第八章SPSS的相关分析和线性回归分析

合集下载

spss中相关与回归分析

spss中相关与回归分析

定义变量:血红蛋白,贫血体征→Variables
20:41
16

建立数据文件:血红蛋 白的等级相关分析.sav.

定义变量 输入数据

开始分析

ቤተ መጻሕፍቲ ባይዱ
analyze →Correlate →Bivariate

定义变量:血 红蛋白,贫血 体征 →Variables
选择统计量: Correlation Coefficients →Spearman
20:41
34

主要结果
b Model Summary
Model 1
R .930a
R Sq uare .865
Adjusted R Sq uare .848
Std. Error of the Estimate 1.8528
a. Predictors: (Constant), 身 高 ( cm) b. Dependent Variable: 体 重 ( kg )
表 4 慢性支气管炎患者各年龄组疗效观察结果 疗效 年龄(岁) 11~ 20~ 30~ 40~ 50~ 合计 治愈 35 32 17 15 10 109 显效 1 8 13 10 11 43 好转 1 9 12 8 23 53 无效 3 2 2 2 5 14 合计 40 51 44 35 49 219
17

20:41

主要结果
Correlations 血 红 蛋 白 含 量 ( g/dl) 1.000 . 10 -.741* .014 10 贫 血 体 征 -.741* .014 10 1.000 . 10
Spearman's rho
血 红 蛋 白 含 量 ( g/dl)

SPSS的相关分析和线性回归分析

SPSS的相关分析和线性回归分析

• 如果两变量的正相关性较强,它们秩的变化具有同步性,于

n
Di2
n
(Ui
Vi)2的值较小,r趋向于1;
• i1
i1
如果两变量的正相关性较弱,它们秩的变化不具有同步性,
于是
n
n
Di2 (Ui Vi)2
的值较大,r趋向于0;
• i1
i1
在小样本下,在零假设成立时, Spearman等级相关系数
用最小二乘法求解方程中的两个参数,得到:
1
(xi x)(yi y) (xi x)2
0 ybx
多元线性回归模型
多元线性回归方程: y=β0+β1x1+β2x2+.+βkxk
β1、β2、βk为偏回归系数。 β1表示在其他自变量保持不变的情况下,自变量x1变动
一个单位所引起的因变量y的平均变动。
析功能子命令Bivariate过程、Partial过程、 Distances过程,分别对应着相关分析、偏相关分析和相 似性测度(距离)的三个spss过程。
Bivariate过程用于进行两个或多个变量间的相关分 析,如为多个变量,给出两两相关的分析结果。
Partial过程,当进行相关分析的两个变量的取值都受 到其他变量的影响时,就可以利用偏相关分析对其他变量 进行控制,输出控制其他变量影响后的偏相关系数。
• 回归分析的一般步骤
确定回归方程中的解释变量(自变量)和被解释变量( 因变量) 确定回归方程 对回归方程进行各种检验 利用回归方程进行预测
8.4.2 线性回归模型 一元线性回归模型的数学模型:
y0 1x
其中x为自变量;y为因变量; 0 为截距,即
常量; 1 为回归系数,表明自变量对因变量的影

SPSS_相关分析与回归分析专题

SPSS_相关分析与回归分析专题

相关分析 与
回归分析
Pearson相关系数应用广泛,其计算公式及其性质如下:
r (x x)(y y) (x x)2(y y)2
r 0.3 微弱相关、0.3 r 0.5 低度相关 0.5 r 0.8 显著相关、0.8 r 1 高度相关 当r 0时,表示x与y为正相关 当r 0时,表示x与y为负相关 当 r 0时,表示x与y不相关
相关分析 与
回归分析
相关分析与回归分析专题 (Correlation & regression)
相关分析 与
回归分析
相关分析
(Correlation Analysis)
相关分析 与
回归分析
一、相关分析的意义:
研究问题过程:单变量分析 双变量分析 多变量分析 多变量分析与单变量分析的最大不同:揭示客观事物之间 的关联性。
Partial过程,当进行相关分析的两个变量的取值都受 到其他变量的影响时,就可以利用偏相关分析对其他变 量进行控制,输出控制其他变量影响后的相关系数。
相关分析 与
回归分析
举例: 分析身高与肺活量之间的相关性,要控制体重在 相关分析过程中的影响。 1.设置偏相关分析的参数。
依次单击“Analyze-Correlate-Patial”执行偏相 关分析。其主设置面板如图所示:
n
( yi y )2 称为总离差平方和(SST)
i 1
线性回归
相关分析 与
回归分析
回归方程的统计检验 回归方程的拟合优度检验(相关系数检验)
R2取值在0-1之间, R2越接近于1,说明回归方程对样 本数据点的拟合优度越高。
线性回归
相关分析 与

数据统计分析软件SPSS的应用(五)——相关分析与回归分析

数据统计分析软件SPSS的应用(五)——相关分析与回归分析

数据统计分析软件SPSS的应用(五)——相关分析与回归分析数据统计分析软件SPSS的应用(五)——相关分析与回归分析数据统计分析软件SPSS是目前应用广泛且非常强大的数据分析工具之一。

在前几篇文章中,我们介绍了SPSS的基本操作和一些常用的统计方法。

本篇文章将继续介绍SPSS中的相关分析与回归分析,这些方法是数据分析中非常重要且常用的。

一、相关分析相关分析是一种用于确定变量之间关系的统计方法。

SPSS提供了多种相关分析方法,如皮尔逊相关、斯皮尔曼相关等。

在进行相关分析之前,我们首先需要收集相应的数据,并确保数据符合正态分布的假设。

下面以皮尔逊相关为例,介绍SPSS 中的相关分析的步骤。

1. 打开SPSS软件并导入数据。

可以通过菜单栏中的“File”选项来导入数据文件,或者使用快捷键“Ctrl + O”。

2. 准备相关分析的变量。

选择菜单栏中的“Analyze”选项,然后选择“Correlate”子菜单中的“Bivariate”。

在弹出的对话框中,选择要进行相关分析的变量,并将它们添加到相应的框中。

3. 进行相关分析。

点击“OK”按钮后,SPSS会自动计算所选变量之间的相关系数,并将结果输出到分析结果窗口。

4. 解读相关分析结果。

SPSS会给出相关系数的值以及显著性水平。

相关系数的取值范围为-1到1,其中-1表示完全负相关,1表示完全正相关,0表示没有相关关系。

显著性水平一般取0.05,如果相关系数的显著性水平低于设定的显著性水平,则可以认为两个变量之间存在相关关系。

二、回归分析回归分析是一种用于探索因果关系的统计方法,广泛应用于预测和解释变量之间的关系。

SPSS提供了多种回归分析方法,如简单线性回归、多元线性回归等。

下面以简单线性回归为例,介绍SPSS中的回归分析的步骤。

1. 打开SPSS软件并导入数据。

同样可以通过菜单栏中的“File”选项来导入数据文件,或者使用快捷键“Ctrl + O”。

2. 准备回归分析的变量。

SPSS相关性分析

SPSS相关性分析

相关分析的作用



判断变量之间有无联系 确定相关关系的表现形式及相关分析方法 把握相关关系的方向与密切程度 为进一步采取其他统计方法进行分析提供依据 用来进行预测
相关分析和回归分析区别


相关分析:如果仅仅研究变量之间的相互关系 的密切程度和变化趋势,并用适当的统计指标 描述。 回归分析:如果要把变量间相互关系用函数表 达出来,用一个或多个变量的取值来估计另一 个变量的取值。
2 Cn
2 (U V ) n(n 1)
偏相关分析


概念:当有多个变量存在时,为了研究任何两 个变量之间的关系,而使与这两个变量有联系 的其它变量都保持不变。即控制了其它一个或 多个变量的影响下,计算两个变量的相关性。 偏相关系数:偏相关系数是用来衡量任何两个 变量之间的关系的大小。 自由度:在统计学中,自由度指的是计算某一 统计量时,取值不受限制的变量个数。通常 df=n-k。其中n为样本含量,k为被限制的条 件数或变量个数,或计算某一统计量时用到其 它独立统计量的个数。
线性相关和非线性相关
统计关系还可以分为: (1)线性相关:当一个变量的值发生变化时, 另外的一个变量也发生大致相同的变化。在直 角坐标系中,如现象观察值的分布大致在一条 直线上,则现象之间的相关关系为线性相关或 直线相关(Linear correlation)。 (2)非线性相关:如果一个变量发生变动,另 外的变量也随之变动,但是,其观察值分布近 似的在一条曲线上,则变量之间的相关关系为 非线性相关或曲线相关(Curvilinear correlation)
回归方程统计检验

回归方程的拟合优度:回归直线与各观测点的接近程度称 为回归方程的拟合优度,也就是样本观测值聚集在回归线 周围的紧密程度 。

SPSS直线回归与相关分析

SPSS直线回归与相关分析
Pearson 调用 Correlation过程计算连续变量或是等间 隔测度的变量间的相关系数 r (系统默认设置)
Kendall's tau-b 计算 Kendall‘s 等级相关系数。这 是一个用于反映分类变量一致性的指标,只能在两个变量均属 于有序分类时使用。
Spearman计算Spearman相关系数,即最常用的非参数相 关分析(秩相关)
煤气户数 (万户)
25.68 25.77 25.88 27.43 29.95 33.53 37.31 41.16 45.73 50.59 58.82 65.28 71.25 73.37 76.68
卷烟销量 (百箱)
蚊香销量 打火石销量 (十万盒) (百万粒)
23.6
10.1
4.18
23.42
Байду номын сангаас
13.31
相关分析与回归模型的建立与分析
1
相关分析
在SPSS中,可以通过Analyze菜单进行相关分析(Correlate),Correlate菜单如图所示。
2
简单相关分析 两个变量之间的相关关系称简单相关关系。有两种 方法可以反映简单相关关系。一是通过散点图直观地 显示变量之间关系,二是通过相关系数准确地反映两 变量的关系程度。
例2:为了考察火柴销售量的影响因素,选择煤气户数、卷 烟销量、蚊香销量、打火石销量作为影响因素,得数据表。试 求火柴销售量与煤气户数的偏相关系数.
10
表 火柴销量及影响因素表
年份 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
火柴销售量 (万件)
23.69 24.1 22.74 17.84 18.27 20.29 22.61 26.71 31.19 30.5 29.63 29.69 29.25 31.05 32.28

SPSS数据分析教程-8-线性回归分析

SPSS数据分析教程-8-线性回归分析
为因变量或响应变量,它为随机变量; 2为随机误 差。 ? 通常假设2~N(0,? 2),且假设与X无关。
回归模型的主要问题
? 进行一元线性回归主要讨论如下问题:
(1) 利用样本数据对参数ˉ 0, ˉ 1和? 2,和进行点估计, 得到经验回归方程
(2) 检验模型的拟合程度,验证Y与X之间的线性相关 的确存在,而不是由于抽样的随机性导致的。
Radj
=
1?
SSE=(n ? p ? 1) SST=(n ? 1)
=
1?
n? 1 n ? p ? 1(1 ?
R2)
应用举例
? 数据文件performance.sav记录了一项企业心 理学研究的数据。它调查了一个大型金融机构 的雇员,记录了他们和主管的交互情况的评价 和对主管的总的满意情况。我们希望该调查来 了解主管的某些特征和对他们的总的满意情况 的相互关系。
应用回归分析的步骤
? 步骤1:写出研究的问题和分析目标 ? 步骤2:选择潜在相关的变量 ? 步骤3:收集数据 ? 步骤4:选择合适的拟合模型 ? 步骤5:模型求解 ? 步骤6:模型验证和评价 ? 步骤7:应用模型解决研究问题
简单线性回归
? 简单线性回归的形式为:
? Y = ˉ 0 +ˉ 1 X +2 ? 其中变量X为预测变量,它是可以观测和控制的;Y
(3) 利用求得的经验回归方程,通过X对Y进行预测或 控制。
简单回归方程的求解
? 我们希望根据观测值估计出简单回归方程中 的待定系数ˉ 0和ˉ 1,它们使得回归方程对应 的响应变量的误差达到最小,该方法即为最
小二乘法。
也就是求解ˉ 0和ˉ 1,使得 Xn S(ˉ 0; ˉ 1) = (y iቤተ መጻሕፍቲ ባይዱ? ˉ 0 ? ˉ 1X i )2

相关分析和回归分析SPSS

相关分析和回归分析SPSS

人均 国民收入
1068.8 1169.2 1250.7 1429.5 1725.9 2099.5
人均 消费金额
643 690 713 803 947 1148
计算结果

解:根据样本相关系数的计算公式有
r
n x x n y y
2 2 2
n xy x y
回归分析的一般步骤
确定回归方程中的解释变量(自变量)和被解释 变量(因变量) 确定回归方程 对回归方程进行各种检验 利用回归方程进行预测
回归分析与相关分析的区别
1. 相关分析中,变量 x 变量 y 处于平等的地位, 是对称的双向关系;回归分析中,变量 y 称为因 变量,处在被解释的地位, x 称为自变量,用于 预测因变量的变化,是一种不对称的单向关系。 2. 相关分析中所涉及的变量 x 和 y 都是随机变量 ;回归分析中,因变量 y 是随机变量,自变量 x 可以是随机变量,也可以是非随机的确定变量。 3. 相关分析主要描述两个变量间线性关系的密切程 度;回归分析不仅可以揭示变量 x 对变量 y 的 影响大小,还可以由回归方程进行预测和控制。
一元线性回归模型(概念要点)

对于只涉及一个自变量的简单线性回归模型可表示 为 y = b + b x +
模型中,y 是 x 的线性函数(部分)加上误差项 线性部分反映了由于 x 的变化而引起的 y 的变化 误差项 是随机变量 • 反映了除 x 和 y 之间的线性关系之外的随机因素对 y 的影响 • 是不能由 x 和 y 之间的线性关系所解释的变异性 b0 和 b1 称为模型的参数
Bivariate过程用于进行两个或多个变量间的相关分析,如为
多个变量,给出两两相关的分析结果。 Partial过程,当进行相关分析的两个变量的取值都受到其他 变量的影响时,就可以利用偏相关分析对其他变量进行控制 ,输出控制其他变量影响后的偏相关系数。 Distances过程用于对各样本点之间或各个变量之间进行相似 性分析,一般不单独使用,而作为聚类分析和因子分析等的 预分析。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

于是
n
n
Di2 (Ui Vi)2
的值较大,r趋向于0;
• i1
i1
在小样本下,在零假设成立时, Spearman等级相关系数
服从Spearman分布;在大样本下, Spearman等级相关
系数的检验统计量为Z统计量,定义为:
Z r n1
Z统计量近似服从标准正态分布。
8.2.2.3 Kendall 相关
,非一致对数目定义为
11
如果两变量具有较强的正相关,则一致对数目U应较大 ,非一致对数目V应较小;如果两变量具有较强的负相关,则 一致对数目U应较小,非一致对数目V应较大;如果两变量的 相关性较弱,则一致对数目U和非一致对数目V应大致相当, 大约各占样本数的一半。
12
检验统计量
Kendall 统计量的数学定义为:
4.在Test of Significance框中选择输出偏相关 检验的双尾概率p值或单尾概率p值。
5.在Option按钮中的Statistics选项中,选中 Zero-order CorrelLeabharlann tions表示输出零阶偏相 关系数。
至此,SPSS将自动进行偏相关分析和统计 检验,并将结果显示到输出窗口。
在小样本下,统计量服从Kendall分布。在大样本下采 用的检验统计量为:
Z统计量近似服从标准正态分布。
13
8.2.3 计算相关系数的基本操作
• 相关分析用于描述两个变量间关系的密切程度,其特点是
变量不分主次,被置于同等的地位。
• 在Analyze的下拉菜单Correlate命令项中有三个相关分 析功能子命令Bivariate过程、Partial过程、 Distances过程,分别对应着相关分析、偏相关分析和相 似性测度(距离)的三个spss过程。 Bivariate过程用于进行两个或多个变量间的相关分 析,如为多个变量,给出两两相关的分析结果。 Partial过程,当进行相关分析的两个变量的取值都受 到其他变量的影响时,就可以利用偏相关分析对其他变量 进行控制,输出控制其他变量影响后的偏相关系数。 Distances过程用于对各样本点之间或各个变量之间 进行相似性分析,一般不单独使用,而作为聚类分析和因 子分析等的预分析。
8.2 相关分析
相关分析通过图形和数值两种方式,有效地 揭示事物之间相关关系的强弱程度和形式。
• 8.2.1 散点图
它将数据以点的形式画在直角坐标系上, 通过观察散点图能够直观的发现变量间的相关关系 及他们的强弱程度和方向。
简单散点图:表示一对变量间统计关系的散点图。 重叠散点图:表示多对变量间统计关系的散点图。 矩阵散点图:以方形矩阵的形式在多个坐标轴上分 别显示多对变量间的统计关系。 以3*3矩阵散点图为例。
例如,在研究商品的需求量和价格、消费者收入之间 的线性关系时,需求量和价格之间的相关关系实际还包含 了消费者收入对价格和商品需求量的影响。在这种情况下 ,单纯利用相关系数来评价变量间的相关性显然是不准确 的,而需要在剔除其他相关因素影响的条件下计算变量间 的相关。偏相关的意义就在于此。
• 偏相关分析也称净相关分析,它在控制其他变量的
行推断
• 检验统计量为:
tr
nq2 1 r2
其中,r为偏相关系数,n为样本数,q为阶数。 T统计量服从n-q-2个自由度的t分布。
8.3.2 偏相关分析的基本操作
1.选择菜单Analyze-Correlate-Partial
2.把参与分析的变量选择到Variables框中。
3.选择一个或多个控制变量到Controlling for框 中。
8.3.3 偏相关分析的应用举例
上节中研究高校立项课题总数影响因素的相关分 析中发现,发现立项课题数与论文数之间有较强正 线性相关关系,但应看到这种关系中可能掺入了投 入高级职称的人年数的影响,因此,为研究立项课 题总数和发表论文数之间的净相关系数,可以将投 入高级职称的人年数加以控制,进行偏相关分析。
问题
研究高校立项课题总数影响因素的相关分析中发 现立项课题数与论文数之间有较强正线性相关关系, 但应看到这种关系中可能掺入了投入高级职称的人年 数的影响。
18
8.3 偏相关分析
• 8.3.1 偏相关分析和偏相关系数
上节中的相关系数是研究两变量间线性相关性的,若 还存在其他因素影响,就相关系数本身来讲,它未必是两 变量间线性相关强弱的真实体现,往往有夸大的趋势。
8.2.4 相关分析应用举例
为研究高等院校人文社会科学研究中立项课 题数会受哪些因素的影响,收集2019年31个省 市自治区部分高校有关社科研究方面的数据,研 究立项课题数(当年)与投入的具有高级职称的 人年数(当年)、发表的论文数(上年)之间是 否具有较强的线性关系。
对该问题的研究可以采用相关分析的方法, 首先可绘制矩阵散点图;其次可以计算Pearson 简单相关系数。
8.2.2.1 Pearson简单相关系数(适用于两个变量都是数值 型的数据)
r (xix)(yiy) (xix)2(yiy)2
Pearson简单相关系数的检验统计量为:
t r n2 1 r2
8.2.2.2 Spearman等级相关系数
• Spearman等级相关系数用来度量定序变量间的线性
问题
• 家庭收入和支出之间有关系吗?有什么样的关系? • 子女身高和父母身高之间有关系吗?又有什么样的
关系?
1
第八章
SPSS相关分析与回归分析
本章内容
• 8.1 相关分析和回归分析概述 • 8.2 相关分析 • 8.3 偏相关分析 • 8.4 线性回归分析 • 8.5 曲线估计
8.1 相关分析和回归分析概述
线性影响的条件下分析两变量间的线性关系,所采
用的工具是偏相关系数。
• 控制变量个数为1时,偏相关系数称一阶偏相关;
当控制两个变量时,偏相关系数称为二阶偏相关;
当控制变量的个数为0时,偏相关系数称为零阶偏 相关,也就是简单相关系数。
利用偏相关系数进行分析的步骤
• 第一,计算样本的偏相关系数
假设有三个变量y、x1和x2,在分析x1和y之间的净 相关时,当控制了x2的线性作用后,x1和y之间的一阶偏 相关定义为:
由于x的取值不同,使得与x有线性关系的y值不同; 随机因素的影响。
y
(y0 y)
y
yˆ a bx
( y0 yˆ )
( yˆ y)
x
总离差平方和可分解为
y y 2 y y 2 y y 2
即:总离差平方和(SST)=剩余离差平方和(SST) +回归 离差平方和(SSR)
,且可被简化为:
r 1n 6 (n 2D 1 i2 ), 其 中 i n 1D i2i n 1(U i V i)2
• 如果两变量的正相关性较强,它们秩的变化具有同步性,于

n
Di2
n
(Ui
Vi)2的值较小,r趋向于1;
• i1
i1
如果两变量的正相关性较弱,它们秩的变化不具有同步性,
ry1,2
ry1ry2r12 (1ry22)(1r12 2)
其 中 , ry1、 ry2、 r12分 别 表 示 y和 x1的 相 关 系 数 、 y和 x2的 相 关 系 数 、 x1和 x2的 相 关 系 数 。
偏相关系数的取值范围及大小含义与相关系数相同。
• 第二,对样本来自的两总体是否存在显著的净相关进
三维散点图:以立体图的形式展现三对变量间 的统计关系。
6
8.2.2 相关系数
利用相关系数进行变量间线性关系的分析通常需 要完成以下两个步骤:
第一,计算样本相关系数r;
相关系数r的取值在-1~+1之间
r>0表示两变量存在正的线性相关关系;r<0表示两变 量存在负的线性相关关系
r=1表示两变量存在完全正相关;r=-1表示两变量存 在完全负相关;r=0表示两变量不相关
8.4.3 线性回归方程的统计检验
8.4.3.1回归方程的拟合优度
回归直线与各观测点的接近程度称为回归方程的拟合优度, 也就是样本观测值聚集在回归线周围的紧密程度 。
1、离差平方和的分解: 建立直线回归方程可知:y的观测值的总变动
可由 (yy)2来反映,称为总变差。引起总变差的
原因有两个:
边(Two-Tailed)概率p值或单边(One-Tailed)概率 p值。 (5)选中Flag significance correlation选项表示分析结果 中除显示统计检验的概率p值外,还输出星号标记,以标明 变量间的相关性是否显著;不选中则不输出星号标记。 (6)在Option按钮中的Statistics选项中,选中Crossproduct deviations and covariances表示输出两变量的 离差平方和协方差。
8.4 线性回归分析
8.4.1线性回归分析概述
• 线性回归分析的内容
能否找到一个线性组合来说明一组自变量和因变量的关 系 如果能的话,这种关系的强度有多大,也就是利用自变 量的线性组合来预测因变量的能力有多强 整体解释能力是否具有统计上的显著性意义 在整体解释能力显著的情况下,哪些自变量有显著意义
|r|>0.8表示两变量有较强的线性关系; |r|<0.3表示 两变量之间的线性关系较弱
第二,对样本来自的两总体是否存在显著的线性 关系进行推断。
对不同类型的变量应采用不同的相关系数来度量,常用 的相关系数主要有Pearson简单相关系数、Spearman等
级相关系数和Kendall 相关系数等。
其中;SSR是由x和y的直线回归关系引起的,可以由回归 直线做出解释;SSE是除了x对y的线性影响之外的随机因素所 引起的Y的变动,是回归直线所不能解释的。
相关文档
最新文档