层内部形成增强网络,将使涂料力学性能大大提高,尤其是耐磨性、硬度等,甚至可形成

石墨烯防腐涂层

5.石墨烯防腐涂料 对于防腐涂料来说,传统防护涂层受限于自身材料性质及工艺,对金属基体的腐蚀防护作用往往不理想,个别性能突出的成本又很高,降低了涂层的性价比,而且相当一部分涂层因含铅锌或铬酸盐等重金属或有毒物质,存在一定的环境污染风险,也消耗了大量的不可再生资源,不利于社会经济的可持续发展。因此,开发各类新型长效环保的海洋重防腐蚀涂料成为新热点。 海洋防腐涂料性能要求 海洋防腐涂料一般要求具有如下性能:①具有良好的物理性能。对腐蚀介质抗渗性好,对钢材表面附着力好;②具有良好的力学性能。耐海水冲刷、耐海冰碰撞、耐船舶停靠的磨损;③具有优异的化学性能。耐海水、耐盐雾、耐油、耐化学品、耐紫外线等的侵蚀;④与电化学保护系统相容性好。飞溅区和全浸区涂料要具有耐阴极剥离性;⑤具有良好施工性能。可在各种环境条件下对不同结构进行高质量涂装施工;⑥符合健康、环保、安全的要求。 海洋工程石墨烯防腐涂料 石墨烯广泛和独特的性能展现了其在金属材料防腐领域的巨大潜力。首先,石墨烯稳定的sp2杂化结构使其能在金属与活性介质间形成物理阻隔层,阻止扩散渗透的进行;其次,石墨烯具有很好的热稳定性和化学稳定性,不论是在高温条件下(可高达1500℃),还是在具有腐蚀或氧化性的气体、液体环境中均能保持稳定。另外,石墨烯良好的导电、导热性能对金属服役的环境提供了有利条件。石墨烯还是目前为止最薄的材料,其对基底金属的影响可以忽略不计。同时还兼具高的强度和良好的摩擦学性能,不仅能提高导电性或耐盐雾性能,还能进一步降低涂层厚度,增加对基材的附着力,提升涂料的耐磨性。在常用的环氧防腐涂料的基础上通过添加石墨烯制备的新型涂料不仅具有环氧富锌涂料的 阴极保护效应、玻璃鳞片涂料的屏蔽效应,更具有韧性好、附着力强、耐水性好、硬度高等特点,其防腐性能超过现有的重防腐涂料,可广泛应用于海洋工程、交通运输、大型工业设备及市政工程设施等领域的涂装保护。用石墨烯制备涂料来提高金属耐腐蚀性方面的潜能,在铜和镍的表面涂上石墨烯的试验证明,用化学气相沉积培育时,铜的腐蚀速度减慢7倍,这是在加氧硫酸钠(Na2SO4)溶液中与裸铜相比的情况。镍的腐蚀速度慢4倍。这些发现说明石墨烯是已知最薄防腐蚀涂层。因此,石墨烯将成为最理想的防腐涂层。 海洋工程石墨烯防腐涂料发展过程中遇到的困难 石墨烯的共轭结构导致其与水有机溶剂以及聚合物的相容性较差,因而增加了其在涂料领域中的应用难度。为解决该问题,将GO功能化改性,再按需要进行还原。如将石墨烯成功应用于防腐涂料,还需对其进行更多的功能化改性或与其他物质进行复合等方面的研究。石墨烯虽具有诸多优异性能,然而作为一个新的研究对象,还有很多未知的性质需要探究,作为防腐材料工业化应用前必须要完善相关的理论与实验研究,避免相反结果发生。同时海洋防腐涂料的研发具有科技含量高、研制周期长、投资大、技术难度高且风险大,国外海洋防腐涂料研发主要集中在实力雄厚的大公司或靠政府支持的部门。例如英国的P、美国的PPG、丹麦的Hemple、挪威的Jotun及日本的关西涂料等几家大公司均有上百年的相关涂料开发历史,在涂料生产供应、质量监督、涂装规范及涂装现场管理等方面形成了一整套十分严格和严密的体系,目前这些公司的产品占据了我国海洋防腐涂料的主要市场。 6.海洋工程石墨烯防腐涂料的工业化进程 我国海上风电发展规划提出,2015年开发建设500万千瓦,2020年开发建设3000万千瓦。 但海上风电设备要经历严苛的环境挑战,长期受到水汽、盐雾侵蚀及海浪的冲击,很容易发生腐蚀问题,因此,为保证风电装备20年的正常服务寿命,必须采取相关的保护措施,而涂料

石墨烯在轮胎橡胶中应用技术的进展解析

石墨烯在轮胎橡胶中应用技术的进展解析 双钱集团上海轮胎研究所有限公司苏博李玉庭 一、简介 石墨烯(Graphene) 是一种由碳原子构成的单层片状结构的新材料,具有非常好的导热性和电导性,以及高强度、超轻薄、超大比表面积等特性,作为填充体系应用于胎面胶能够从三个方面提高胎面胶性能,分别是导电性、导热性和机械性能,其中,能够有效提高胎面胶的强度、耐磨性、抓地性、耐久性等性能,并能解决白炭黑静电积累问题以及胎面胶热量积累问题,从而可以很好地平衡传统填充体系无法克服的性能缺陷。 二、全球生产石墨烯的企业 国外生产情况

国内生产情况 目前,我国石墨烯产业已经有超过 50 家的制备及相关应用开发企业,目前市场竞争也主要集中在石墨烯规模化制备技术以及与下游商业化应用对接两方面。经过前期的积累,国内大型石墨烯企业(年产石墨烯粉体50吨以上)已经初步掌握了

国际相对主流的石墨烯制备方法,大部分指标足以满足低端应用需求。此外,少数企业已经具备了规模化生产的优势,产能扩建也在进行之中。

二、国内发展情况 石墨烯应用到轮胎生产中,可以使轮胎变得更加耐磨、防穿刺,而且能大大提高使用寿命。正因为具有这样的特性,一些研究机构开始进行这方面的研究和应用。四川大学高分子材料工程国家重点实验室,已经自主研发出世界首个石墨烯橡胶轮胎。 双星全球研发中心暨石墨烯轮胎中心实验室奠基仪式在青岛西海岸新区举行。其中,石墨烯轮胎中心实验室将是全国首个石墨烯轮胎实验室,目标是实现高端石墨烯轮胎的超前研发和产业化,引领世界轮胎研发制造领域的新一轮革命。据介绍,石墨烯是从石墨材料中剥离出来、是目前强度最高、韧性最好、质量最轻、透光率最高、导电性能最好的材料,被称为“新材料之王”,应用到轮胎可以提升轮胎的耐磨、抗刺扎、降低肩空等性能,使其变成超级轮胎。项目总占地面积约120亩,建筑面积约16万平方米,总投资10亿元。其中,一期全球研发中心项目占地面积25亩,建筑面积4万平方米,计划于2016年年底投入运行。 2016年9月14日,世界首条石墨烯导静电轮胎智能化生产线,在青岛森麒麟轮胎股份有限公司正式投产运行,森麒麟-华高墨烯合作生产世界首条石墨烯导静电轮胎成功下线。此次下线也标志着全球首家石墨烯导静电轮胎产业化基地正式落地,森麒麟与华高墨烯就石墨烯导静电轮胎合作集成创新向纵深发展。森麒麟采用华高墨烯提供的专利技术和石墨烯“华高2#”进行石墨烯导静电轮胎的合作生产。据介绍,石墨烯导静电轮胎采用石墨烯与胶质复合改性制备技术,克服了现有拖曳式汽车防静电技术和装备打火花、易磨短、易脱落、不能可靠导出车体静电等缺点,通过具有导静电功能的轮胎胎面接地,实现全时段、连续、可靠地导出车体静电。石墨烯导静电轮胎,其核心功能是无需额外增加车载设备导出车体静电,无安全隐患,能有效避免汽车静电对司乘人员造成的伤害,杜绝汽车火灾和爆燃,特别适用于易燃易爆品运输车、电子设备专用车、军﹙警﹚用等特种车辆。石墨烯导静电轮胎产品采用华高墨烯专有技术制造,其导电率可达到10-5S/m,能保证可靠导

石墨烯的应用领域

第二章石墨烯应用领域 石墨烯因其独特的电学性能、力学性能、热性能、光学性能和高比表面积,近年来受到化学、物理、材料、能源、环境等领域的极大重视,应用前景广阔,被公认为21世纪的“未来材料”和“革命性材料”。具体在五个应用领域:一是储能领域。石墨烯可用于制造超级电容器、超级锂电池等。二是光电器件领域。石墨烯可用于制造太阳能电池、晶体管、电脑芯片、触摸屏、电子纸等。三是材料领域。石墨烯可作为新的添加剂,用于制造新型涂料以及制作防静电材料。四是生物医药领域。石墨烯良好的阻隔性能和生物相容性,可用于药物载体、生物诊断、荧光成像、生物监测等。五是散热领域。石墨烯散热薄膜可广泛应用于超薄大功耗电子产品,比如当前全球热销的智能手机、IPAD 电脑、半导体照明和液晶电视等。 中国科学院预计,到2024年前后,石墨烯器件有望替代互补金属氧化物半导体(CMOS)器件,在纳米电子器件、光电化学电池、超轻型飞机材料等研究领域得到应用。目前,全球范围内仅电子行业每年需消耗大约2500吨半导体晶硅,纯石墨烯的市场价格约为人民币1000元/g ,其若能替代晶硅市场份额的10%,就可以获得5000亿元以上的经济利益;全球每年对负极材料的需求量在2.5万吨以上,并保持了20%以上的增长,石墨烯若能作为负极材料获得锂离子电池市场份额的10%,就可以获得2500吨的市场规模。可见,石墨烯具有广阔的应用空间和巨大的经济效益。

正是在这一背景下,目前国内外对石墨烯技术的应用研究如火如荼,具体应用如下: 2.1 石墨烯锂离子电池 锂离子电池具有容量大、循环寿命长、无记忆性等优点,目前已成为全球消费类电子产品的首选电池以及新能源汽车的主流电池。高能量密度、快速充电是锂电池产品发展的必然趋势,在正极材料中添加导电剂是一种有效改善锂电性能的途径,可大大增加正负极的导电性能、提高电池体积能量密度、降低电阻,增加锂离子脱嵌及嵌入速度,显著提升电池的倍率充放电等性能,提高电动车的快充性能。 所谓石墨烯电池并非整个电池都用石墨烯材料制作,而是在电池的电

石墨烯防腐散热涂料绝非概念

石墨烯防腐散热涂料绝非概念 广纳纳米对于石墨烯涂料的研究从未停止过。石墨烯作为一种新型纳米材料,是驱动涂料行业技术创新的重要原材料。2017年石墨烯涂料获得重大突破,在各行业中开始逐步运用,打破国外垄断,石墨烯涂料迅速发展。 石墨烯在涂料中应用 石墨烯在涂料中的应用主要表现为电子领域中的导热散热,海洋领域中的重防腐处理。在涂料中利用石墨烯的物理阻隔性能,可提高涂料的防腐、防污、阻燃效果;利用其高导电、高导热性能,可开发导电涂料、散热涂料、电磁屏蔽涂料等。 1、石墨烯重防腐 11月23日,在舟山500千伏联网工程现场,十余名工作人员正在给地面堆放整齐的一根根铁塔管杆喷刷“石墨烯重防腐涂料”,为这座在建的世界第一高塔穿上一身防腐“铠甲”。 长期以来,如何在湿度和盐度较高的海岛环境,减缓金属物的锈蚀,防止表面剥落,保证设备内部结构不受破坏,从而延长杆塔寿命,是沿海地区供电部门研究的一项重要课题,石墨烯重防腐涂料的应用,无疑是解决这个难题的有力方案。 2、石墨烯散热 石墨烯本身热导率高,高比表面积,能够增大涂层散热面积,广纳纳米充分运用这一点,研发出GN-706石墨烯高导热散热涂料,将散热涂料的导热系数提高到20W/M.K,散热膏的导热系数是2W/M.K与石墨烯散热涂料导热性能相差10倍。GN-706石墨烯高导热散热涂料在LED,舞台设备,电子设备均有应用。广纳纳米还做了个有趣的小实验,让更多人能够亲眼见证GN-706石墨烯高导热散热涂料的导热速度。 没有做石墨烯涂层的铝板与做了石墨烯涂层的铝板传热速度是有明显的差异,并且,做了石墨烯涂层,热量传导较为均匀,极大的提高了散热效率。 广纳纳米特有 1、航空级纳米复合陶瓷技术工艺,功效更稳定。 2、独特成熟的纳米陶瓷分散工艺技术,分散更均匀稳定;纳米微观颗粒间结合界面处理高效稳定,确保纳米复合陶瓷涂层与基材结合强度更好性能更优异稳定;纳米复合陶瓷的配

石墨烯防腐涂料

曼彻斯特大学发现石墨烯防腐涂料 曼彻斯特大学发现一层薄薄的石墨烯涂层可以用作防水耐化学涂料,可用于包装来保持食物的新鲜,防止金属结构腐蚀。只有一层原子厚度的的石墨烯可以通过氧化附着含氧官能团,这种超强防腐蚀性石墨烯氧化物可能会对化工、制药和电子行业产生重大影响。 氧化石墨烯溶液可喷涂用于各种表面,从玻璃等无机表面到金属金边甚至传统的砖头表面。在一个简单的化学处理后,得到的氧化石墨烯涂层具有石墨一样的化学和热稳定性,而且在力学方面还是人类已知的最硬材料。Rahul Nairr 博士和诺贝尔奖获得者Andre Geim领导的研究小组之前证明石墨烯氧化物制成的多层膜在干燥条件下真空密实,但如果暴露于水或蒸汽中,则本身可以作为分子筛,允许一定规模以下小分子通过。利用这点,可能对水净化应用有巨大的影响。 这截然不同的属性主要是由于氧化石墨烯薄膜的结构,由数以百万计的石墨烯纳米片相互随机堆叠,层与层之间存在着纳米级的毛细管力。水分子在这些纳米级的毛细血管力作用下可以拖动小原子和分子。本周Nature Communications的一篇报道中,曼彻斯特大学团队证明可以通过实践的化学处理可以紧密关闭那些nanocapillaries使用简单的化学处理纳米毛细管,这使得石墨烯薄膜机械性能更强,并且完全不透气体、液体或强烈的化学物质。例如,研究人员表明,覆盖着石墨烯漆的玻璃器皿或铜盘可以用作强烈腐蚀性酸容器。 现在石墨烯的特殊屏障性能涂料已经吸引了许多公司与曼彻斯特大学合作开发新的防护和防腐涂料。Nair博士说:“石墨烯漆将会给产品处理行业,包括任

何类型的保护,从空气,天气元素到腐蚀性化学物质带来真正的革命。这个工作的第一作者Yang Su博士补充道:“石墨烯涂料可以应用于几乎任何材料,无论是独立的塑料、金属或甚至沙子。例如,塑料薄膜涂有石墨烯可能用于医疗包装来提高保质期,因为它们对空气和水的渗透性的屏障功能比传统涂料要好。此外,薄层石墨烯漆透光性也不错。”

石墨烯复合材料的研究及其应用

石墨烯复合材料的研究及其应用 任成,王小军,李永祥,王建龙,曹端林 摘要:石墨烯因其独特的结构和性能,成为物理化学和材料学界的研究热点。本文综述了石墨烯复合材料的结构和分类,主要包括石墨烯-纳米粒子复合材料、石墨烯-聚合物复合材料和石墨烯-碳基材料复合材料。并简述石墨烯复合材料在催化领域、电化学领域、生物医药领域和含能材料领域的应用。 关键词:石墨烯;复合材料;纳米粒子;含能材料 Research and Application of Graphene composites ABSTRACT: Graphene has recently attracted much interest in physics,chemistry and material field due to its unique structure and properties. This paper reviews the structure and classification of graphene composites, mainly inclouding graphene-nanoparticles composites, graphene-polymer composites and graphene-carbonmaterials composites. And resume the application of graphene composites in the field of catalysis, electrochemistry, biological medicine and energetic materials. Keywords: graphene; composites; nanoparticles; energetic materials 石墨烯自2004年曼彻斯特大学Geim[1-3]等成功制备出以来,因其独特的结构和性能,颇受物理化学和材料学界的重视。石墨烯是一种由碳原子紧密堆积构成的二维晶体,是包括富勒烯、碳纳米管、石墨在内的碳的同素异形体的基本组成单元。石墨烯的制备方法主要有机械剥离法,晶体外延法,化学气相沉积法,插层剥离法以及采用氧化石墨烯的高温脱氧和化学还原法等[4-10]。与碳纳米管类似,石墨烯很难作为单一原料生产某种产品,而主要是利用其突出特性与其它材料体系进行复合.从而获得具有优异性能的新型复合材料。而氧化石墨烯由于其特殊的性质和结构,使其成为制备石墨烯和石墨烯复合材料的理想前驱体。本文综述了石墨烯复合材料的结构、分类及其在催化领域、电化学领域、生物医药领域和含能材料领域的应用。

石墨烯纳米片详细性能参数

石墨烯纳米片性能参数 石墨烯纳米片性能参数,这是我们在购买前需要了解的事情。石墨烯纳米片具有优良 的导电,润滑,耐腐,耐高温等特性。制备的石墨烯纳米片厚度在4~20nm,微片大小在5~10μm,小于20层。石墨烯纳米片在导热方面显示了它优异的特性,应用在导热胶,导热高分子复合材料,散热材料中。同时在导电橡胶,导电塑料,抗静电材料方面有广阔的 应用前景。下面就由先丰纳米给大家简单的介绍石墨烯纳米片性能参数。 性能: 1、具有高比表面积和发达的中孔,孔隙结构分布合理。 2、具有优异的吸波防辐射屏蔽性能,可有效降低内阻,屏蔽辐射。, 3、石墨烯除了有很好的导电性能外,还具备优异的机械性能及导热性能,是导电涂料添加剂 4、石墨烯的导热系数高,将其用于导热涂料可有效传导材料的内部温度,增强导热效果。 应用领域: 1、导电涂料,纳米导电复合材料、纳米电子器件、塑料、橡胶和锂离子电池等方面具 有广泛的应用前景。 2、防屏蔽涂料,石墨烯具有优异的吸波,防辐射屏蔽功能,可直接应用于防屏蔽涂料,军工等防辐射材料。 3、塑料里掺入百分之一的石墨烯,能将它们转变成电导体,且增强抗热和机械性能。

如果想要了解更多关于石墨烯纳米片的内容,欢迎立即咨询先丰纳米。 先丰纳米是江苏先进纳米材料制造商和技术服务商,专注于石墨烯、类石墨烯、碳纳 米管、分子筛、黑磷、银纳米线等发展方向,现拥有石墨烯粉体、石墨烯浆料和石墨烯膜 完整生产线。 自2009年成立以来一直在科研和工业两个方面为客户提供完善服务。科研客户超过 一万家,工业客户超过两百家。 南京先丰纳米材料科技有限公司2009年9月注册于南京大学国家大学科技园内,现 专注于石墨烯、类石墨烯、碳纳米管、分子筛、银纳米线等发展方向,立志做先进材料及 技术提供商。 2016年公司一期投资5000万在南京江北新区浦口开发区成立“江苏先丰纳米材料科技有限公司”,建筑面积近4000平方,形成了运营、研发、中试、生产全流程先进纳米 材料制造和技术服务中心。现拥有石墨烯粉体、石墨烯浆料和石墨烯膜完整生产线,2017年年产高品质石墨烯粉末50吨,石墨烯浆料1000吨。 欢迎广大客户和各界朋友莅临我司指导!欢迎电话咨询或者登陆我们的官网进行查看。

石墨烯及其在防腐涂料中的应用研究

技术应用与研究 2018·04 103 Chenmical Intermediate 当代化工研究 和填充物的玻璃内衬。可以充分吸收样品中的高沸点组合和非挥发性组分,避免色谱柱的堵塞。在全烃色谱分析当中,在普通直通式内衬中加入玻璃毛隔挡的特殊吸附物质,能够阻止未经处理的样品中含有的强极性非烃以及大分子沥青物质进入色谱柱。在天然气样品分析当中,一般都使用金属直通式内衬,对于氯仿抽提物这类特殊的物质,必须使用玻璃内衬。 其次,就是阀的应用。在气相色谱仪的应用过程当中,阀的主要作用是为气体和液体样品重复提供固定体积的进样。近年来,碎屑智能化技术的不断发展,阀已经可以实现简单的自动化。 最后,就是多种辅助进样系统的应用现状。比如用于注射在密闭、加热的小瓶中同样品保持平衡的顶空气体的顶空自动进样器。它能够分析固体样品,地表油气化探中的土壤样品,高沸点烃类样品等。而热解析器则可以通过释放样品当中的有机物,较为真实的反应样品中分子量烃所包含的地质信息。热解吸器同阀的结合能够在实现瞬间进样的基础之上, 实现样品进样的最大化和灵敏度。其具体的工作示意图如下: 同时还有热解分析器、吹扫补集器都得到了很好的发展,同时还有部分气相色谱仪进样系统正在完善的过程当中。 3.气相色谱仪进样系统的改进与应用的前景展望 针对气相色谱仪进样系统的改进与应用,应该注重以下几方面的科研力度。 首先,应该加强专业气相色谱仪进样系统的应用与研发技术人才的培养,以人才优势带动气相色谱仪进样系统的发展。其次,针对地面露头岩样、土壤吸附气以及含油气岩心等样品的分析,应该在进样系统当中开发挥发气体分析装置。不断完善热解气相色谱仪进样系统,开发新的仪器设备。加大油气田开发井当中的原油伴生气以及天然气的手提气相色谱快速检测仪器进行系统的研发力度,实现气相色谱仪进样系统检测样品的超临界抽提。最后,应该加强气相色谱仪进样系统仪器的检查和维护,加强仪器操作环境的管理和规范。 4.结语 随着我国综合国力的不断提升,加速了国内外关于气相色谱仪进样系统科研成果的交流探讨。有利于我国综合国内外的成功经验,进行气相色谱仪进样系统的进一步开发。相信在不远的将来,我国气相色谱仪进样系统的研发将取得突破性的进展。 ?【参考文献】 [1]赵健,王志嘉,车东,刘征雨.几种国产气相色谱仪与进口气相色谱仪的比较[J].分析仪器,2016,(01):66-70. [2]戴辰铖.便携式气相色谱仪控制系统的研究[D].导师:姜杰.哈尔滨工业大学,2013. ?【作者简介】 张峻滔(1987-),男,中国检验认证集团广东有限公司东莞分公司;研究方向:化工。 石墨烯及其在防腐涂料中的应用研究 *张 陆 (中国船舶工业系统工程研究院 北京 100094) 摘要:石墨烯改性涂料可以很长时间在高温环境下进行工作,可见这种涂料具备很不错的耐候性,光照老化等特性,石墨烯的这些特点 对于涂料有着很大的作用。将其加入到涂料中,可以提升涂料的耐冲击性、导热性与防腐性等,这种复核涂料可以在多种极端环境中使用。现如今,石墨烯的研究已经是十分热门的话题。本文对石墨烯及其在防腐涂料中的应用研究展开分析,并提出相关解决策略。关键词:石墨烯;防腐涂料;应用研究 中图分类号:T 文献标识码:A Study of Graphene and Its Application in Anticorrosion Coatings Zhang Lu (China Shipbuilding Industrial Systems Engineering Institute, Beijing, 100094) Abstract :Graphene modified coatings can work in a high temperature environment for a long time. It can be seen that this coating has good weatherability, light aging and other characteristics. These characteristics of graphene have a great effect on the coating. Adding it to the coating can enhance the impact resistance, thermal conductivity and corrosion resistance of the coating, and this kind of reproof coating can be used in many extreme environments. Nowadays, the research on graphene has been a very hot topic. This paper analyzes graphene and its application in anticorrosive coatings, and puts forward relevant solutions. Key words :graphene ;anticorrosive coating ;application research 引言 石墨烯具备高比表面积,十分快速的导电性能以及十分 不错的高导热性等,可见石墨烯这种物质具备很多的功能,这也让其在涂料领域得到了大量的运用。因为石墨烯的高比表 上接第102页 下转第104页

石墨烯在生活中的应用

关于大堂经理、保安上线参加营销活动的通知 各网点: 为推动我行电子银行业务发展,提升手机银行开办数量,增加柜面替代率,充分发挥大堂经理及保安的营销能动性,形成大堂内整体营销氛围,现在全行范围内开展“最强营销达人”贴片手机银行营销活动,活动分预赛和决赛两部分进行。现将预赛活动准备工作通知如下: 活动主题:狭路相逢勇者胜!不拼颜值,拼实力! 活动时间: 半决赛:2016年8月1日--2016年8月30日 决赛:时间待定 参与方式:预赛分“大堂经理组”和“保安组”两组进行,参加人员共105人,要求参赛人员(大堂经理及保安)在7月27日下班前,登录‘赤峰松山农商银行’微信公众号,回复【报名】进入活动界面(点击“点我报名”)填写个人基本信息,并上传本人近期生活照片一张。本期活动从每组中各竞选出20名优秀营销达人。 活动要求:凡营销一户贴膜卡手机银行方可用客户微信号为自己投一票,认填写客户信息,以便核查。如客户无微信,则使用本人微信号为其投票。但是客户自由投票,有权为其他参赛人员投

票。 活动奖励: 活动奖品:华为畅享5S手机、平衡车、小米盒子3、小米智能手环2、移动电源 奖励形式:所有参赛人员每人至少完成5户贴膜卡手机银行。总排名前40名有精美奖品。 注①:领取奖品的资格为双项考核:任务数量和排名。先看是否完成营销贴膜卡的任务数量,再看依次排名。 例如:李经理完成29户排名第三,则不可以领取一等奖奖品(任务数量没有完成,排名完成);王经理完成31户排名第四名,则领取平衡车一台(虽然完成任务数量,但是名次已靠后)。 注②:领取奖品按参赛人员总排名,但是进入决赛则为每组前20名。 考核办法:本次活动如有消极懈怠,不积极开展工作者将全行通报并且通知所在单位。没有达到活动要求的人员也将全行通报并且通知所在单位。如出现虚假、违规操作则取消本次参赛资格并

石墨烯涂层热传导

石墨烯涂层热传导 麻省理工的研究团队在电厂冷凝器表面使用石墨烯涂层,使其更加耐用且导热更快。 在电力厂,冷凝管是收集蒸汽并将其重新冷凝为水的装置,提高它们的效率可以大大提高电厂的整体效率。研究人员在冷凝管表面涂覆一层石墨烯,发现传热速度提高了4倍,这可以将电厂的效率提高2-3%,这足以改变全球碳的排放量。 冷凝管的一个重要改进就是可以防止蒸汽膜在管外壁形成,这是因为石墨烯具有疏水的性质。研究人员发现有单层的石墨烯涂层的冷凝管(疏水,不形成蒸汽膜)跟表面形成蒸汽膜的冷凝管(如纯金属)相比可以提高4倍的导热。进一步的计算表明,最佳的温度差可以将其提高到5-7倍。研究人员还发现,在这样的条件下,石墨烯的性能并没有降低。 21世纪的新材料——石墨烯,是颠覆全球材料科学的一项划时代的创新。石墨烯具有高强度、高模量、轻质、超薄、柔韧性好等特点,具有优异的透光性、透明度、导电、导热、储能、抗菌、防紫外线、防静电性能,已在当代高科技计算机、信息产业、人工智能、交通运输、航天航空、国防军工等领域得到较多的应用。 由于石墨烯是一种片层的二维纳米粒子,不存在类似于高聚物的分子链,因此直接制备石墨烯纤维存在一定的难度。目前很多关于石墨烯纤维的制备仍然仅限于实验室阶段,还远远不能够进行实际应用与普及。而氧化石墨烯(GO)由于具有较为丰富的羧基、羟基以及环氧基,使其在溶剂中的分散性更好,因而实际应用中多以GO为主,再经过后期还原得到

石墨烯(还原氧化石墨烯,RGO)。充分利用石墨烯的特性和功能,嫁接至纺织纤维和织物上,可扩大其用途,特别在高端纺织品的发展和应用方面潜力较大。 在纤维方面的应用 随着纳米技术的不断发展,通过将石墨烯纳米粒子引入到聚合物纤维基体中,可以开发石墨烯/聚合物基复合纤维。石墨烯的引入,有利于改善聚合物纤维的强度、耐热性、耐候性、抗静电等诸多性能,增强纤维材料整体性能和应用领域。 以石墨烯为载体复合的纤维有纯棉、粘胶等纤维素纤维,涤纶、锦纶、腈纶、氨纶、芳纶、聚乙烯醇、海藻酸钠、聚丙烯酸等合成纤维。复合方法则有直接浸轧法、喷涂法、复配液法、整理法、交联改性法等。石墨烯复合纤维可以充分发挥其优异的特性,而且因含量不高,成本较低,同时质量稳定、耐洗耐用。 石墨烯/二氧化锰复合纤维 (1)山东济南圣泉集团与黑龙江大学将石墨烯与玉米芯纤维复合加工出一种功能纤维,具有防紫外线、抗菌、抑菌等特性,适合服装、车辆内装饰、医疗器材、过滤等用途。 圣泉生物质石墨烯复合纤维及其应用 (2)韩国电子信息研究所与建国大学用牛血清蛋白纳米胶涂抹覆盖在棉和涤纶混纺纱线上,再用石墨烯涂层材料包裹,可用于检测空气中有害物质并作智能过滤器使用。 (3)青岛大学以传统的粘胶纺丝液为基体制成的石墨烯/粘胶复合纤维,其导电、热学、抗菌性能均有显著提高。该单位还制成了石墨烯功能化海藻复合纤维。 (4)国外报道,将碳纳米管和石墨烯片结合嵌入维纶中,获得了高强度复合纤维,纤维刚性达1000J/g,远超蜘蛛丝和芳纶1414。 (5)青岛大学以石墨烯为耐日晒老化功能材料,与水溶性聚氨酯共混得到功能性助剂,通过浸渍涂层技术涂覆于锦纶长丝表面,制成复合改性长丝,改善了锦纶的耐日晒性能和导电性能。 在织物方面的应用 利用石墨烯化合物对织物改性是石墨烯开发的亮点。采用的方法有融合、接枝、浸润、沉积、涂覆等,力求充分发挥石墨烯的优异特性,开发新型功能性纺织品,如抗菌、防臭、防紫外线、防静电、防火、防辐射功能性服装等;开发产业用纺织品,如导电、过滤、穿戴设备、航天航海用纺织品等。 (1)开发抗菌纯棉织物。将润湿棉织物浸渍于GO和壳聚糖复配的抗菌整理液中,使其与棉纤维稳固结合,烘干后用保险粉还原,制成有一定抗菌能力的棉织物。此外还有先用交联剂浸泡织物作滤布,过滤GO水溶液,再和交联剂固化得到抗菌织物。 (2)开发电化学性能优良的棉织物。以棉织物为基材、通过浸润-干燥法和化学沉淀法,将GO和二氧化锰接枝于棉织物表面,制成复合棉织物,再经碳化处理,改善电化学性能。

石墨烯的制备及在橡胶中的应用

石墨烯的制备及在橡胶中的应用 姓名:罗鹏 班级:材料加工工程 学号:2015020066

1. 绪论 1.1 石墨烯的性能 石墨烯是从石墨材料中剥离出来、由碳原子组成的只有一层原子厚度的二维晶体,于2004年由英国曼彻斯特大学物理学家安德烈·盖姆和康斯坦丁·诺沃肖洛夫成功从石墨中分离出来,以此证实了它可以单独存在,他们这项成果也打破了在20世纪30年代,Peiers和Landau认为由于热力学不稳定性而不可能存在这种二维晶体的传统理论。 据陈莹莹等[1]报道,石墨烯独特的二维结构使它具备了许多特性,石墨烯的理论比表面积高达2.6×103 m2 /g,优异的导热性能3×103 W/( m·K),力学性能1.06×103 GPa,杨氏模量为1.0 TPa。在已知材料中,石墨烯具有最高的强度130 GPa,是钢的100多倍。石墨烯具有稳定的正六边形晶格结构使其具有优异的导电性,室温下的电子迁移率高达1.5×104 cm2 /( V·s),比目前使用的半导体材料锑化铟的最大迁移率高两倍,比商用硅片的最大迁移率高10倍。此外,石墨烯还具有很高的光透射率(可达97.7%)、室温量子隧道效应、反常量子霍尔效应。 1.2 石墨烯的制备方法 目前,伴随着对石墨烯越来越多的研究,同时也产生了一系列的制备方法。 1.机械剥离法:机械剥离法是最早制备石墨烯的一种方法。Novoselov 在首次发现石墨烯时就是使用的该方法。在实验中,首先将石墨片剥离出石墨,继而将石墨片的两面粘在一种特殊的胶带上,在撕开胶带的同时将石墨片分开。不断进行这样的机械力剥离操作,得到的石墨片越来越薄,最终得到的就是仅由一层碳原子构成的石墨烯,石墨烯层的尺寸为d≥3 nm,约100 μm 长,并且肉眼可见。机械剥离法的方法易于操作,但是制备得到的石墨烯尺寸有限,并且无法控制石墨烯的层数,且产量不高。 2.外延生长法:Berger 等通过高温加热大面积的单晶SiC 使石墨烯生长于其上,在超真空或常压下脱除Si 留下C,继而得到与原SiC 差不多面积的石墨烯薄层。在研究外延生长制备石墨烯的过程中发现,可用作石墨烯衬底的材料种类很多,分为非金属类衬底(包括SiC、SiO2、GaAs 等) 和金属类衬底(包括Cu、Ni、Co、Ru、Au、Ag等)。Sprinkle和Heer研究小组采用在超高真空下加热至1000 ℃去除表面氧化物,再在SiC表面通过加热来促使石墨烯的生长。Emtse等使用常压下SiC表面生长石墨烯,得到的石墨烯在T = 27 K 的电子迁移率可达2000 cm2V-1·S-1,室温下可达2700 cm2V-1·S-1。但是外延生长法制得的石墨烯仍然无法达到均一厚度,并且使用的衬底材料不同也会对石墨烯的生长有不同的影响,促使石墨烯不易从衬底材料上分离开来。因此,此制备方法仍然需要进一步实验与研究。 3.金属催化法:金属催化法是指固态或气态碳源在一定的温度、压强及催化

石墨烯的性能与应用

ANYANG INSTITUTE OF TECHNOLOGY 《材料物理》期末论文 石墨烯的性能及应用 学院名称:数理学院 专业班级:应用物理学11-1班 学生姓名:邢俊俊 学号: 201111020026 2014年6月

石墨烯的性能及应用 摘要:石墨烯其貌不扬,其微片看上去就好像是棉花一样的黑色絮状物,可它为什么如此受追捧?答案其实并不复杂。因为它太轻薄了,只有一个原子厚度,却又非常坚硬。除此之外,它还拥有优秀的导热性、极低的电阻率。在轻薄坚固的同时,它还几乎是完全透明的。这些特性让研究者们能够创造出无限的可能性,无怪乎石墨烯横空出世之时业界震惊。 关键词:石墨烯、新材料、物质、科技 Abstract:Graphene does not seem good, its microchip looks like black cotton floc, but why it can be so popular these days? The answer is not complicated. Because it is so thin and only has one atom thick, it is very hard, however. In addition, it has excellent thermal conductivity and low resistivity. It is in strong light while almost completely transparent. These features allow the researchers are able to create infinite possibilities, no wonder when the industry turned out of graphene shocked. Key words: Graphene, new materials, substances, Technology 1、前言: 石墨烯是一种由碳原子构成的单层片状结构的新材料。是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的平面薄膜,只有一个碳原子厚度的二维材料。石墨烯一直被认为是假设性的结构,无法单独稳定存在,直至2004年,英国曼彻斯特大学物理学家安德烈?海姆(Andre Geim)和康斯坦丁?诺沃肖洛夫(Konstantin Novoselov),成功地在实验中从石墨中分离出石墨烯,而证实它可以单独存在,两人也因“在二维石墨烯材料的开创性实验”,共同获得2010年诺贝尔物理学奖。 石墨烯是已知的世上最薄、最坚硬的纳米材料,它几乎是完全透明的,只吸

相关文档
最新文档