高等数学第七章定积分的应用
定积分的定义在求无穷和式极限中的应用

度、操作技能的掌握程度、收集整理资料的能力以及观察 问题和分析解决问题的能力等,充分发挥学生的主观能动 性。 3 实施方案
(1)根据素质教育要求和教育部“关于进一步深化本 科教学改革全面提高教学质量的若干意见”,结合专业实 际在充分调研的基础上调整好食品质量与安全专业实践教 学体系。
(2)以学科与课程组为单位,编写实验教学大纲和实 习实践教学大纲,在修订实验大纲以及实验教材时,增加 综合性、设计性实验比重,并把学科发展的新成果充实到 教学内容中去。
(6)对已建立协议的教学实习基地要不断加强联系与 交流,建立牢固的长期合作关系,每学年邀请基地领导来 我院共同研究实习基地建设问题,并做好年度实习基地建 设工作总结。继续考察、遴选新的实习基地,加快建立满 足新专业要求的实习基地。
(7)积极开展第二课堂活动,推进导师制,言传身教 使学生在参加科技实践创新活动中,提高实践能力及创新 能力。
在高等数学的教学中,介绍了很多求函数极限的方
法。但是当我们遇到极限为“无穷多个无穷小之和”的形
式(以下简称无穷和式),就不能用这些常规的方法了。
通常是先求出无穷数列前n项的和,再求和式的极限。但当
数列的前n项的和不易求出时,我们就可以考虑用定积分的
定义来求它的极限了。
学过定积分的定义,我们知道定积分是积分和的极
参考文献: [1] 常 庚 哲 等 .数 学 分 析 教 程 (上 )[M].北 京 :高 等 教 育 出 版
社,2003:300~331. [2] 吉米多维奇.数学分析习题集题解(六)[M].济南:山东科学技术
出版社,2002:103~148. [3] 上海财经大学应用数学系.高等数学[M].上海:上海财经大学出
(3)出台相应的激励政策,鼓励教师参与实践教学的 改革,并通过实践教学活动和科研有机结合起来,产学研 相长,不断提高实践教学水平。
3.3 定积分的应用医学高等数学课件

以dx 为底的窄边梯形绕x 轴旋转而成的薄片的 体积为
r dV x dx h
圆锥体的体积
2
y
P
r
o
h
x
V
h
0
h r hr x dx . 0 2 h 3 3 h
2
r 2 x3
2
类似地,如果旋转体是由连续曲线
1 2
3
1
情形3 我们如图做出面积微元,这时我 们所求阴影部分的面积即为
f1(x)
dA1
dA 1 f1 ( x) f 2 ( x)dx dA2 f 2 ( x) f1 ( x)dx
a
c
dA2
f2(x)
c
b c
b
A A1 A2 f1 f 2 dx f 2 f1 dx
b
b x
面积表示为定积分的步骤如下
(1)把区间[a , b]分成 n个长度为 x i 的小区间, 相应的曲边梯形被分为 n个小窄曲边梯形,第 i 个小窄曲边梯形的面积为 Ai ,则 A Ai .
n i 1
(2)计算Ai 的近似值
Ai f ( i )xi
i [ xi 1, xi ]
i 1 n
直角坐标情形
设曲线弧为 y f ( x ) (a x b) ,其中 f ( x ) 在[a , b]上有一阶连续导数
取积分变量为x ,在[a , b ] 上任取小区间[ x , x dx ],
y
dy
o a x x dx b
x
以对应小切线段的长代替小弧段的长
小切线段的长 (dx )2 (dy )2 1 y 2 dx
高等数学-定积分的概念与性质

= σ=1 ( ) .
→0
其中()称为被积函数,()称为被积表达式,称为积分变量,
[, ]称为积分区间,称为积分下限,称为积分上限.
15
02 定积分的定义
注(1)定积分)( 是一个数值,它只与被积函数()
和积分区间[, ]有关,而与积分变量的符号无关,即
(2)近似(“以直代曲”)
在区间 [−1 , ] 上任取一点 ,以 ( ) 为高,
y
y=()
以 为底,作小矩形.小矩形的面积为
( ) ,用该结果近似代替[−1 , ]上的小
O
a
x i -1 ξ i x i
b
x
曲边梯形的面积 ,即
≈ ( ) ( = 1, 2, ⋯ , ).
)(
=
)(
=
)( .
(2)定积分存在,与区间的分法和每个小区间内 的取法无关.
Hale Waihona Puke (3)按照定积分的定义,记号)( 中的, 应满足关系
< ,为了研究的方便,我们补充规定:
① 当 =
② 当 >
时, = )( = )( 0;
在区间 [1,2] 内, 0 ≤ < 2 < 1 ,
则( )3 < .由性质5.5的推论1,得
2
1
>
2
1 ( )3 .
28
极限,得 σ=1 ( ) .
→0
如果对于[, ]的任意分法及小区间[−1 , ]上点 的任意
取法,上述极限都存在,则称函数()在区间[, ]上可积,
浅谈定积分在工程上的应用

浅谈定积分在工程上的应用
作者:郝连军
来源:《中文信息》2017年第04期
摘要:定积分在各个领域都有广泛的应用,尤其在工程测算和施工计算中,比如桥梁施工前要计算桥墩的体积,以便知道需要水泥和沙石的数量,做好预算。
建筑楼房时需要计算占地面积和墙面的面积。
这些用定积分的几何应用中求平面图形面积和旋转体的体积的方法就可以解决。
本文要解决的是工程上难于解决的楔形体积、曲线弧长和打地基变力作功的问题。
关键词:定积分工程应用
中图分类号:G64 文献标识码:A 文章编号:1003-9082 (2017) 04-0118-01
参考文献
[1].《高等数学》同济大学版
[2].马祥玉,江茂泽.《求楔形体积的多种解法》西南石油大学
[3].刘羽中.《定积分思想在土木工程中的应用》。
考研数学定积分的应用

考研数学定积分的应用一、引言数学定积分是高等数学中的重要概念之一,它在实际生活中有着广泛的应用。
本文将从几个具体的应用案例入手,探讨考研数学定积分的应用。
二、面积计算数学定积分最基本的应用之一就是计算曲线与坐标轴所围成的面积。
例如,在工程测量中,我们经常需要计算某个区域的面积,如果该区域的边界曲线可以用函数表示,那么可以通过定积分来求解。
通过将曲线分割成无穷多个微小的矩形,计算每个矩形的面积并进行累加,最终得到所需的面积。
三、物体体积计算除了计算面积,数学定积分还可以用于计算物体的体积。
在工程设计中,经常需要计算复杂形状物体的体积,例如水库的容量、建筑物的体积等。
如果物体的截面可以用函数表示,那么可以通过定积分来求解。
同样地,将截面分割成无穷多个微小的面元,计算每个面元的体积并进行累加,最终得到所需的体积。
四、质心计算质心是物体在空间中的重心,对于复杂形状的物体,质心的计算可以通过数学定积分来实现。
首先,将物体分割成无穷多个微小的体积元,计算每个体积元的质量并与其质心坐标乘积,然后进行累加,最后将总质量除以总体积,即可得到质心的坐标。
五、弯曲杆件的弯矩计算在工程力学中,常常需要计算弯曲杆件的弯矩分布,以确定结构的稳定性和安全性。
通过数学定积分,可以将杆件分割成无穷多个微小的弯曲段,计算每个弯曲段的弯矩,并进行累加,最终得到整个杆件的弯矩分布。
六、概率密度函数计算概率密度函数是概率论与数理统计中的重要概念,用于描述随机变量的概率分布。
数学定积分可以用于计算概率密度函数的各种性质,例如求解期望值、方差以及其他统计指标。
通过对概率密度函数进行定积分,可以得到具体的数值,从而进行概率分析和决策。
七、总结本文简要介绍了考研数学定积分的几个应用,包括面积计算、物体体积计算、质心计算、弯曲杆件的弯矩计算以及概率密度函数的计算。
这些应用充分展示了数学定积分在实际生活和工程领域中的重要性和广泛应用。
通过学习和掌握数学定积分的应用技巧,可以更好地理解和应用数学知识,提高问题解决能力。
高等数学的教学设计与应用——以“定积分的概念”为例

探索的科学精神"学会用所学知识解决生活中所遇到的实 个常量还是变量/ -(.定义中提到的两个任意性有什么意
际问题$ 介绍定积分时"引导学生深刻体会习近平总书记 义/ -3.定积分的大小主要由哪些因素决定/ 学生经历之
提出的*人类命运共同体+"使学生认识到任何个人都不可 前的引例以及自主练习"很容易得到相关的结论"即!
以此更好地理解定积分的概念$ 课外时间利用网络的学
4
图 图 K4444444444 H
习交流平台"与学生探讨知识"答疑解惑"使所有的疑惑能 够得到及时的解决"以便后续学习能畅通无阻$
结语
如果在%5"6&上!-&.)% 有正有负"则*6!-&. 7&的值 5
表示由曲线%`!-&. 直线 # &`5"&`6"%`% 所围图形在&轴 上方的面积减去在&轴下方的面积"即如下图$
能独善其身"要做到尽职尽责"才能实现共同发展$ 这种 -$.如果函数!- &. 在% 5"6& 上连续"或函数!- &. 在
思想方法贯穿于各个领域"小到身边事"大到国家事"乃至 %5"6&上有界"且只有有限个间断点"则函数!-&.在%5"6&
整个世界$
上可积$
)&( 抽象数学概念
-).定积分是一种和式的极限"即是一个实数$
们后期的计算"即将区间%%"$&分成0 等份"即&;`$0 "选
定积分求旋转体的体积

7.1.3 定积分求旋转体的体积
第七章 定积分的应用
第一节 定积分在几何上的应用
第三讲 定积分求旋转体的体积
主要内容: 一、旋转体的概念
二、平面图形绕 x 轴旋转所得旋转体的体积
三、平面图形绕 y 轴旋转所得旋转体的体积
四、小结
引入:
一、旋转体:由一个平面图形绕这平面内一条直线旋转一周而
2
1
1 e4 e2 2
V b[ f (x)]2 dx a
y
y ex
1
o x=1 x=2 x
练习 求由抛物线 y x2、直线 x 2 及 x 轴所围成平面图形绕 x
轴旋转一周所得旋转体的体积.
A: 32
5
B: 16
5
C: 8
5
解 选A
D: 64
(3)V
Байду номын сангаас
b
[
f
(x)]2 dx
b y2dx
a
a
xx x dx
例1 求由曲线 y ex,直线 x 1, x 2以及 x 轴所围成的平面图
形绕 x 轴旋转一周所得旋转体的体积.
解
V
2
1
f
x2dx
2
ex
2
dx
1
1 e2x 2
D: 1 e2 1 2
解 选C
四、小结
1. 平面图形绕 x轴旋转所得旋转体的体积
V b [ f (x)]2 dx b y2dx
a
a
2. 平面图形绕 y轴旋转所得旋转体的体积
高等数学定积分的应用常见曲线及公式

标题:高等数学定积分的应用 - 常见曲线及公式序在高等数学中,定积分是一个非常重要的概念,它不仅可以用于计算曲线与坐标轴之间的面积,还可以应用于求解各种问题。
在实际应用中,定积分广泛地用于表示曲线与坐标轴之间的面积、求解物体的质量、求解物体的质心、求解曲线的长度以及求解曲线的平均值等问题。
在本文中,我们将会介绍定积分的应用中的常见曲线及公式。
一、常见曲线及其定积分公式1. 直线若有一条直线,其方程为y = kx + b,其中k和b为常数,那么直线与x轴及y轴所围成的面积可以用定积分来表示。
其定积分公式为:\[S = \int_{a}^{b} |kx + b| dx\]其中a和b为直线与x轴的交点的横坐标。
2. 抛物线若有一个抛物线,其方程为y = ax^2 + bx + c,其中a、b和c为常数且a不等于零,那么抛物线与x轴及y轴所围成的面积可以用定积分来表示。
其定积分公式为:\[S = \int_{x_1}^{x_2} |ax^2 + bx + c| dx\]其中x1和x2为抛物线与x轴的交点的横坐标。
3. 圆若有一个圆,其半径为R,圆心在原点,那么圆与x轴及y轴所围成的面积可以用定积分来表示。
其定积分公式为:\[S = \int_{-R}^{R} \sqrt{R^2 - x^2} dx = \frac{\pi R^2}{2}\]其中R为圆的半径。
4. 椭圆若有一个椭圆,其方程为\(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\),其中a和b分别为椭圆在x轴和y轴上的半轴长,那么椭圆与x轴及y轴所围成的面积可以用定积分来表示。
其定积分公式为:\[S = 4 \int_{0}^{a} \sqrt{b^2 - \frac{b^2x^2}{a^2}} dx\]其中a和b分别为椭圆在x轴和y轴上的半轴长。
5. 双曲线若有一个双曲线,其方程为\(\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\),其中a和b分别为双曲线在x轴和y轴上的半轴长,那么双曲线与x轴及y轴所围成的面积可以用定积分来表示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章 定积分的应用一、本章提要1. 基本概念微元法,面积微元,体积微元,弧微元,功微元,转动惯量微元,总量函数. 2. 基本公式 平面曲线弧微元分式. 3. 基本方法(1) 用定积分的微元法求平面图形的面积, (2) 求平行截面面积已知的立体的体积, (3) 求曲线的弧长, (4) 求变力所作的功, (5) 求液体的侧压力, (6) 求转动惯量,(7) 求连续函数f (x )在[]b a ,区间上的平均值, (8) 求平面薄片的质心,也称重心.二、要点解析问题1 什么样的量可以考虑用定积分求解?应用微元法解决这些问题的具体步骤如何?解析 具有可加性的几何量或物理量可以考虑用定分求解,即所求量Q 必须满足条件:(1)Q 与变量x 和x 的变化区间[]b a ,以及定义在该区间上某一函数f (x )有关;(2)Q 在[]b a ,上具有可加性,微元法是“从分割取近似,求和取极限”的定积分基本思想方法中概括出来的,具体步骤如下:(1)选变量定区间:根据实际问题的具体情况先作草图,然后选取适当的坐标系及适当的变量(如x ),并确定积分变量的变化区间[]b a ,;(2)取近似找微分:在[]b a ,内任取一代表性区间[]x x x d ,+,当x d 很小时运用“以 直代曲,以不变代变”的辩证思想,获取微元表达式d =()d Q f x x ≈Q ∆(Q ∆为量Q 在小区间[]x x x d ,+上所分布的部分量的近似值);(3)对微元进行积分得 =d ()d b baaQ Q f x x =⎰⎰.下面举例说明.例1 用定积分求半径为R 的圆的面积.解一 选取如图所示的坐标系,取x 为积分变量,其变化区间为[]R R ,-,分割区间[]R R ,-成若干个小区间,其代表性小区间[]x x x d ,+所对应的面积微元x x R x x R x R A d 2d ))((d 222222-=----=,于是⎰⎰---==RRR Rx x R A A d 2d 22=2πR .解二 选取如图所示的坐标系,取θ 为积分变量,其变化区间为[]π2,0.分割区间[]π2,0成若干个小区间,其代表性小区 间[]θθθd ,+所对应的面积微元θd 21d 2R A =,于是22π202π20ππ221d 21d R R R A A =⋅===⎰⎰θ.解三 选取r 为积分变量, 其变化区间为[]R ,0,如图,分割[]R ,0成若干个小区间,其代表性小区间[]r r r d ,+所对应的面积微元r r A d π2d =,于是202π2π2d π2R r r r A RR =⋅==⎰.问题2 如何理解连续函数f (x ) 在闭区间[]b a ,上的平均值⎰-=b ax x f a b u d )(1是有限个数的算术平均值的推广.解析 首先,我们知道几个数 y y y n 12,,,⋅⋅⋅的算术平均值为y y y y n n y n k k n=++⋅⋅⋅+==∑()/1211,对于函数)(x f ,我们把区间[]b a , n 等分,设分点为a =x x x b n 01<<⋅⋅⋅<=.区间的长度(1,2,,)i b ax i n n-∆==⋅⋅⋅,各分点i x 所对应的函数值为12(),(),f x f x ,⋅⋅⋅()n f x ,其算术平均值 ∑=ni i x f n 1)(1可近似地表达函数)(x f 在[]b a ,上取得一切值的平均值.显然,n 越大,分点越多,这个平均值就越接近函数)(x f 在[]b a ,上取得一切值的平均值. 因此,称极限lim n →∞11n f x i i n()=∑为函数)(x f 在闭区间[]b a ,上的平均值,记为[]b a y ,.下面用定积分表示函数)(x f 在[]b a ,上的平均值[]b a y ,.在定积分定义中,若取ξi i x =,∆x b ani =-,则∑∑⎰=∞→=→-=∆=ni i n n i i i b anab x f x f x x f 11)(lim )(lim d )(ξλ,这里{}12max ,,,n b ax x x nλ-=∆∆∆=L . 因此n ab x f a b x f n ni i n n i i n --=∑∑=∞→=∞→11)(lim 1)(1lim11lim ()ni i n i f x x b a →∞==∆-∑ ⎰-=b a x x f ab d )(1, 即 ⎰-=b a b a x x f ab y d )(1],[. 在生产实践和科学研究中,有许多连续量的平均值需要计算,如平均电流强度、平均电压、平均功率等等.例2 求从0到T 这段时间内自由落体运动的平均速度. 解 因为自由落体运动的速度gt v =,所以2001111d 022TT v gt t gt gT T T ⎛⎫===⎪-⎝⎭⎰. 三、例题精解例3 求纯电阻电路中正弦电流 t I t i m ωsin )(=在一个周期上的平均功率(其中mI 及ω均为常数).解 设电阻为R (R 为常数),则电路中的电压t RI iR u m ωsin ==,而功率 2)sin (t I R iu p m ω==,因此p 在2π0,ω⎡⎤⎢⎥⎣⎦上的平均功率(功率的平均值) 2π2π2222π0011cos 2sin d d 02π2m m RI tp R t t t I ωωωωωω-==-⎰⎰2π22011(1cos )d()()4π22m mm m m m I R t t I R I U U I R ωωω=-===⎰,这说明纯电阻电路中正弦电流的平均功率等于电流、电压的峰值之积的一半.对一般的周期为T 的交变电流)(t i ,它在R 上消耗的功率为R t i t i t u p )()()(2==,在[]T ,0上的平均功率为Tt R t i p T ⎰=2d )(.通常交流电器上标明的功率就是平均功率.例4 当交变电流)(t i 在其一个周期内在负载电阻R 上消耗的平均功率等于取固定值电流I 的直流电在R 上消耗的功率时,称I 为)(t i 的有效值,即电流)(t i 的有效值为I ,试求)(t i 的有效值.解 固定值为I 的电流在电阻R 上消耗的功率为2I R .对于交变电流)(t i 在其一个周期内在负载电阻R 上消耗的平均功率为⎰⎰==T T t t i T R t R t i T p 0202d )(d )(1,于是 ⎰=T t t i T R R I 022d )(,得 ⎰=T t t i TI 02d )(1为交变电流)(t i 的有效值.通常在交流电的电器上所标明的电流即为交变电流的有效值.一般地,把⎰-b at t f a b d )(12称为连续函数)(x f 在[]b a ,上的均方根.因此,周期性电流)(t i 的有效值就是它的一个周期上的均方根.例5 由力学知道,位于平面上点),(i i y x 处的质量为),,2,1(n i m i ⋅⋅⋅=的几个质点所构成的质点系的质心(也叫质点系的重心)坐标),(y x 计算公式为mM x y =,mM y x=, 其中∑==ni imm 1(质点系中全部质点的质量之和),∑==ni ii y x m M 1(质点系中,各质点关于y轴的静力矩m i x i 之和m xiii n=∑1,称其为质点系对y 轴的静力矩),∑==ni i i x y m M 1(质点系对x 轴的静力矩).由此可见,质点系m i ( i n =⋅⋅⋅12,,,)的质心坐标(x y ,)满足:质量为m mii n==∑1,坐标为(x y ,)的质点M 关于y 轴和x 轴的静力矩分别与质点系关于y 轴和x 轴的静力矩相等.按上述关于质点系之质心的概念,用定积分的微元法讨论均匀薄片的质心. 解 设均匀薄片由曲线)()((x f x f y =≥)0,直线x =a ,x =b 及x 轴所围成,其面密度μ为常数,其质心坐标(x y ,).为研究该薄片的质心,首先要将该薄片分成若干个小部分,每一小部分近似看成一个质点,于是该薄片就可近似看成质点系.具体做法如下:将[]b a ,区间分成若干个小区间,代表性小区间[]x x x d ,+所对应的窄长条薄片的质量微元 x x f x y m d )(d d μμ==,由于d x 很小,这小窄条的质量可近似看作均匀分布在窄条的左面一条边上,由于质量是均匀分布的,故该窄条薄片又可看作质量集中在点⎪⎭⎫⎝⎛)(21,x f x 处且质量为d m 的质点,所以这窄条薄片关于x 轴及y 轴的静力矩微元x M d 与y M d 分别为x x f x x f x f M x d )(21d )()(21d 2μμ==, x x f x M y d )(d μ=,把它们分别在[]b a ,上作定积分,便得到静力矩 x x f M b ax d )(22⎰=μ,⎰=bay x x xf M d )(μ,又因为均匀薄片的总质量 ⎰⎰==bab ax x f m m d )(d μ,所以该薄片的质心坐标为⎰⎰==b aba y xx f x x xf mM x d )(d )(, 21()d 2()d b a x baf x x M y mf x x==⎰⎰. 上面关于质心(y x ,)的计算公式适用于求均匀薄片的质心,有关非均匀薄片质心的计算将在二重积分应用中予以介绍.例6 求密度均匀,半径为R 的半圆形薄片的质心. 解 如图所示建立坐标系,上半圆周方程22x R y -=,由对称性知,质心在y 轴上,即0=x ,利用例5中的质心计算公式得32202112()d 423,13ππ2R R x R x x R y R ⨯-===故所求质心为4(0,)3πR. 四. 练习题判断正误(1) 由x 轴,y 轴及2)1(-=x y 所围平面图形的面积为定积分x x d )1(12⎰-;(√ )解析 x 轴、y 轴及2)1(-=x y 所围成的曲边三角形位于x 轴的上方,由定积分的几何意义可知,其面积正是x x d )1(12⎰-.(2)闭区间[]b a ,上的连续函数)(x f 在该区间上的平均值为f x b a()- ; ( × )解析 由定积分中值定理可知,闭区间],[b a 上的连续函数)(x f 在该区间上的平均值为1()d b af x x b a -⎰. (3)由曲边梯形D :a ≤x ≤b ,0≤y ≤)(x f 绕x 轴旋转一周所产生的旋转体的体积 2π()d b aV f x x =⎰; ( √ )解析 如图,对任意的],[b a x ∈,旋转体的截面积)(x A =2π()f x .由平行截面物体的2)1体积得 V =()d b aA x x ⎰=2π()d b af x x ⎰.(4)若变量y 关于x 的变化率为23x ,则 3x y =. ( × )解析 y 关于x 的变化率为23x ,则2d 3d yx x=,积分得 y =23d x x ⎰=3x C +.2.填空题(1) 设一平面曲线方程为)(x f y =,其中)(x f 在[]b a ,上具有一阶连续导数,则此曲线对应于a x =到b x =的弧长L=ax ⎰;若曲线的参数方程为{(),(),x x t y y t ==(a≤t ≤β),)(),(t y t x 在[]αβ,上有连续导数,则此曲线弧长L=t βα⎰ ;(2) 设一平面图形由b x a x x g y x f y ====,),(),(所围成))()((x f x g >,其中)(x f ,)(x g 在[]b a ,上连续,则该平面图形的面积S =[()()]d b ag x f x x -⎰;解 如图,因为)()(x f x g >, 取x 为积分变量,于是得 d [()()]d A g x f x x =-,故平面图形的面积 A =[()()]d b ag x f x x -⎰.(3) 周期为T 的矩形脉冲电流{,0(),(0)0,a t c i t a c t T≤≤=><≤的有效值为 Tca; 解)(x f 在],[b a 上的均方根.周期性电流)(t i 的有效值就是它的一个周期上的均方根, 则2()d T i t t ⎰=20d c a t ⎰+0d Tct ⎰=c a 2,所以此脉冲电流的有效值 ITca 2=T c a .(4) 若某产品的总产量的变化率为210)(t t t f -=,那么t 从40=t 到81=t 这段时间内的总产量为3272. 解 设总产量为)(t Q , 则 )()(t f t Q ='=210t t -,积分得 Q =824(10)d t t t -⎰=8432)35(t t -=3272.3. 解答题(1)抛物线x y 22=把图形822=+y x 分成两部分,求这两部分面积之比;解 曲线围成的区域如图中阴影部分.联立方程 2222,8,y x x y ⎧=⎨+=⎩ ⇒ {2,2,x y ==或 {2,2,x y ==-得到两条曲线相交的交点为 (2,y 2),(2,2-).从而2S =222)d 2y y -⎰=2(2200d 2y y y -⎰⎰), 其中y⎰y t=π404)t t ⋅⎰=π2408cos d t t ⎰=π404(1cos 2)d t t +⎰=π40π2sin 2t +=2+π,220d 2y y ⎰=20361y =34, 所以 2S =2(2+4π3-)=2π+34, 而1S +2S =2π=8π,于是 =1S 48π(2π)3-+=46π3-, 所以,两部分面积比为 1S :2S =(9π-2):(3π+2).(2)计算e xy -=与直线0=y 之间位于第一象限内的平面图形绕x 轴旋转一周所得的旋转体的体积;解 如图,当+∞→x 时,y =e0x-→,我们可以把未封闭的区域看作当+∞→x 时的闭区域,则其绕 x 轴旋转一周的体积V =20π()d f x x +∞⎰=20πe d x x +∞-⎰=20πe 2x-+∞-=π2, 所以,所得旋转体体积为π2.(3)一密度均匀的薄片,其边界由抛物线ax y =2与直线a x =围成,求此薄片的质心坐标;解 如图,由对称性知,质心在x 轴上,即y =0,利用质心计算公式,有x =222()d d a a a a y ya y ya --⎰⎰=3252352a a a a ⋅⋅=a 53, 所以,薄片的质心坐标为(a 53,0).(4)半径为r m 的半球形水池灌满了水,要把池内的水全部抽出需作多少功; 解 如图,设水池的上边缘为y 轴,原点在半球形水池的圆心位置,x 轴竖直向下.球面方程为y =22x r -±,则水深x 处所对应的截面半径为22x r -,截面面积22()π()S x r x =-.将x 到d x x +这层水抽出需克服的重力为d G =d g V ρ=g ρ()d S x x =22π()d g r x x ρ-,因为 W =220π()d rg r x x ρ-⎰=222201π()d()2r g r x r x ρ---⎰=2221π()40r g r x ρ--=41π4g r ρ(J ),所以,把水全部抽出需做功41π4g r ρ(J ). (5)一直径为6m 的半圆形闸门,铅直地浸入水内,其直径恰位于水表面(水的密度为 103 kg/m 3 ),求闸门一侧受到水的压力;解 如图,设水面为y 轴,原点在圆心位置,x 轴竖直向下.半圆形闸门的方程为922=+y x ,则x 到d x x +这层闸门的截面面积d ()S x =2x ,所受到的压强P =gx ρ,压力d F=d ()P S x =gxx ρ,闸门所受到的压力F =302x ρ⎰=20)g x ρ--⎰=30232)9(32x g --ρ=41.810g ⨯ (N ),所以,闸门的一侧受到水的压力为41.810g ⨯ (N ).(6)某石油公司经营的一块油田的边际收入和边际成本分别为 )/(31)(,)/()(3131年百万元年百万元tt C tq t R +='-=',求该油田的最佳经营时间,以及在经营终止时获得的总利润(已知固定成本为4百万元,q 为实数);解 由最大利润原理,令 )()(t C t R '=',则 313131t t q +=-,得 t =64)1(3-q ,总利润 L =3(1)640[()()]d 4q R t C t t -''--⎰=311(1)33640(13)d 4q q t t t -----⎰=31(1)3640(14)d 4q q t t ----⎰=[34(1)3640(1)3]4q q t t ----=4256)1(4--q (百万元), 所以,油田的最佳经营时间为 64)1(3-q 年,经营终止时获得的总利润为4256)1(4--q 百万元.(7)有一弹簧,用5N 的力可以把它拉长0. 01m ,求把它拉长0. 1m ,力所作的功; 解 已知 kx F =, 5)01.0(=F , 所以 k 01.05=, 即 500=k , x F 500=, 所以 W =0.10500d x x ⎰=2501.002x =2.5(J )所以,力所做的功为2.5(J ).(8)求心形线)cos 1(θ+=a r (a 为常数)的全长. 解一 将极坐标转换为直角坐标,有{cos (1cos )cos ,sin (1cos )sin ,x r a y r a θθθθθθ==+==+ 于是 d [(sin )cos (1cos )(sin )]d x a a θθθθθ=-++-=[(sin sin 2)]d a θθθ-+,d [(sin )sin (1cos )cos ]d y a a θθθθθ=-++=[(cos cos 2)]d a θθθ+,弧长微元 d sθθθθ=2cosd 2a θ,所以,心形线的全长 s=θ=π08cos d 22a θθ⎰=π08sin2a θ=8a . 解二 将极坐标转换为直角坐标,有{cos (1cos )cos ,sin (1cos )sin ,x r a y r a θθθθθθ==+==+则 d d d cos d sin d ,d d d sin d cos d ,x x x r r r r y y y r r r r θθθθθθθθθθ∂∂⎧=+=-⎪∂∂⎨∂∂⎪=+=+∂∂⎩弧长微元d sθ, 心形线的全长s =02⎰θ =2π02cos d 2a θθ⎰=π08sin2a θ=8a ,所以,心形线的全长为8a .。