SPSS直线回归与相关分析

合集下载

spss中相关与回归分析

spss中相关与回归分析

定义变量:血红蛋白,贫血体征→Variables
20:41
16

建立数据文件:血红蛋 白的等级相关分析.sav.

定义变量 输入数据

开始分析

ቤተ መጻሕፍቲ ባይዱ
analyze →Correlate →Bivariate

定义变量:血 红蛋白,贫血 体征 →Variables
选择统计量: Correlation Coefficients →Spearman
20:41
34

主要结果
b Model Summary
Model 1
R .930a
R Sq uare .865
Adjusted R Sq uare .848
Std. Error of the Estimate 1.8528
a. Predictors: (Constant), 身 高 ( cm) b. Dependent Variable: 体 重 ( kg )
表 4 慢性支气管炎患者各年龄组疗效观察结果 疗效 年龄(岁) 11~ 20~ 30~ 40~ 50~ 合计 治愈 35 32 17 15 10 109 显效 1 8 13 10 11 43 好转 1 9 12 8 23 53 无效 3 2 2 2 5 14 合计 40 51 44 35 49 219
17

20:41

主要结果
Correlations 血 红 蛋 白 含 量 ( g/dl) 1.000 . 10 -.741* .014 10 贫 血 体 征 -.741* .014 10 1.000 . 10
Spearman's rho
血 红 蛋 白 含 量 ( g/dl)

实训6教学演示:直线相关与回归分析的SPSS软件实现方法

实训6教学演示:直线相关与回归分析的SPSS软件实现方法

【实训结果】
【结果解释】
实训表29相关分析结果显示,身高与前臂 长两个变量的相关系数为0.795。经检验, P=0.002(P<0.05),有统计学意义,可认为 身高与前臂长之间存在线性相关关系,且为 正相关。
项目二:回归分析
【实训目的】
运用SPSS“分析”菜单中的“回归”选项, 建立回归方程,并检验总体回归系数是否 为0,正确解释SPSS的输出结果。
【实训结果】
【结果解释】
✓ 实训表30为模型摘要表,显示了模型的拟合优度情况, 相关系数为0.795,决定系数为0.633,校正决定系数为 0.596。
✓ 实训表31为回归方程的方差分析表,显示了变异分解情 况,F=17.216,P<0.01,建立的模型具有统计学意义。
✓ 实训表32为回归系数表,给出了回归系数的估计及检验, 回归方程的常数项为10.700,身高的回归系数为0.200。 经回归系数t检验,t=4.149,P<0.01,说明身高与前臂 长之间存在线性回归关系,回归方程:^Y=10.7+0.2X。
项目一:直线相关分析
【实训目的】
运用SPSS“分析”菜单中“相关”选项, 计算相关系数,并检验两变量总体相关系 数是否为0,正确解释SPSS的输出结果。
【实训内容】
✓ 见第十一章例11-1,某医师测量12名20岁健康男大学生 的身高与前臂长,资料见表11-1。试求身高与前臂长的 相关系数。
表11-1 12名20岁健康男大学生身高与前臂长资料
实训6 直线相关与回归分析的SPSS软件实现方166
155
188
190
171
前臂 长 43 45 47 47 44 42 46 44 41 49 50 47 /cm

SPSS的相关分析和线性回归分析

SPSS的相关分析和线性回归分析

• 如果两变量的正相关性较强,它们秩的变化具有同步性,于

n
Di2
n
(Ui
Vi)2的值较小,r趋向于1;
• i1
i1
如果两变量的正相关性较弱,它们秩的变化不具有同步性,
于是
n
n
Di2 (Ui Vi)2
的值较大,r趋向于0;
• i1
i1
在小样本下,在零假设成立时, Spearman等级相关系数
用最小二乘法求解方程中的两个参数,得到:
1
(xi x)(yi y) (xi x)2
0 ybx
多元线性回归模型
多元线性回归方程: y=β0+β1x1+β2x2+.+βkxk
β1、β2、βk为偏回归系数。 β1表示在其他自变量保持不变的情况下,自变量x1变动
一个单位所引起的因变量y的平均变动。
析功能子命令Bivariate过程、Partial过程、 Distances过程,分别对应着相关分析、偏相关分析和相 似性测度(距离)的三个spss过程。
Bivariate过程用于进行两个或多个变量间的相关分 析,如为多个变量,给出两两相关的分析结果。
Partial过程,当进行相关分析的两个变量的取值都受 到其他变量的影响时,就可以利用偏相关分析对其他变量 进行控制,输出控制其他变量影响后的偏相关系数。
• 回归分析的一般步骤
确定回归方程中的解释变量(自变量)和被解释变量( 因变量) 确定回归方程 对回归方程进行各种检验 利用回归方程进行预测
8.4.2 线性回归模型 一元线性回归模型的数学模型:
y0 1x
其中x为自变量;y为因变量; 0 为截距,即
常量; 1 为回归系数,表明自变量对因变量的影

数据统计分析软件SPSS的应用(五)——相关分析与回归分析

数据统计分析软件SPSS的应用(五)——相关分析与回归分析

数据统计分析软件SPSS的应用(五)——相关分析与回归分析数据统计分析软件SPSS的应用(五)——相关分析与回归分析数据统计分析软件SPSS是目前应用广泛且非常强大的数据分析工具之一。

在前几篇文章中,我们介绍了SPSS的基本操作和一些常用的统计方法。

本篇文章将继续介绍SPSS中的相关分析与回归分析,这些方法是数据分析中非常重要且常用的。

一、相关分析相关分析是一种用于确定变量之间关系的统计方法。

SPSS提供了多种相关分析方法,如皮尔逊相关、斯皮尔曼相关等。

在进行相关分析之前,我们首先需要收集相应的数据,并确保数据符合正态分布的假设。

下面以皮尔逊相关为例,介绍SPSS 中的相关分析的步骤。

1. 打开SPSS软件并导入数据。

可以通过菜单栏中的“File”选项来导入数据文件,或者使用快捷键“Ctrl + O”。

2. 准备相关分析的变量。

选择菜单栏中的“Analyze”选项,然后选择“Correlate”子菜单中的“Bivariate”。

在弹出的对话框中,选择要进行相关分析的变量,并将它们添加到相应的框中。

3. 进行相关分析。

点击“OK”按钮后,SPSS会自动计算所选变量之间的相关系数,并将结果输出到分析结果窗口。

4. 解读相关分析结果。

SPSS会给出相关系数的值以及显著性水平。

相关系数的取值范围为-1到1,其中-1表示完全负相关,1表示完全正相关,0表示没有相关关系。

显著性水平一般取0.05,如果相关系数的显著性水平低于设定的显著性水平,则可以认为两个变量之间存在相关关系。

二、回归分析回归分析是一种用于探索因果关系的统计方法,广泛应用于预测和解释变量之间的关系。

SPSS提供了多种回归分析方法,如简单线性回归、多元线性回归等。

下面以简单线性回归为例,介绍SPSS中的回归分析的步骤。

1. 打开SPSS软件并导入数据。

同样可以通过菜单栏中的“File”选项来导入数据文件,或者使用快捷键“Ctrl + O”。

2. 准备回归分析的变量。

相关分析和回归分析SPSS实现

相关分析和回归分析SPSS实现

相关分析和回归分析SPSS实现SPSS(统计包统计分析软件)是一种广泛使用的数据分析工具,在相关分析和回归分析方面具有强大的功能。

本文将介绍如何使用SPSS进行相关分析和回归分析。

相关分析(Correlation Analysis)用于探索两个或多个变量之间的关系。

在SPSS中,可以通过如下步骤进行相关分析:1.打开SPSS软件并导入数据集。

2.选择“分析”菜单,然后选择“相关”子菜单。

3.在“相关”对话框中,选择将要分析的变量,然后单击“箭头”将其添加到“变量”框中。

4.选择相关系数的计算方法(如皮尔逊相关系数、斯皮尔曼等级相关系数)。

5.单击“确定”按钮,SPSS将计算相关系数并将结果显示在输出窗口中。

回归分析(Regression Analysis)用于建立一个预测模型,来预测因变量在自变量影响下的变化。

在SPSS中,可以通过如下步骤进行回归分析:1.打开SPSS软件并导入数据集。

2.选择“分析”菜单,然后选择“回归”子菜单。

3.在“回归”对话框中,选择要分析的因变量和自变量,然后单击“箭头”将其添加到“因变量”和“自变量”框中。

4.选择回归模型的方法(如线性回归、多项式回归等)。

5.单击“统计”按钮,选择要计算的统计量(如参数估计、拟合优度等)。

6.单击“确定”按钮,SPSS将计算回归模型并将结果显示在输出窗口中。

在分析结果中,相关分析会显示相关系数的数值和统计显著性水平,以评估变量之间的关系强度和统计显著性。

回归分析会显示回归系数的数值和显著性水平,以评估自变量对因变量的影响。

值得注意的是,相关分析和回归分析在使用前需要考虑数据的要求和前提条件。

例如,相关分析要求变量间的关系是线性的,回归分析要求自变量与因变量之间存在一定的关联关系。

总结起来,SPSS提供了强大的功能和工具,便于进行相关分析和回归分析。

通过上述步骤,用户可以轻松地完成数据分析和结果呈现。

然而,分析结果的解释和应用需要结合具体的研究背景和目的进行综合考虑。

第9章spss的相关分析和线性回归分析

第9章spss的相关分析和线性回归分析

.000
N
26
26
**. Correlation is significant at the 0.01 level (2-tailed).
本章内容
9.1 相关分析 9.2 偏相关分析 9.3 线性回归分析 9.4 曲线估计 9.5 二项Logist变量间的相关系数,分析两 个变量间线性关系的程度。往往因为第三个变量的作用, 使相关系数不能真正反应两个变量间的线性程度。例如 用简单相关系数检验,可以得到肺活量与身高、体重均 存在较强的线性关系,如果对体重相同的人,分析身高 和肺活量,是否身高越高肺活量越大呢?因为身高与体 重有线性关系,体重又与肺活量存在线性关系,因此, 很容易得出身高与肺活量存在较强线性关系的错误结论。
t (U V ) 2
U、V分别为协同和
n(n 1) 不协同的数目
大样本下采用的检验统计量为:
Z t 9n(n 1)
2(2n 5)
Z统计量近似服从标准正态分布
人们可能会问,上面的三种对相关 的度量都是在其值接近1或-1时相关, 而接近于0时不相关。到底如何才能 够称为“接近”呢?
偏相关分析的任务就是在研究两个变量之间的线性 相关关系时控制可能对其产生影响的变量。分析身高与 肺活量之间的相关性,就要控制体重在相关分析中的影 响。正确运用偏相关分析,可以解释变量间的真实关系, 识别干扰变量并寻找隐含的相关性。
偏相关系数的计算
控制了变量z,变量x、y之间的偏相关系数和
控制了两个变量 z1, z2 ,变量x、y之间的偏相
相关的方向 依照两种变量变动的方向分,有正相关、负相关
和无相关(零相关)。
相关分析基本步骤:
1.绘制散点图 2.计算相关系数 3.进行相关系数检验

相关分析和回归分析SPSS实现

相关分析和回归分析SPSS实现

相关分析与回归分析一、试验目标与要求本试验项目的目的是学习并使用SPSS软件进行相关分析与回归分析;具体包括:(1)皮尔逊pearson简单相关系数的计算与分析(2)学会在SPSS上实现一元及多元回归模型的计算与检验..(3)学会回归模型的散点图与样本方程图形..(4)学会对所计算结果进行统计分析说明..(5)要求试验前;了解回归分析的如下内容..参数α、β的估计回归模型的检验方法:回归系数β的显着性检验t-检验;回归方程显着性检验F-检验..二、试验原理1.相关分析的统计学原理相关分析使用某个指标来表明现象之间相互依存关系的密切程度..用来测度简单线性相关关系的系数是Pearson简单相关系数..2.回归分析的统计学原理相关关系不等于因果关系;要明确因果关系必须借助于回归分析..回归分析是研究两个变量或多个变量之间因果关系的统计方法..其基本思想是;在相关分析的基础上;对具有相关关系的两个或多个变量之间数量变化的一般关系进行测定;确立一个合适的数据模型;以便从一个已知量推断另一个未知量..回归分析的主要任务就是根据样本数据估计参数;建立回归模型;对参数与模型进行检验与判断;并进行预测等..线性回归数学模型如下:在模型中;回归系数是未知的;可以在已有样本的基础上;使用最小二乘法对回归系数进行估计;得到如下的样本回归函数:回归模型中的参数估计出来之后;还必须对其进行检验..如果通过检验发现模型有缺陷;则必须回到模型的设定阶段或参数估计阶段;重新选择被解释变量与解释变量及其函数形式;或者对数据进行加工整理之后再次估计参数..回归模型的检验包括一级检验与二级检验..一级检验又叫统计学检验;它是利用统计学的抽样理论来检验样本回归方程的可靠性;具体又可以分为拟与优度评价与显着性检验;二级检验又称为经济计量学检验;它是对线性回归模型的假定条件能否得到满足进行检验;具体包括序列相关检验、异方差检验等..三、试验演示内容与步骤1.连续变量简单相关系数的计算与分析在上市公司财务分析中;常常利用资产收益率、净资产收益率、每股净收益与托宾Q值4个指标来衡量公司经营绩效..本试验利用SPSS对这4个指标的相关性进行检验..操作步骤与过程:打开数据文件“上市公司财务数据连续变量相关分析.sav”;依次选择“分析→相关→双变量”打开对话框如图;将待分析的4个指标移入右边的变量列表框内..其他均可选择默认项;单击ok提交系统运行..图5.1 Bivariate Correlations对话框结果分析:表给出了Pearson简单相关系数;相关检验t统计量对应的p值..相关系数右上角有两个星号表示相关系数在0.01的显着性水平下显着..从表中可以看出;每股收益、净资产收益率与总资产收益率3个指标之间的相关系数都在0.8以上;对应的p值都接近0;表示3个指标具有较强的正相关关系;而托宾Q值与其他3个变量之间的相关性较弱..表5.1 Pearson简单相关分析Correlations每股收益率净资产收益率资产收益率托宾Q值每股收益率PearsonCorrelation1.877.824-.073Sig.2-tailed..000.000.199N315315315315净资产收益率Pearson.8771.808-.001 CorrelationSig..000..000.983 2-tailedN315315315315资产收益率Pearson.824.8081.011 CorrelationSig..000.000..849 2-tailedN315315315315托宾Q值Pearson-.073-.001.0111 CorrelationSig..199.983.849.2-tailedN315315315315 Correlation is significant at the 0.01 level 2-tailed.2.一元线性回归分析实例分析:家庭住房支出与年收入的回归模型在这个例子里;考虑家庭年收入对住房支出的影响;建立的模型如下:其中;yi是住房支出;xi是年收入线性回归分析的基本步骤及结果分析:1绘制散点图打开数据文件;选择图形-旧对话框-散点/点状;如图5.2所示..图5.2 散点图对话框选择简单分布;单击定义;打开子对话框;选择X变量与Y变量;如图5.3所示..单击ok提交系统运行;结果见图5.4所示..图5.3 Simple Scatterplot 子对话框从图上可直观地看出住房支出与年收入之间存在线性相关关系..图5.4 散点图2简单相关分析选择分析—>相关—>双变量;打开对话框;将变量“住房支出”与“年收入”移入variables列表框;点击ok运行;结果如表5.2所示..表5.2 住房支出与年收入相关系数表CorrelationsCorrelation is significant at the 0.01 level 2-tailed.从表中可得到两变量之间的皮尔逊相关系数为0.966;双尾检验概率p值尾0.000<0.05;故变量之间显着相关..根据住房支出与年收入之间的散点图与相关分析显示;住房支出与年收入之间存在显着的正相关关系..在此前提下进一步进行回归分析;建立一元线性回归方程..3 线性回归分析步骤1:选择菜单“分析—>回归—>线性”;打开Linear Regression 对话框..将变量住房支出y移入Dependent列表框中;将年收入x移入Independents列表框中..在Method 框中选择Enter 选项;表示所选自变量全部进入回归模型..图5.5 Linear Regresssion对话框步骤2:单击Statistics按钮;如图在Statistics子对话框..该对话框中设置要输出的统计量..这里选中估计、模型拟合度复选框..图5.6 Statistics子对话框估计:输出有关回归系数的统计量;包括回归系数、回归系数的标准差、标准化的回归系数、t统计量及其对应的p值等..置信区间:输出每个回归系数的95%的置信度估计区间..协方差矩阵:输出解释变量的相关系数矩阵与协差阵..模型拟合度:输出可决系数、调整的可决系数、回归方程的标准误差、回归方程F检验的方差分析..步骤3:单击绘制按钮;在Plots子对话框中的标准化残差图选项栏中选中正态概率图复选框;以便对残差的正态性进行分析..图5.7 plots子对话框步骤4:单击保存按钮;在Save子对话框中残差选项栏中选中未标准化复选框;这样可以在数据文件中生成一个变量名尾res_1 的残差变量;以便对残差进行进一步分析..图5.8 Save子对话框其余保持Spss默认选项..在主对话框中单击ok按钮;执行线性回归命令;其结果如下:表5.3给出了回归模型的拟与优度R Square、调整的拟与优度Adjusted R Square、估计标准差Std. Error of the Estimate以及Durbin-Watson统计量..从结果来看;回归的可决系数与调整的可决系数分别为0.934与0.93;即住房支出的90%以上的变动都可以被该模型所解释;拟与优度较高..表5.4给出了回归模型的方差分析表;可以看到;F统计量为252.722;对应的p值为0;所以;拒绝模型整体不显着的原假设;即该模型的整体是显着的..表5.5给出了回归系数、回归系数的标准差、标准化的回归系数值以及各个回归系数的显着性t检验..从表中可以看到无论是常数项还是解释变量x;其t统计量对应的p值都小于显着性水平0.05;因此;在0.05的显着性水平下都通过了t检验..变量x的回归系数为0.237;即年收入每增加1千美元;住房支出就增加0.237千美元..表5.3 回归模型拟与优度评价及Durbin-Watson检验结果Model Summaryba Predictors: Constant;年收入千美元b Dependent Variable:住房支出千美元表5.4 方差分析表ANOVAba Predictors: Constant; 年收入千美元b Dependent Variable: 住房支出千美元表5.5 回归系数估计及其显着性检验Coefficientsaa Dependent Variable: 住房支出千美元为了判断随机扰动项是否服从正态分布;观察图5.9所示的标准化残差的P-P图;可以发现;各观测的散点基本上都分布在对角线上;据此可以初步判断残差服从正态分布..为了判断随机扰动项是否存在异方差;根据被解释变量y与解释变量x的散点图;如图5.4所示;从图中可以看到;随着解释变量x的增大;被解释变量的波动幅度明显增大;说明随机扰动项可能存在比较严重的异方差问题;应该利用加权最小二乘法等方法对模型进行修正..图5.9 标准化残差的P-P图四、备择试验现有1987~2003年湖南省全社会固定资产投资总额NINV与GDP两个指标的年度数据;见下表..试研究全社会固定资产投资总额与GDP的数量关系;并建立全社会固定资产投资总额与GDP之间的线性回归方程..。

SPSS课程PPT( 直线回归与相关分析)

SPSS课程PPT( 直线回归与相关分析)

ˆ y 57.0400 2.5317 x
36
40 30 20
ˆ y 57.0400 2.5317 x
11.8-----20.4
天数(天)
10 0 10 12 14 16 18 20 22 温度 (℃)
用x估计y,存在随机误差,必须根据回归的数 学模型对随机误差进行估计,并对回归方程进 行检验。
与其胰岛素水平的关系,研究儿童年 龄与体重的关系等。
15
4
3 2 1 1 4 3 2 3 4 5 6
正向直线关系
2
1 1 4 3 2 1 1 2 3 4 5 6 2 3 4 5 6
负向直线关系
曲线关系
定性研究16
定量研究
回归(regerssion)
相关(correlation)
17
直线型
曲线
非直线型
47
依变量 y的平方和,总平方和,SSy,SS总
ˆ ˆ ( y y) ( y y) ( y y)
2 2
2
回归平方和 U
离回归平方和 Q
48
SS y U Q
ˆ ˆ ( y y) ( y y) ( y y)
2 2
2
SS y U Q
说明未考虑x与y的回归关系时y的变异。
45
ˆ ( y y)
2
回归平方和 (regression sum of squares) U
反映了由于y与x间存在直线关系所引起的y的 变异程度,因x的变异引起y变异的平方和,称 为回归平方和。 它反映在y的总变异中由于x与y的直线关系, 而使y变异减小的部分,在总平方和中可以用 x解释的部分。 U值大,说明回归效果好。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Pearson 调用 Correlation过程计算连续变量或是等间 隔测度的变量间的相关系数 r (系统默认设置)
Kendall's tau-b 计算 Kendall‘s 等级相关系数。这 是一个用于反映分类变量一致性的指标,只能在两个变量均属 于有序分类时使用。
Spearman计算Spearman相关系数,即最常用的非参数相 关分析(秩相关)
煤气户数 (万户)
25.68 25.77 25.88 27.43 29.95 33.53 37.31 41.16 45.73 50.59 58.82 65.28 71.25 73.37 76.68
卷烟销量 (百箱)
蚊香销量 打火石销量 (十万盒) (百万粒)
23.6
10.1
4.18
23.42
Байду номын сангаас
13.31
相关分析与回归模型的建立与分析
1
相关分析
在SPSS中,可以通过Analyze菜单进行相关分析(Correlate),Correlate菜单如图所示。
2
简单相关分析 两个变量之间的相关关系称简单相关关系。有两种 方法可以反映简单相关关系。一是通过散点图直观地 显示变量之间关系,二是通过相关系数准确地反映两 变量的关系程度。
例2:为了考察火柴销售量的影响因素,选择煤气户数、卷 烟销量、蚊香销量、打火石销量作为影响因素,得数据表。试 求火柴销售量与煤气户数的偏相关系数.
10
表 火柴销量及影响因素表
年份 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
火柴销售量 (万件)
23.69 24.1 22.74 17.84 18.27 20.29 22.61 26.71 31.19 30.5 29.63 29.69 29.25 31.05 32.28
7
3、单击Options按纽,选择输出项和缺失值的处理方式。本 例中选择输出基本统计描述,见图所示。
Means and standard deviations 计算各变量的平均值与标 准差
Cross-product deviations and covariances 计算各变量 的离均差平方和及协方差
33.57
21.22
55.36
39.59
12.63
54
48.49
11.17
11
根据数据表建立数据文件data05-RE_02.SAV,求解 火柴销售量与煤气户数的偏相关系数具体操作如下:
1、首先打开数据文件,单击Analyze Correlate Partial,打开Partial Correlations对 话框,见图所示。
12
2、从左边框内选择要考察的两个变量进入Variables框内, 其它客观存在的变量作为控制变量进入Controlling for 框 内,如本例中考察煤气户数与火柴销量的偏相关系数进入 Variables框内,其它相关变量(除年份外)进入Controlling for 框内。
3、单击Options按纽,打开Options 对话框如图所示。从 Statistics 栏中选择输出项,有平均值及标准差,Zero-order correlations 表示在输出偏相关系数的同时输出变量间的简单 相关系数。另外还有缺失值的处理方式。本例中选择简单相关 系数。
3
如果只考虑两个变量,可选择简单的散点图Simple ,然后点击Define,打开Simple Scatterplot对话框, 如图所示。
4
从散点图中可以粗略地看出,两个变量之间有强正相关的线性关系。
5
简单相关分析操作 简单相关分析是指两个变量之间的相关分析,主要是指对两 变量之间的线性相关程度作出定量分析。两变量的相关分析过 程,具体操作如下: 1、打开数据库data05-RE_01.sav后,单击Analyze Correlate Bivariate 打开Bivariate对话框,见图所示。
2.43
22.09
9.49
6.5
21.43
11.09
25.78
24.96
14.48
28.16
28.37
16.97
24.26
42.57
20.16
30.18
45.16
26.39
17.08
52.46
27.04
7.39
45.3
23.08
3.88
46.8
24.46
10.53
51.11
33.82
20.09
53.29
13
14
表中的上半部分是简单相关系数,下半部分是偏相关系数。 从表中可以看出,火柴销量与煤气户数的简单相关系数为 0.8260,自由度为13,检验的P值为0.000;而偏相关系数为 0.6046,自由度为10,检验的P值为0.037,表示煤气户数对火 柴销量的真实影响是显著的。
15
2 线性回归分析
6
2、从左边的变量框中选择需要考察的两个变量进入 Variables 框内,从Correlation Coefficients 栏内选择相关 系数的种类,有Pearson相关系数,Kendall′s一致性系数和 Spearman等级相关系数。从检验栏内选择检验方式,有双尾检 验和单尾检验两种。
Correlation Coefficients 复选框组。此框中有三种相关 系数,可选择需要计算的相分析指标。
散点图 data05-RE_01.sav
SPSS软件的绘图命令集中在Graphs菜单。
单击Graphs Scatter,打开Scatter plot散点图对话框,如图所示
。然后选择需要的散点图,图中的四个选项依次是:
Simple 简单散点图
Matrix 矩阵散点图
Overlay 重叠散点图 3-D 三维散点图
8
4、单击OK,可以得到相关分析的结果。 从下表可以得到两个变量的基本统计描述,从表(b)中可以 得到相关系数及对相关系数的检验结果,由于尾概率都小于 0.01,故说明两变量之间存在着显著的线性相关性。
9
偏相关分析
简单相关关系只反映两个变量之间的关系,但如果因变量受 到多个因素的影响时,因变量与某一自变量之间的简单相关关 系显然受到其它相关因素的影响,不能真实地反映二者之间的 关系,所以需要考察在其它因素的影响剔除后二者之间的相关 程度,即偏相关分析。
线性回归是统计分析方法中最常用的方法之一。 如果所研究的现象有若干个影响因素,且这些因 素对现象的综合影响是线性的,则可以使用线性 回归的方法建立现象 (因变量)与影响因素(自 变量)之间的线性函数关系式。由于多元线性回 归的计算量比较大,所以有必要应用统计分析软 件实现。这一节将专门介绍SPSS软件的线性回归 分析的操作方法,包括求回归系数,给出回归模 型的各项检验统计量值及相应的概率,对输出结 果的分析等相关内容。
相关文档
最新文档