spss简单回归与多重回归分析
spss中相关与回归分析

定义变量:血红蛋白,贫血体征→Variables
20:41
16
建立数据文件:血红蛋 白的等级相关分析.sav.
定义变量 输入数据
开始分析
ቤተ መጻሕፍቲ ባይዱ
analyze →Correlate →Bivariate
定义变量:血 红蛋白,贫血 体征 →Variables
选择统计量: Correlation Coefficients →Spearman
20:41
34
主要结果
b Model Summary
Model 1
R .930a
R Sq uare .865
Adjusted R Sq uare .848
Std. Error of the Estimate 1.8528
a. Predictors: (Constant), 身 高 ( cm) b. Dependent Variable: 体 重 ( kg )
表 4 慢性支气管炎患者各年龄组疗效观察结果 疗效 年龄(岁) 11~ 20~ 30~ 40~ 50~ 合计 治愈 35 32 17 15 10 109 显效 1 8 13 10 11 43 好转 1 9 12 8 23 53 无效 3 2 2 2 5 14 合计 40 51 44 35 49 219
17
20:41
主要结果
Correlations 血 红 蛋 白 含 量 ( g/dl) 1.000 . 10 -.741* .014 10 贫 血 体 征 -.741* .014 10 1.000 . 10
Spearman's rho
血 红 蛋 白 含 量 ( g/dl)
spss中的回归分析

Descriptives:变量的均数、标准差、相关系数矩阵及单尾检验。
Covariance matrix:方差——协方差矩阵。
R sqared change:R2和 F值的改变,以及方差分析 P值的改变。
Durbin-Waston:用于随机误差项的分析,以检验回归模型 中的误差项的独立性。如果误差项不独立,那么对回归模型的任何 估计与假设所做出的结论都是不可靠的。
• 计算DW值
• 给定,由n和k的大小查DW分布表,得临界值dL和dU • 比较、判断
0<D.W.<dL
dL<D.W.<dU dU <D.W.<4-dU 4-dU <D.W.<4- dL 4-dL <D.W.<4
Coefficie nts Beta
.923
系 数a
t -.781 12.694
Sig. .441 .000
模型
1
(常量)
非标准化系数
B
标准误
-53.086
67.963
income
.422
.033
a. 因变量: foodexp
标准化系 数
Beta
.923
t -.781
12.694
显著性 .441
.000
All Cases:显示每一例的标准化残差、实测值和预测值、 残差。
7、Plots(图)对话框 单击“Plots”按钮,对话框如下图所示。Plots可帮助分析
资料的正态性、线性和方差齐性,还可帮助检测奇异值或异常值。
线性相关与回归(简单线性相关与回归、多重线性回归、Spearman等级相关)

4.剔除强影响点(Influential cases;或称为突出点, outliers)
通过标准化残差(Standardized Residuals)、学生氏残 差(Studentlized Residuals)来判断强影响点 。当指标 的绝对值大于3时,可以认为样本存在强影响点。
删除强影响点应该慎重,需要结合专业知识。以下两种情 况可以考虑删除强影响点:1.强影响点是由于数据记录错 误造成的;2.强影响点来自不同的总体。
r r t sr 1 r2 n2
只有当0时,才能根据|r|的大小判断相关 的密切程度。
4.相关与回归的区别和联系 (1)相关与回归的意义不同 相关表达两个变量 之间相互关系的密切程度和方向。回归表达两个变 量之间的数量关系,已知X值可以预测Y值。从散点 图上,散点围绕回归直线的分布越密集,则两变量 相关系数越大;回归直线的斜率越大,则回归系数 越大。 (2)r与b的符号一致 同正同负。
5.自变量之间不应存在共线性(Collinear)
当一个(或几个)自变量可以由其他自变量线性表示时,称 该自变量与其他自变量间存在共线性关系。常见于:1.一个 变量是由其他变量派生出来的,如:BMI由身高和体重计算 得出 ;2.一个变量与其他变量存在很强的相关性。 当自变量之间存在共线性时,会使回归系数的估计不确定、 预测值的精度降低以及对y有影响的重要自变量不能选入模 型。
P值
截距a 回归系数b sb 标准化回归系数 t值 P值
3.直线回归的预测及置信区间估计
给定X=X0, 预测Y
3.直线回归的预测及置信区间估计
因变量
自变量
保存(产生新变量,保 存在当前数据库) 统计
3.直线回归的预测及置信区间估计
spss中的回归分析

7、Plots(图)对话框 单击“Plots”按钮,对话框如下图所示。Plots可帮助分析
资料的正态性、线性和方差齐性,还可帮助检测奇异值或异常值。
(1)散点图:可选择如下任何两个变量为Y(纵轴变量)与X (横轴变量)作图。为 获得更多的图形,可单击“Next”按钮来重 复操作过程。
Variables
Model
Entered
1
INCOMEa
Variables
Removed
Method
. Enter
a. All requested variables entered.
b. Dependent Variable: FOODEXP
输 入 / 移 去 的 变 量b
模型 1
输入的变量 移去的变量
DEPENDENT:因变量。 *ZPRED:标准化预测值。 *ZRESID: 标准化残差。 *DRESID:删除的残差。 *ADJPRED:调整残差。 *SRESID:Student氏残差。 *SDRESID: Student氏删除残差。 (2)Standardized Residual Plots:标准化残差图。 Histogram:标准化残差的直方图,并给出正态曲线。 Normal Probality Plot:标准化残差的正态概率图(P-P图)。 (3)Produce all Partial plots:偏残差图。
Coefficie nts Beta
.923
系 数a
t -.781 12.694
Sig. .441 .000
模型
1
(常量)
非标准化系数
B
标准误
SPSS回归分析过程详解

线性回归的假设检验
01
线性回归的假设检验主要包括拟合优度检验和参数显著性 检验。
02
拟合优度检验用于检验模型是否能够很好地拟合数据,常 用的方法有R方、调整R方等。
1 2
完整性
确保数据集中的所有变量都有值,避免缺失数据 对分析结果的影响。
准确性
核实数据是否准确无误,避免误差和异常值对回 归分析的干扰。
3
异常值处理
识别并处理异常值,可以使用标准化得分等方法。
模型选择与适用性
明确研究目的
根据研究目的选择合适的回归模型,如线性回 归、逻辑回归等。
考虑自变量和因变量的关系
数据来源
某地区不同年龄段人群的身高 和体重数据
模型选择
多项式回归模型,考虑X和Y之 间的非线性关系
结果解释
根据分析结果,得出年龄与体 重之间的非线性关系,并给出 相应的预测和建议。
05 多元回归分析
多元回归模型
线性回归模型
多元回归分析中最常用的模型,其中因变量与多个自变量之间存 在线性关系。
非线性回归模型
常见的非线性回归模型
对数回归、幂回归、多项式回归、逻辑回归等
非线性回归的假设检验
线性回归的假设检验
H0:b1=0,H1:b1≠0
非线性回归的假设检验
H0:f(X)=Y,H1:f(X)≠Y
检验方法
残差图、残差的正态性检验、异方差性检验等
非线性回归的评估指标
判定系数R²
SPSS处理多重回归分析

实验二多重回归分析一、实验目的研究样本数据离差阵、样本协方差阵,以及变量之间的相关系数(包括偏相关)并作相关性分析。
二、实验要求为研究高等院校人文社会科学研究中立项课题数受那些因素的影响,收集到某年31个地区部分高校有关社科研究方面的数据(见SPSS数据),利用此的数据,设定立项课题数X5为因变量(被解释变量),X2,X3,X4,X6,X7,X8为解释变量,作多重回归分析。
三、实验内容1.依次点击“分析→回归→线性回归”,得到如下图一所示:【图一】2.点击“统计量”,得到如下图二所示:【图二】3.点击“继续”,得到如下图三所示:【图三】4.点击“继续→确定”,得到如下表一所示:【表一】回归其中,容差(容忍度):21i i Tol R =- 2i R 是解释变量i X 与其他解释变量间的复相关系数的平方。
容忍度取值范围为0-1,越接近0表示多重共线性越强,容忍度越接近于1表示多重共线性越弱。
方差膨胀因子(VIF ):1iiV I F T o l =即为容忍度的倒数。
i VIF 的值大于等于1,i VIF 越小,说明多重共线性越弱。
可见,投入高级职称的人年数的容差最小,为0.007,多重共线性是最弱的,其次是投入人年数;获奖数的容差最大,为0.358,多重共线性最强。
其中,解释变量相关阵的特征根和方差比:如果解释变量有较强的相关性,则它们之间必然存在信息重叠。
可通过解释变量相关阵的特征值来反映。
解释变量相关阵的最大特征根能够解释说明解释变量信息的比例是最高的,其他特征根随其特征值的减小对解释变量方差的的解释能力依次减弱。
如果这些特征根中,最大特征根远远大于其他特征根,说明这些解释变量间具有相当多的重叠信息。
条件指数:是在特征值基础上的定义的能反映解释变量间多重共线性的指标mi ik λλ=i k 为第i 个条件指数,m λ是最大特征根。
通常当010i k ≤<时,认为多重共线性弱;当10100i k ≤<时,认为多重共线性较强;当是100i k ≥,认为多重共线性很严重。
简单易懂的SPSS回归分析基础教程
简单易懂的SPSS回归分析基础教程章节一:SPSS回归分析基础概述SPSS(Statistical Package for the Social Sciences,社会科学统计软件包)回归分析是一种常用的统计方法,用于研究自变量对因变量的影响程度以及变量之间的关系。
本章将介绍SPSS回归分析的基本概念和目的,以及相关的统计指标。
SPSS回归分析的目的是建立一个数学模型,描述自变量与因变量之间的关系。
通过这个模型,我们可以预测因变量的变化,以及各个自变量对因变量的贡献程度。
回归分析包括简单回归分析和多元回归分析,本教程主要讲解简单回归分析。
在SPSS回归分析中,我们需要了解一些统计指标。
其中,相关系数(correlation coefficient)用于衡量自变量与因变量之间的线性关系强度。
回归系数(regression coefficient)描述自变量对因变量的影响程度,可用于建立回归方程。
残差(residual)表示实际观测值与回归模型预测值之间的差异。
下面我们将详细介绍SPSS回归分析的步骤。
章节二:数据准备和导入在进行SPSS回归分析之前,我们需要准备好数据集,并将数据导入SPSS软件。
首先,我们需要确定因变量和自变量的测量水平。
因变量可以是连续型数据,如身高、体重等,也可以是分类数据,如满意度水平等。
自变量可以是任何与因变量相关的变量,包括连续型、分类型或二元变量。
其次,我们需要收集足够的样本量,以获取准确和可靠的结果。
在选择样本时,应该遵循随机抽样的原则,以保证样本的代表性。
最后,我们将数据导入SPSS软件。
通过依次点击“File”、“Open”、“Data”,选择数据文件,并设置变量类型、名称和标签等信息。
完成数据导入后,我们就可以开始进行回归分析了。
章节三:简单回归分析步骤简单回归分析是一种研究一个自变量与一个因变量之间关系的方法。
下面将介绍简单回归分析的步骤。
第一步,我们需要确定自变量和因变量。
回归分析spss
回归分析spss回归分析是一种常用的统计方法,用于探究变量之间的关系。
它通过建立一个数学模型,通过观察和分析实际数据,预测因变量与自变量之间的关联。
回归分析可以帮助研究者得出结论,并且在决策制定和问题解决过程中提供指导。
在SPSS(统计包括在社会科学中的应用)中,回归分析是最常用的功能之一。
它是一个强大的工具,用于解释因变量与自变量之间的关系。
在进行回归分析之前,我们需要收集一些数据,并确保数据的准确性和可靠性。
首先,我们需要了解回归分析的基本概念和原理。
回归分析基于统计学原理,旨在寻找自变量与因变量之间的关系。
在回归分析中,我们分为两种情况:简单回归和多元回归。
简单回归适用于只有一个自变量和一个因变量的情况,多元回归适用于多个自变量和一个因变量的情况。
在进行回归分析之前,我们需要确定回归模型的适用性。
为此,我们可以使用多种统计性检验,例如检验线性关系、相关性检验、多重共线性检验等。
这些检验可以帮助我们判断回归模型是否适用于收集到的数据。
在SPSS中进行回归分析非常简单。
首先,我们需要打开数据文件,然后选择“回归”功能。
接下来,我们需要指定自变量和因变量,并选择适当的回归模型(简单回归或多元回归)。
之后,SPSS将自动计算结果,并显示出回归方程的参数、标准误差、显著性水平等。
在进行回归分析时,我们需要关注一些重要的统计指标,例如R方值、F值和P值。
R方值表示自变量对因变量的解释程度,它的取值范围在0到1之间,越接近1表示模型的拟合效果越好。
F值表示回归模型的显著性,P值则表示自变量对因变量的影响是否显著。
我们通常会将P值设定为0.05作为显著性水平,如果P值小于0.05,则我们可以认为自变量对因变量有显著影响。
此外,在回归分析中,我们还可以进行一些额外的检验和分析。
比如,我们可以利用残差分析来检查回归模型的拟合优度,以及发现可能存在的异常值和离群点。
此外,我们还可以进行变量选择和交互效应的分析。
如何使用统计软件SPSS进行回归分析
如何使用统计软件SPSS进行回归分析如何使用统计软件SPSS进行回归分析引言:回归分析是一种广泛应用于统计学和数据分析领域的方法,用于研究变量之间的关系和预测未来的趋势。
SPSS作为一款功能强大的统计软件,在进行回归分析方面提供了很多便捷的工具和功能。
本文将介绍如何使用SPSS进行回归分析,包括数据准备、模型建立和结果解释等方面的内容。
一、数据准备在进行回归分析前,首先需要准备好需要分析的数据。
将数据保存为SPSS支持的格式(.sav),然后打开SPSS软件。
1. 导入数据:在SPSS软件中选择“文件”-“导入”-“数据”命令,找到数据文件并选择打开。
此时数据文件将被导入到SPSS的数据编辑器中。
2. 数据清洗:在进行回归分析之前,需要对数据进行清洗,包括处理缺失值、异常值和离群值等。
可以使用SPSS中的“转换”-“计算变量”功能来对数据进行处理。
3. 变量选择:根据回归分析的目的,选择合适的自变量和因变量。
可以使用SPSS的“变量视图”或“数据视图”来查看和选择变量。
二、模型建立在进行回归分析时,需要建立合适的模型来描述变量之间的关系。
1. 确定回归模型类型:根据研究目的和数据类型,选择适合的回归模型,如线性回归、多项式回归、对数回归等。
2. 自变量的选择:根据自变量与因变量的相关性和理论基础,选择合适的自变量。
可以使用SPSS的“逐步回归”功能来进行自动选择变量。
3. 建立回归模型:在SPSS软件中选择“回归”-“线性”命令,然后将因变量和自变量添加到相应的框中。
点击“确定”即可建立回归模型。
三、结果解释在进行回归分析后,需要对结果进行解释和验证。
1. 检验模型拟合度:可以使用SPSS的“模型拟合度”命令来检验模型的拟合度,包括R方值、调整R方值和显著性水平等指标。
2. 检验回归系数:回归系数表示自变量对因变量的影响程度。
通过检验回归系数的显著性,可以判断自变量是否对因变量有统计上显著的影响。
相关分析和回归分析SPSS实现
相关分析和回归分析SPSS实现SPSS(统计包统计分析软件)是一种广泛使用的数据分析工具,在相关分析和回归分析方面具有强大的功能。
本文将介绍如何使用SPSS进行相关分析和回归分析。
相关分析(Correlation Analysis)用于探索两个或多个变量之间的关系。
在SPSS中,可以通过如下步骤进行相关分析:1.打开SPSS软件并导入数据集。
2.选择“分析”菜单,然后选择“相关”子菜单。
3.在“相关”对话框中,选择将要分析的变量,然后单击“箭头”将其添加到“变量”框中。
4.选择相关系数的计算方法(如皮尔逊相关系数、斯皮尔曼等级相关系数)。
5.单击“确定”按钮,SPSS将计算相关系数并将结果显示在输出窗口中。
回归分析(Regression Analysis)用于建立一个预测模型,来预测因变量在自变量影响下的变化。
在SPSS中,可以通过如下步骤进行回归分析:1.打开SPSS软件并导入数据集。
2.选择“分析”菜单,然后选择“回归”子菜单。
3.在“回归”对话框中,选择要分析的因变量和自变量,然后单击“箭头”将其添加到“因变量”和“自变量”框中。
4.选择回归模型的方法(如线性回归、多项式回归等)。
5.单击“统计”按钮,选择要计算的统计量(如参数估计、拟合优度等)。
6.单击“确定”按钮,SPSS将计算回归模型并将结果显示在输出窗口中。
在分析结果中,相关分析会显示相关系数的数值和统计显著性水平,以评估变量之间的关系强度和统计显著性。
回归分析会显示回归系数的数值和显著性水平,以评估自变量对因变量的影响。
值得注意的是,相关分析和回归分析在使用前需要考虑数据的要求和前提条件。
例如,相关分析要求变量间的关系是线性的,回归分析要求自变量与因变量之间存在一定的关联关系。
总结起来,SPSS提供了强大的功能和工具,便于进行相关分析和回归分析。
通过上述步骤,用户可以轻松地完成数据分析和结果呈现。
然而,分析结果的解释和应用需要结合具体的研究背景和目的进行综合考虑。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
残差统计结果:显示预测值、标准预测值等 统计量的最小值、最大值、均数和标准差
P-P图
散点图: Y轴:因变量, x轴:标准化预测值
散点图: Y轴:标准化残差, X轴:标准化预测值
显示增加新变量
二、非线性回归 例11-6
直线方程 对数方程
三次方程
二次方程
指数方程
•多重线性回归分析
研究一个因变量与多个影响因素之间的 关系
• analyze→regression→linear
• plot
方差齐性检 验
正态性检验
正态性检验结果:QQ图上各点基本在直线上。
从上图可见,不论Y的标化预测值如何变化,标化残差的波动基本保持稳定。
• 四、独立性:各观测间相互独立,即任两 个观测残差的协方差为0。
• 步骤:
• 通过linear regression过程statistics按钮 中的durbin-watson检验进行判断。
• 该统计量取值在0~4之间。一般若自变量 数少于4个,统计量接近2,基本上可以肯 定残差间相互独立。
2、分析
Analyze ----regression --- linear Linear regression对话框
Statistics对话框
散点图1:因变量为Y轴 标准化预测值为X轴
散点图1:因变量为标准化残差 标准化预测值为X轴
保存以下新变量
描述性统计:均数、标准差、例数
相关分析:Pearson相关系数0.964、 单侧检验p值为<0.001
先是自变量纳入模型情况的汇总
模型的简单汇总,包括R、R2, 调整R2 ,
方差分析:p<0.001,说明模型有意 义(回归系数有统计学意义)。
:
t检验结果等(重要) 常数项=1106.788,回归系数=61.423,直线回归方程为
脂 联 素 ADI(ng/ml) 体 重 指 数 BMI(k g/m2) 病 程 DY( 年 ) 瘦 素 LEP(ng/ml) 空 腹 血 糖 FP G(mmol/l) 脂 联 素 ADI(ng/ml) 体 重 指 数 BMI(k g/m2) 病 程 DY( 年 ) 瘦 素 LEP(ng/ml) 空 腹 血 糖 FP G(mmol/l) 脂 联 素 ADI(ng/ml) 体 重 指 数 BMI(k g/m2) 病 程 DY( 年 ) 瘦 素 LEP(ng/ml) 空 腹 血 糖 FP G(mmol/l)
graphs→scatter/Dot…→matrix scatter • 2、自变量与残差的散点图
• graphs→scatter/Dot…→simple scatter
选择enter,(选入全部变量)
描述
Descriptive Statistics
脂 联 素 ADI(ng/ml) 体 重 指 数 BMI(k g/m2) 病 程 DY( 年 ) 瘦 素 LEP(ng/ml) 空 腹 血 糖 FP G(mmol/l)
• 4、直线相关和偏相关分析。
Linear regression对话框
Method:自变量筛选下拉菜单
• Enter:强迫引入法;全 部自变量均引入方程
• Stepwise:逐步引入 • Remove:强迫剔除法 • backward:向后剔除法 • Forward:向前引入法
Statistics对话框
ቤተ መጻሕፍቲ ባይዱ
非标准化残差与自变量的散点图(从上图可见各点基本平均分布在0这条水平线的两边, 没有明显偏正或偏负的趋势)
• 二、正态性、方差齐性检验 • 1、正态性即残差服从正态分布N(0,σ 2) • 2、方差齐性即残差的大小不随所有变量取
值水平的改变而改变(标准化预测值和标 准化残差的散点图) • 3、步骤:
简单回归分析
• 回归分析(regression variable):
•
研究一个变量如何随另一个变量变化的常用
方法。
• 线性回归(linear regression):又称简单回归 (simple regression)
•
两个连续型变量之间线性依存关系的统计方
法。即描述一个因变量(dependent variable)
独立性检验
Plots对话框
Options对话框
例题11-1操作步骤: 1、定义变量,输入数据
先检验适用条件
• 一、线性(散点图): • 1、x与y • 2、x与非标准化残差的散点图(在多重回
归分析中,效率高于散点图矩阵) • 步骤: • graphs→scatter/Dot…→simple scatter
Y与一个或多个自变量( independent variable )
X之间的线性依存关系。
回归分析的要求
• 1、应变量Y服从正态分布 • 2、自变量X可以是随机变动的,也可以是精
确测量或人为取值的变量
• 线性回归模型的适用条件(line) • L-线性 • I-独立性 • N-正态性 • E-方差齐性
方差齐、直线关系
模型还有别的变 量需要引入
方差不齐 残 差 图
曲线关系
• Analyze regression linear(线性回归 分析)可进行以下几个过程
• 1、建立回归方程;
• 2、回归方程的配合适度检验:包括回归方 程和回归系数或偏回归系数的假设检验、 残差分析;
• 3、直线回归的区间估计:包括总体回归系 数的区间估计;当x为某定值时,估计值总 体均数的可信区间和个体Y值的容许区间
Yˆ 1106 .79 61.42 X
第一行:对截距a的检验,有意义。 第二行:对回归系数b的检验,有意义。 回归系数的标准误=4.881,总体回归系数95%可信区间为 (50.788,72.058)。标准化回归系数=0.964,回归系数t检 验的t值为12.584,p<0.001,可认为两变量之间有直线关系,
Mean 18.8290 24.9000
6.757 10.0730
8.070
Std. Dev iation 9.1450 3.0477 4.640 6.3822 2.203
N 30 30 30 30 30
两两相关(简单相关)
Correlations
Pear son Correlation Sig. (1-tailed) N
反应变量:连续计量资料,正态随机变量 ——多重线性回归
• 例13-1(第六版)
• 为了研究有关糖尿病患者体内脂联素水平的影 响因素,某医师测定30名患者的体重指数 BMI(kg/m2)、病程LEP(ng/ml)、空腹血糖 FPG(mmol/l)及脂联素水平。
例13-1:1、定义变量,输入数据
• 考察线性 • 1、散点图矩阵