1.图像处理与视频处理基础知识解析
多媒体技术基础知识

多媒体技术基础知识多媒体技术是指将多种媒体元素(如文字、图片、音频、视频等),通过计算机和其他电子设备进行处理、传输和展示的技术手段。
它已经成为现代信息社会中不可或缺的一部分,广泛应用于娱乐、教育、广告、医疗等各个领域。
多媒体技术的基础知识包括以下几个方面:1. 图像处理:图像处理是多媒体技术中的重要部分,它涉及到对图像进行获取、编码、存储、传输和显示等一系列操作。
常用的图像处理技术有图像压缩、图像增强、图像分割等。
2. 视频处理:视频处理是多媒体技术中的另一个重要方面,它涉及到对连续的图像序列进行处理。
视频处理的主要技术包括视频压缩、视频编码、视频解码等,以实现对视频的高效存储和传输。
3. 音频处理:音频处理是多媒体技术中的另一个重要方面,它涉及到对声音信号的获取、编码、存储和传输等处理。
音频处理的主要技术包括音频压缩、音频解码、音频增强等。
4. 数据压缩:数据压缩是多媒体技术中的核心技术之一,它通过对多媒体数据进行编码压缩,以减少数据的存储空间和传输带宽。
常用的数据压缩算法有JPEG、MPEG、MP3等。
5. 数据传输:多媒体技术中的数据传输是指将多媒体数据从一个地方传输到另一个地方。
常用的数据传输技术有有线传输和无线传输两种方式,其中无线传输技术包括蓝牙、WiFi和4G 等。
6. 用户界面设计:用户界面设计是多媒体技术中非常重要的一部分,它涉及到设计和实现用户与多媒体应用之间的交互界面。
好的用户界面设计可以提高用户的体验和使用效率。
7. 数据存储:多媒体技术生成的数据量庞大,因此需要一种高效的数据存储方式。
常用的数据存储技术有硬盘、固态硬盘和云存储等。
综上所述,多媒体技术的基础知识包括图像处理、视频处理、音频处理、数据压缩、数据传输、用户界面设计和数据存储等方面。
了解这些基础知识可以帮助我们更好地理解和应用多媒体技术,推动多媒体技术在各个领域的发展和应用。
多媒体技术的应用越来越广泛,不仅在娱乐领域中如电子游戏、电影和音乐中变得更加丰富和真实,还在教育、医疗和企业领域中发挥着重要的作用。
如何使用电脑进行图像和视频处理

如何使用电脑进行图像和视频处理随着科技的不断进步和电脑技术的日新月异,图像和视频处理已经成为了我们日常生活中不可或缺的一部分。
无论是在个人生活中,还是在商业领域中,图像和视频处理都扮演着重要的角色。
本文将介绍如何使用电脑进行图像和视频处理,帮助读者更好地利用电脑技术来处理和编辑自己的图像和视频作品。
一、图像处理1.选择合适的图像处理软件在进行图像处理之前,我们首先需要选择一款合适的图像处理软件。
市面上有许多优秀的图像处理软件,如Adobe Photoshop、GIMP、CorelDRAW等。
根据个人需求和使用习惯,选择一款适合自己的软件进行学习和使用。
2.了解基本的图像处理操作在使用图像处理软件之前,我们需要了解一些基本的图像处理操作。
例如,调整亮度、对比度、饱和度,修复图像中的瑕疵,裁剪和旋转图像等。
这些基本的操作是进行图像处理的基础,掌握了这些操作,我们就能够对图像进行简单的修饰和调整。
3.学习高级的图像处理技巧除了基本的图像处理操作之外,我们还可以学习一些高级的图像处理技巧,以提升图像的质量和效果。
例如,学习如何使用图层、滤镜和蒙版来创建特殊效果,学习如何进行图像合成和修饰等。
这些高级的技巧可以让我们的图像处理更加专业和独特。
二、视频处理1.选择合适的视频编辑软件与图像处理类似,视频处理也需要选择一款合适的视频编辑软件。
市面上有许多优秀的视频编辑软件,如Adobe Premiere Pro、Final Cut Pro、Sony Vegas等。
根据个人需求和使用习惯,选择一款适合自己的软件进行学习和使用。
2.了解基本的视频编辑操作在进行视频处理之前,我们需要了解一些基本的视频编辑操作。
例如,剪辑视频片段、调整视频的亮度、对比度和色彩,添加过渡效果和字幕等。
这些基本的操作是进行视频处理的基础,掌握了这些操作,我们就能够对视频进行简单的编辑和调整。
3.学习高级的视频处理技巧除了基本的视频编辑操作之外,我们还可以学习一些高级的视频处理技巧,以提升视频的质量和效果。
1.图像处理与视频处理基础知识

End!
• R. Duda, P. Hart, D. Stork, 李宏东译,模式分类 (第二版),机械工业出版社,2003. • Sergios Theodoridis著,李晶皎,朱志良译,模 式识别(第二版),电子工业出版社,2006 • David A Forsyth.Jean Ponce.林学闫.王宏 计算 机视觉-一种现代方法 ,电子工业出版社,2004 • Wesley E.Snyder, 林学闫译,机器视觉教程 , 机械工业出版社 ,2005 • 孙君顶,图像低层特征提取与检索技术,电子工 业出版社,2009
(9) 计算机视觉
计算机视觉是研究如何使计算机 “看” 的科学,即用计算机实现人的视觉功能。 研究目标是使计算机具有通过二维图像感 知三维环境信息的能力。因此,不仅需要能 感知三维环境中物体的几何信息(形状、位 置、姿态、运动等),而且能对他们进行描 述、存储、识别和理解。 与人类视觉不同:它借助于几何、物理和 学习技术来构造模型,从而用统计的方法来 处理数据。
图像处理与视频处理基础
龚声蓉 shrgong@
概要
1.相关概念 2.数字图像处理与应用 3.图像分析与理解 4.计算机视觉与机器视觉 5.数字视频处理
• 第一部分:相关概念
1.基本概念
(1) 图像:对客观对象的一种相似的、生动的描 述或写真。或者说图像是客观对象的一种表示。 图像分类:
几种常见生物特征识别技术
主要参考资料
• 龚声蓉,数字图像处理与分析,清华大学出版社,2006 • Yao Wang,Ya-Qin Zhang,视频处理与通信,电子工业出 版社,2003 • 黎洪松,数字视频处理,北京邮电大学出版社,2006 • 高隽,图像理解理论与方法,科学出版社,2009 • R.C.冈萨雷斯,阮秋琦译,数字图像处理(第二版),电 子工业出版社,2009 • 王永明,图像局部不变性特征与描述,国防工业出版社, 2010
计算机视觉基础知识

计算机视觉基础知识计算机视觉是一门研究如何使计算机“看”和“理解”图像或视频的学科。
它是人工智能领域的重要分支之一,涉及图像处理、模式识别、机器学习等多个领域。
计算机视觉的目标是使计算机能够从图像或视频中提取有用的信息,并进行理解和推理。
1. 图像的表示与处理在计算机视觉中,图像通常被表示为一个数字矩阵,每个元素表示图像的一个像素点。
常用的图像处理操作包括图像平滑、边缘检测、图像增强等,这些操作可以帮助我们提取图像的特征,方便后续的分析和识别。
2. 特征提取与描述特征提取是计算机视觉中的关键步骤,它能够从图像中提取出一些有用的特征,用于图像分类、目标检测等任务。
常用的特征提取方法包括SIFT、HOG等,这些方法可以提取出图像中的纹理、边缘等特征。
3. 目标检测与识别目标检测是计算机视觉中的一个重要任务,它能够在图像或视频中找到特定的目标,并给出其位置和类别信息。
目标识别则是在已知目标类别的情况下,将其在图像中进行识别。
常用的目标检测与识别算法包括Haar特征、卷积神经网络等。
4. 图像分割与语义分析图像分割是将图像划分成若干个不同的区域,每个区域具有一定的语义信息。
图像分割可以用于目标定位、图像编辑等任务。
语义分析则是对图像进行语义理解,即理解图像中物体的种类、关系等。
图像分割与语义分析是计算机视觉中的热门研究方向。
5. 三维重建与立体视觉三维重建是根据多个图像或视频帧恢复出三维场景的几何结构和纹理信息。
立体视觉则是通过计算机模拟人眼的双眼视觉,实现从多个视角获取的图像中恢复出三维场景的深度信息。
三维重建与立体视觉在虚拟现实、增强现实等领域有广泛的应用。
6. 人脸识别与表情分析人脸识别是计算机视觉中的一个重要应用,它可以通过分析人脸的特征,实现对人脸的自动识别。
表情分析则是对人脸表情进行分析与理解,可以用于情感识别、人机交互等领域。
7. 视频分析与动作识别视频分析是对视频序列进行分析与理解,常见的任务包括视频目标跟踪、行为识别等。
计算机视觉基础实现像与视频的处理与分析

计算机视觉基础实现像与视频的处理与分析计算机视觉基础实现图像与视频的处理与分析随着科技的不断发展,计算机视觉作为人工智能技术的重要组成部分,在各个领域中扮演着越来越重要的角色。
在计算机视觉领域,实现图像与视频的处理与分析是一个关键的研究方向。
本文将介绍计算机视觉基础技术,并探讨如何实现图像与视频的处理与分析。
一、计算机视觉基础技术1. 图像处理技术图像处理技术是计算机视觉的基础,旨在改善或增强图像的质量或提取其中的有用信息。
常见的图像处理技术包括图像去噪、图像增强、图像分割和图像融合等。
通过这些技术,可以使图像更加清晰、明亮,并提取出感兴趣的目标。
2. 特征提取与描述特征提取与描述是计算机视觉中的关键步骤,用于从图像或视频中提取表示目标的特征。
常见的特征包括颜色、纹理、形状和运动等。
通过提取特征,可以对目标进行识别、分类或跟踪等操作。
3. 目标检测与识别目标检测与识别是计算机视觉中的重要任务,旨在识别或检测图像或视频中的目标。
常见的目标检测与识别方法包括基于模板匹配的方法、基于机器学习的方法和基于深度学习的方法。
这些方法可以实现对目标的自动检测和识别,广泛应用于人脸识别、车辆检测等领域。
二、图像处理与分析1. 图像的预处理图像的预处理是图像处理的第一步,旨在对原始图像进行一系列的处理,以减少图像中的噪声并增强图像中感兴趣的信息。
常见的图像预处理技术包括图像去噪、图像平滑和边缘检测等。
通过预处理,可以为后续的处理和分析提供更好的图像输入。
2. 图像分割与特征提取图像分割是将图像划分为多个区域或对象的过程,旨在将感兴趣的目标从背景中分离出来。
常见的图像分割方法包括阈值分割、边缘检测和区域生长等。
在图像分割的基础上,可以进一步提取图像中的特征,如区域的纹理、颜色和形状等。
3. 目标检测与识别基于图像处理和特征提取的结果,可以进行目标的检测与识别。
目标检测与识别方法包括传统的机器学习方法和基于深度学习的方法。
Matlab图像处理与视频处理联动实现

Matlab图像处理与视频处理联动实现在计算机视觉领域,图像处理和视频处理是两个重要的研究方向。
而Matlab作为一种强大的科学计算软件具备了丰富的图像处理和视频处理工具包,可以实现对图像和视频的处理、分析和算法实现。
本文将探讨如何利用Matlab实现图像处理与视频处理的联动,展示其在实际应用中的价值与潜力。
一、图像处理与视频处理的基础知识在开始讨论Matlab的应用之前,我们需要了解一些图像处理和视频处理的基础知识。
图像处理是对静态图像进行数字化的处理和分析。
常见的图像处理操作包括滤波、边缘检测、图像增强等。
这些操作可以通过Matlab中的图像处理工具包实现。
视频处理则是对连续帧图像序列进行处理和分析。
视频处理的主要操作包括视频压缩、运动估计、目标跟踪等。
Matlab中的视频处理工具包提供了一系列函数和算法,用于处理和分析视频数据。
二、Matlab图像处理工具包的概述Matlab中的图像处理工具包提供了一系列函数和工具,用于处理和分析图像数据。
其中最重要的函数是imread和imwrite,分别用于读取和保存图像。
此外,还有imresize、imrotate、imadjust等函数,用于调整图像的尺寸、旋转和对比度等。
Matlab还提供了众多的滤波函数,如imfilter和medfilt2,用于对图像进行平滑和去噪处理。
边缘检测也是图像处理的重要任务,Matlab中的边缘检测函数包括edge、Canny和Sobel等。
图像分割是一项重要的图像处理任务,用于将图像分成若干个不同的区域。
Matlab中的图像分割工具包括区域增长、水平线检测、阈值分割等方法。
此外,Matlab还提供了各种图像增强的函数,如直方图均衡化、灰度变换、彩色空间转换等。
三、Matlab视频处理工具包的概述Matlab中的视频处理工具包提供了丰富的函数和工具,用于处理和分析视频数据。
其中最重要的函数是VideoReader和VideoWriter,用于读取和保存视频。
图像视频处理技术的基础原理和应用案例
图像视频处理技术的基础原理和应用案例第一章:图像/视频处理技术概述图像/视频处理技术是一种以数字图像/视频为原材料,对图像/视频进行各种操作并提取出有价值信息的技术,广泛应用于安防、医疗、娱乐等领域。
图像/视频处理技术主要由图像采集、图像预处理、特征提取、分类识别等环节构成。
其中,图像采集是将被处理的图像从外部输入到CPU中;图像预处理是对原始图像进行预处理,包括图像增强、噪声滤波等操作;特征提取则是从图像中提取出有意义的特征信息,该操作通常应用于模式识别中;分类识别则是根据提取出的特征信息进行分类识别。
第二章:图像/视频处理技术的基础原理2.1 科学数字图像处理科学数字图像处理是指利用计算机对图像进行处理,使用数字技术来控制影像的可见效果和数字信息的提取。
图像数字化是对图像进行采样,使其转换为数字信号的过程,数字录制及数字处理过程中的主要差异则在于单元的广度及数字量化方法。
数字图像处理的基本步骤包括预处理、特征提取、平滑、聚类、模型的建立与选择等。
2.2 图像压缩图像压缩是通过图像编码及控制数据大小、转移时间,从而获得良好的视觉效果的一种技术。
图像压缩分为有损压缩和无损压缩两类。
无损压缩是指图像被压缩后,再解压缩回来时特征依然保留;有损压缩则是指图像压缩后不能够将所有信息完全还原,从而存在失真现象。
2.3 图像匹配图像匹配是指将两幅图像进行对齐,在计算机视觉领域的应用非常广泛。
常用方法是在图像上提取出一些特征点,对比两幅图像的特征值,从而得到匹配结果。
2.4 色彩空间转换将一种色彩空间转换成另一种色彩空间,是数字图像处理中的重要环节。
常见的色彩空间有RGB、CMYK、HSV等,其中RGB是基本色彩空间,CMYK用于印刷领域,HSV用于图像分析和处理。
第三章:图像/视频处理技术的应用案例3.1 安全监控领域在安全监控领域,人脸识别技术经常应用于公共场所人员管理,通过对视频监控摄像头采集到的图像进行处理,实现对人员的识别。
数字图像处理数字图像与视频处理技术.
通过本章的学习,要求掌握多媒体技术中有关 图像、视频数字化的基本概念、方法、技术与应用 等知识。
*
教学内容
1 基本概念 2 数字图像数据的获取与表示 3 图像的基本属性 4 图像处理软件Photoshop 应用举
例
5 视频的基本知识
9/ 12/ 2019
3
教学内容
6 视频的数字化 7 数字视频标准 8 视频信息的压缩编码 9 Windows 中的视频播放软件 10 数字视频的应用9/Fra bibliotek12/ 2019
11
3.2 数字图像数据的获取与表示
3.2.2 数字图像的表示
9/ 12/ 2019
图3.2 彩 色 图 像 的 表 示
红色 分量
绿色 分量
蓝色 分量
12
3.3 图像的基本属性
3.3.1 分辨率
分辨率有两种:显示分辨率和图像分辨率。 1. 显示分辨率 它是指显示屏上能够显示出的像素数目。例如,显 示分辨率为840×480表示显示屏分成480行,每行显 示840个像素,整个显示屏就含有307200个显像点。 屏幕能够显示的像素越多,说明显示设备的分辨率 越高,显示的图像质量也就越高。
9/ 12/ 2019
20
3.4 图像处理软件Photoshop 应用举例
3.4.1 图像处理软件Photoshop简介
2、 PhotoShop运行在Windows图形操作环境中,可支 持TIF、TGA、PCX、GIF、BMP、PSD、JPEG等各种
流行的图像文件格式。 3、 PhotoShop能方便地与如文字处理,图形应用,桌 面印刷等软件或程序交换图像数据。 4、PhotoShop支持的图像类型除常见的黑白、灰度、 索引16色、索引256色和RGB真彩色图像外,还支持 CMYK、HSB以及HSV模式的彩色图像。
信息技术基础教案掌握图像处理与动画制作的方法
信息技术基础教案掌握图像处理与动画制作的方法文档内容:信息技术基础教案- 掌握图像处理与动画制作的方法随着互联网技术的不断发展与普及,图像处理与动画制作已经成为了当今信息技术领域中不可或缺的一部分。
现在我们将为大家详细介绍图像处理和动画制作的基础知识和方法。
一、图像处理基础图像处理,简单来说,就是把一张图像进行一定的加工处理,让它变得更加美观、有层次感、具有视觉冲击力。
在这里,我们将介绍如何进行基础的图像处理。
1. 调整图像亮度和对比度在图像处理中,调整图像亮度和对比度是非常基础的操作。
可以通过调整图像中黑白颜色的比例,改变图像的亮度和对比度。
2. 图像裁剪与缩放如果一张图片大小不合适,我们可以对它进行裁剪和缩放处理。
裁剪能够删除图片中的不必要的部分,缩放可以将图片按比例变得更小或更大。
3. 图像滤镜图像滤镜是一种可以改变图片整体色彩、调整饱和度、对比度、色调和色阶的图片处理技术。
滤镜可以给图片带来不同的风格和效果,例如冷色、暖色、时尚、古典等。
4. 图像修复有时候图片中会出现一些错误的像素,这种情况下我们需要进行图像修复。
比如删除一些杂乱的线条、修复图片上的痕迹、修复图片上的污点等。
二、动画制作基础动画制作是一项非常有趣并且极富创造性的工作。
在这里,我们将介绍动画制作的基础知识和方法。
1. 动画绘制动画绘制一般需要使用专业的动画绘制软件,例如 Adobe Flash、Toon Boom等。
在绘制动画时,需要考虑到画面的细节和色彩的变化,以及动画中角色的身体动作、表情、声音立体音效等。
2. 动画的准备和计划在动画制作之前需要进行充分的准备和计划。
首先要确定动画的观众对象和市场定位,然后根据目标观众的喜好和背景,制定合适的题材和动画风格。
同时还需要制定动画的故事情节、角色设计、角色动作、背景设计等。
3. 动画技巧动画技巧是动画制作中至关重要的一环。
除了基本动画绘制技巧以外,还需要掌握动画中声音、背景和色彩的表现技巧。
专升本计算机试题解析计算机视觉与像处理
专升本计算机试题解析计算机视觉与像处理计算机视觉与图像处理是计算机科学与技术领域中的一个重要研究方向,它关注如何使计算机模拟人类视觉系统来实现对图像和视频的理解、分析和处理。
在专升本计算机试题中,涉及到计算机视觉与图像处理的知识点较多,下面将对一些常见的试题进行解析,帮助考生更好地掌握相关的知识。
一、图像处理基础知识解析1. 图像分辨率图像分辨率是指图像中包含的像素数量,常用单位是像素/英寸。
高分辨率图像具有更多的像素信息,能够呈现更多细节,但文件体积也会更大。
低分辨率图像则相反。
在图像处理中,需要根据具体需求选择适当的分辨率。
2. 灰度图像与彩色图像灰度图像是一种只包含灰度值的图像,每个像素的灰度值表示图像亮度的特征。
彩色图像则包含了红、绿、蓝三个颜色通道的信息,可以呈现出丰富的色彩。
3. 直方图均衡化直方图均衡化是一种常用的图像增强方法,可以通过调整图像的灰度分布来提升图像的视觉质量。
它通过将图像中灰度值的频率分布变得更加均匀来增强图像对比度。
二、图像处理算法解析1. 图像滤波算法图像滤波是图像处理中常用的操作,用于改变图像的特征或进行图像修复。
常见的图像滤波算法包括线性滤波、非线性滤波等。
线性滤波通过卷积操作改变图像的灰度值,而非线性滤波则根据像素点周围的邻域信息进行像素值的修改。
2. 图像边缘检测算法图像边缘检测是计算机视觉中的重要任务,用于寻找图像中的边缘信息。
常用的边缘检测算法包括Sobel算子、Canny算子等。
这些算法通过计算图像中像素点的梯度值、方向等信息来确定边缘位置。
3. 图像分割算法图像分割是将图像划分为若干具有相似特征的区域的过程。
常用的图像分割算法包括基于阈值的分割、区域生长法、边缘检测法等。
这些算法可以根据图像中像素点的灰度值、颜色等信息进行区域划分。
三、计算机视觉应用解析1. 目标检测与识别目标检测与识别是计算机视觉的重要应用之一,它可以用于检测图像或视频中的特定目标并进行识别。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
输入场景图
花
人
输出景图
• 场景描述与理解已备受研究者关注,但仍有许多 亟待解决的问题:
• 如何利用场景信息指导目标的选择注意; • 如何构建场景的先验信息来指导场景中的目标识
别; • 如何将目标识别的结果构建场景描述,形成可进
一步进行场景中目标识别与场景理解的先验信息 等。
(9) 计算机视觉
• 计算机视觉的研究目的有两个: • 一是用计算机部分实现人类视觉的功能; • 二是理解人类视觉机理。
• 此二方面使计算机视觉的研究既带有基 础性,又有很强的应用特征和工程性质。
• 计算机视觉中需要解决两大任务:
• 一是3D场景在2D图像中的表达。原始图像 作为一种2D表达,可以提供各种物体的轮 廓信息,但只利用轮廓等2D表达的场景和 物体不能保证得到唯一的解释,从而引起 错觉。
➢机器视觉与计算机视觉并没有很清晰 的界限,而是紧密联系在一起的,他 们有着相同的理论,只是在应用中根 据具体实际应用目标的不同而不同。
2.主要应用
(1) 遥感 • 地质、矿藏勘探; • 地形、地图、国土普查; • 森林资源探查、分类、防火; • 水利资源探查,洪水泛滥监测、预报; • 农业方面,如谷物估产、病虫害调查; • 然灾害、环境污染的监测;
➢可见光谱图像、多波段图像 ➢运动图像、静止图像 ➢模拟图像、数字图像 ➢彩色图像、灰度图像
(2)物理图像与数学图像
物理图像:是物质或能量的实际分布。如 光学图像,温度、压力、高度及密度的分 布图。 数学图像:由连续函数和离散函数组成的 图像。
(3)图形与图像
图形:侧重于根据给定的物体描述模 型、光照及想象中的摄像机的成像几 何,生成一幅图像的过程。
➢计算机视觉是研究如何使计算机 “看” 的科学,即用计算机实现人的视觉功能。 ➢研究目标是使计算机具有通过二维图像感 知三维环境信息的能力。因此,不仅需要能 感知三维环境中物体的几何信息(形状、位 置、姿态、运动等),而且能对他们进行描 述、存储、识别和理解。 ➢与人类视觉不同:它借助于几何、物理和 学习技术来构造模型,从而用统计的方法来 处理数据。
• 二是如何将2D图像转化为3D场景的描述。
• 视觉信息的3个阶段:低层视觉;中层视觉 和高层视觉。
• 低层视觉:主要任务在于图像传感与预处 理,即清楚地表示原始2D图像中的重要信 息,如角点、边界、线段等。
• 中层视觉:由输入图像和低层视觉输出初 始的简图得到2.5D简图。如表面法向方向、 大致深度及不连续的轮廓等。进一步可分 为运动、立体、阴影、轮廓和纹理处理等。
(4)数字图像
经过采样和量化后形成的以数字形式 描述的图像。
(5)图像处理
对图像经过一系列的操作以达到预期目的的技术称为图 像处理。可分为模拟图像处理和数字图像处理。
➢ 模拟图像处理:利用光学、照相和电子方法对模拟图像的处 理成为模拟图像处理。许多军用、宇航的处理仍利用模拟处 理。如光学傅立叶变换。
• 气象、天气预报图的合成,云图分析; • 天文、太空星体的探测及分析; • 交通、空中管理、铁路选路 • 多光谱卫星图像分析。
(2) 军事、公安领域的应用 军事侦察、定位、引导、指挥等;边境口岸监控;
指纹识别;人脸识别;导弹末制导;案件侦破。
(3)医学方面的应用 • 医学显微图像处理; • 血球计数与染色体分类等; • 癌细胞识别; • 心血管数字剪影及其它剪影技术; • 内脏大小、形状及异常检测; • 心脏活动的动态分析; • 生物进化的图像分析。
(8) 图像理解
➢ 在图像分析的基础上,进一步研究图像中各目标 的性质和它们之间的相互联系,并得出对图像内 容的理解以及对原来客观场景的解释。
➢ 它以图像为对象,知识为核心,研究图像中有什 么目标、目标之间的相互关系、图像是什么场景 以及如何应用场景的一门科学。
➢ 图像理解输入的是数据,输入的是知识。
(7)图像识别
图像识别是模式识别的具体应用。
可以看作是一个标记过程,即利用识别算法来 辨别景物中已分割好的各个物体,给这些物体赋 予特定的标记。如字符识别、人脸识别等。
图像识别方法:主要分为统计方法和结构方法。
统计方法的基础是决策函数,利用它对模式向量进 行分类识别;
结构方法的核心是将物体分解成了基元,不同的物 体结构有不同的基元串,通过对未知物体利用给定的 模式基元得到字符串,再根据字符串判断它的属类。
➢ 数字图像处理:利用计算机对数字图像进行系列操作,从而 获得某种预期的结果一种技术。是指将一幅图像变为另一幅 经过修改的图像,因此,是一个由图像到图像的过程。
g(x,y)=T[f(x,y)]
(6) 图像分析
➢主要是对图像中感兴趣的目标进行测量 和检测,从而建立对图像的描述。
➢是一个从图像到数值或符号的过程,即 将一幅图像转化为一种非图像的表示, 如一个测量的数据集等。
图像处理与视频处理基础
龚声蓉 shrgong@
概要
1.相关概念 2.数字图像处理与应用 3.图像分析与理解 4.计算机视觉与机器视觉 5.数字视频处理
• 第一部分:相关概念
1.基本概念
(1) 图像:对客观对象的一种相似的、生动的描 述或写真。或者说图像是客观对象的一种表示。 图像分类:
• 高层视觉:由输入图像、初始的简图及 2.5D简图获得物体的3D表示,即获得物体 的几何结构和空间位置关系。
• 计算机视觉包含如下一些分支:画面重建, 事件监测,目标跟踪,目标识别,图像恢 复等。
(10)机器视觉
➢机器视觉是建立在计算机视觉理论基 础上,偏重于计算机视觉的工程化, 强调的是实际应用。
➢ 它将中低层的数据处理分析(目标识别)与高层 的知识表达推理(场景描述与理解)有效结合, 实现数据分析形成的知识推理,知识反馈用以指 导数据获取与分析。
• 目标识别是为了对场景进行更好的解释,侧重对 局部区域的理解。
• 场景描述与理解为目标识别提供先验信息,侧重 对场景的整体分析。
树 图像理解
建筑
(a) 原始细胞图像
(b)增强后的细胞图像
(4)工业中的应用 • 零件、产品的无损检测,焊缝及内部缺陷
检测;