北师大版数学高二-选修4-5 第二节 不等式证明的基本方法例题

合集下载

2014·高三复习数学(理)2选修4-5 第2讲 证明不等式的基本方法

2014·高三复习数学(理)2选修4-5 第2讲 证明不等式的基本方法

b2)≥0,即( a)3+b3≥ab+ ab2.
选修4-5 第2讲
第22页
此题用的是作差比较法,其步骤:作差、变形、判断差 的符号、结论.其中判断差的符号为目的,变形是关键.常用的 变形技巧有因式分解、配方、拆项、拼项等方法.
选修4-5
第2讲
第23页
[变式探究] 求证:a2+b2≥ab+a+b-1.
第2讲
第16页
1. ≥ a=b=c 不小于 不小于 ≥ a1=a2=„=an 3 1 填一填:(1)3 (2)3 4
选修4-5
第2讲
第17页
2.填一填:(1)
2 2 2
1 21
2 2
提示:∵1=x+2y+
2
1 4z≤ x +y +z · 1+4+16 ,∴x +y +z ≥ 21 ,即x2+y2+z2 1 的最小值为21. (2)[-5 y)2, ∴-5 2≤2x-y≤5 2. 2 ,5 2] 提示:∵(x2+y2)[22+(-1)2]≥(2x-
选修4-5
第2讲
第34页
2 柯西不等式的一般结构为(a1 +a 2+„+a2)(b 2+b 2+„ 2 n 1 2
+b2)≥(a1b1+a2b2+„+anbn)2,在使用柯西不等式时,关键 n 是将已知条件通过配凑,转化为符合柯西不等式条件的式 子,为方便使用柯西不等式,有时常将 a 变形为 1×a 的形 式.
据集合相等确定m的值;(2)结合已知条件构造两个适当的数
组,变形为柯西不等式的形式.
选修4-5
第2讲
第33页
[解]
(1)因为f(x+2)=m-|x|,f(x+2)≥0等价于|x|≤m,
由|x|≤m有解,得m≥0,且其解集为{x|-m≤x≤m}. 又f(x+2)≥0的解集为[-1,1],故m=1. 1 1 1 + (2)由(1)知a+2b+3c=1,又a,b,c∈R ,由柯西不等式 1 1 1 1 1 得a+2b+3c=(a+2b+3c)( a + 2b + 3c )≥( a· + 2b· + a 2b 1 2 3c· ) =9.所以不等式得证. 3c

新北师大版高中数学高中数学选修4-5第二章《重要的不等式》测试题(含答案解析)

新北师大版高中数学高中数学选修4-5第二章《重要的不等式》测试题(含答案解析)

一、选择题1.已知a 、b R ∈,224a b +=,求32a b +的最大值为( )A.B.C. D .42.已知数列{}n a 的前n 项和2n S n =,数列{}n b 满足()1log 01n n a na b a a +=<<,n T 是数列{}n b 的前n 项和,若11log 2n a n M a +=,则n T 与n M 的大小关系是( ) A .n n T M ≥B .n n T M >C .n n T M <D .n n T M ≤3.若0x y >>,{}0,1,2,,2020n ∈⋅⋅⋅,则使得1ny nx x y +>恒成立的n 有( )个. A .1B .2C .3D .20214.已知222121n a a a +++= ,222121n x x x +++= ,则1122n n a x a x a x +++ 的最大值是( ) A .1B .2C .3D .45.已知(),0A a ,()0,C c ,2AC =,1BC =,0AC BC ⋅=,O 为坐标原点,则OB 的最大值是( )A1 BC1D6.已知a ,b ,0c >,且1a b c ++=A .3B.C .18D .97.若函数()f x 在其图象上存在不同的两点()11,A x y ,()22,B x y ,其坐标满足条件:1212|]x x y y +-0,则称()f x 为“柯西函数”,则下列函数:①1()f x x x=+(0)x >:②()ln (0)f x x x e =<<:③()cos f x x =:④2()4f x x =-. 其中为“柯西函数”的个数为( ) A .1B .2C .3D .48.已知2x+3y+4z=10,则x 2+y 2+z 2取到最小值时的x,y,z 的值为( ) A .5105,,396B .203040,,292929C .111,,23D .11,499.y=x 的最大值是 ( ) A .1B .2CD .410.若实数a ,b ,c 均大于0,且a +b +c =3,则的最小值为( ) A .3B .1C.3D11.n 个正数的和与这n 个正数的倒数和的乘积的最小值是( ) A .1B .nC .n 2D .1n12.设a b c d ,,,为正数,1a b c d +++=,则2222a b c d +++的最小值为( ) A .12B .14C .1D .34二、填空题13.已知,,,,,(0,)x y z R αβγπ+∈∈,且222346,2x y z αβγπ++=++=,则sin sin sin xy xz yz αβγ++的最大值为________.14.已知,,x y z 是正数,且1231x y z ++=,则23y zx ++的最小值是__________. 15.设x ,y ,z 均为实数,则22222x y z x y z +-++的最大值是________.16.已知实数,,,x y a b 满足:221a b +≤,2224x x y x y ≤⎧⎪+≥⎨⎪+≤⎩,则ax by +的最大值为__________ .17.函数3141y x x =++-的最大值为______________; 18.在等式19161()()()++=的分母上的三个括号中各填入一个正整数,使得该等式成立,则所填三个正整数的和的最小值是_________. 19.已知、、是三角形三个角的弧度数,则的最小值____.20.已知,(0,)x y ∈+∞3x y x y <+恒成立,利用柯西不等式可求得实数k 的取值范围是________.三、解答题21.已知f (n )=1+312+313+314++31n ,()g n =32-212n,n ∈N *. (1)当n =1,2,3时,试比较f (n )与g(n )的大小关系; (2)猜想f (n )与g(n )的大小关系,并给出证明. 22.已知,x y R ∈,且1x y +=. (1)求证:22334x y +≥; (2)当0,0x y >>时,不等式221111|2||1|a a x y ⎛⎫⎛⎫--≥-++ ⎪ ⎪⎝⎭⎝⎭恒成立,求a 的取值范围.23.已知函数3()|3|(0)f x x a x a a =-++>.(1)当1a =时,求不等式()6f x <的解集;(2)若()f x 的最小值为4,且1(0,0)am m nn +=>>≤24.已知函数()12f x x x =++-,若2a b c ++=(),,a b c R ∈,且不等式()222a b c f x ≥++恒成立,求实数x 的取值范围.25.已知,,a b c ∈R ,且3a b c ++=,22226a b c ++=,求实数a 的取值范围.26.设函数()()222,f x x a x b a b R =-++∈.(1)若1a =,0b =,求()2f x ≥的解集; (2)若()f x 的最小值为8,求2+a b 的最大值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】利用柯西不等式可求得32a b +的最大值. 【详解】224a b +=,由柯西不等式可得()()()222223232a b a b ++≥+,即()23213452a b +≤⨯=,32a b ∴-+≤当且仅当a =b =时,32a b +取得最大值.因此,32a b +的最大值为 故选:B. 【点睛】本题考查利用柯西不等式求最值,解答的关键在于对代数式进行合理配凑,考查计算能力,属于基础题.2.C解析:C 【分析】先求出2462log ()13521n a nT n =⨯⨯⨯-,log n a M =,再利用数学归纳法证明*1321)242n n N n-⨯⨯⋯⨯<∈即得解.【详解】因为2n S n =,所以11=1,21(2)n n n a a S S n n -=-=-≥适合n=1,所以=21n a n -.所以2log 21n a nb n =-, 所以24622462log log log log log ()1352113521n aa a a a n nT n n =+++=⨯⨯⨯--111log =log (21)log 22n a n a a M a n +=+=下面利用数学归纳法证明不等式*1321)242n n N n -⨯⨯⋯⨯<∈ (1)当1n =时,左边12=,右边=<右边,不等式成立, (2)22414n n -<,即2(21)(21)(2)n n n +-<.即212221n nn n -<+,∴,∴<, 假设当n k =时,原式成立,即1121232k k-⨯⨯⋯⨯<那么当1n k =+时,即112121212322(1)2(1)1k k k k k k -++⨯⨯⋯⨯⨯<=<++即1n k =+时结论成立.根据(1)和(2)可知不等式对任意正整数n 都成立.所以246213521nn ⨯⨯⨯>-因为0<a <1,所以2462log ()log 13521a a nn ⨯⨯⨯<- 所以n n T M <. 故选:C 【点睛】本题主要考查数列通项的求法,考查对数的运算和对数函数的性质,考查数学归纳法,意在考查学生对这些知识的理解掌握水平.3.B解析:B 【分析】根据题意,分情况讨论,1x y >≥和10x y >>>,0n =,1n =,2n ≥判断,得出结论. 【详解】如1x y >≥,1ny nx x y +>显然成立;当10x y >>>,0n =时,21ny nx x y +=>成立;当1n =时,由贝努力不等式(1)1r x rx +>+,1r >,1x >-, 取1r y =,y a x=, 则111(1)10y y x x x+=+>>,1y x y x x +>,得y x x x y >+, 同理xy y x y>+,故1ny nx x y +>成立;当2n ≥时,取12x =,14y =,代入检验1124211111()()()()1222224n nynxnx y +=+<+=+<,不成立,故选:B . 【点睛】本题考查恒成立问题,利用了贝努力不等式,考查运算求解能力,是中档题.4.A解析:A 【分析】利用柯西不等式求解. 【详解】()21122n n a x a x a x +++()()2222221212111nn aa a xx x ++++++=⨯= ,当且仅当12121nnx x x a a a ==== 时取等号. ∴1122n n a x a x a x +++ 的最大值是1故选:A 【点睛】本题主要考查柯西不等式的应用,还考查了转化化归的思想和运算求解的能力,属于基础题.5.C解析:C 【分析】设(),B x y ,利用两点间的距离公式可得221x y ax cy +=++,再利用柯西不等式进行放的最大值. 【详解】设(),B x y ,则224a c +=,()221x y c +-=,()222251x a y x y ax cy -+=⇒+=++11≤=+取等号条件:ay cx =;令OB d ==,则212d d≤+,得1d ≤.故选:C. 【点睛】本题考查两点间的距离公式,勾股定理、柯西不等式的应用,考查转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意不等式放缩时等号成立的条件.6.B解析:B【分析】先利用柯西不等式求得2的最大值,由此求得.【详解】 由柯西不等式得:()2222222111⎡⎤≤++++⎢⎥⎣⎦()33318a b c =⨯+++=⎡⎤⎣⎦≤13a b c ===时,等号成立,故选B.【点睛】本小题主要考查利用柯西不等式求最大值,属于基础题.7.B解析:B 【分析】由柯西不等式得对任意的实数1212,x x y y ,,都有1212x x y y +, 当且仅当1122=x y x y 时取等,此时12120000y y x x --=--即A,O,B 三点共线,结合“柯西函数”定义可知,f(x)是柯西函数⇔f(x)的图像上存在两点A 与B ,使得A,O,B 三点共线⇔过原点直线与f(x)有两个交点.再利用柯西函数的定义逐个分析推理得解. 【详解】由柯西不等式得对任意的实数1212,x x y y ,,都有1212x x y y +,当且仅当1122=x y x y 时取等,此时12120000y y x x --=--即A,O,B 三点共线,结合“柯西函数”定义可知,f(x)是柯西函数⇔f(x)的图像上存在两点A 与B ,使得A,O,B 三点共线⇔过原点直线与f(x)有两个交点. ①()()10f x x x x=+>,画出f(x)在x >0时,图像若f(x)与直线y=kx 有两个交点,则必有k≥2,此时,1x kx x +=,所以21)1,k x x -=∴=(x >0),此时仅有一个交点,所以()()10f x x x x=+>不是柯西函数; ②()()0f x lnx x e =<<,曲线()()0f x lnx x e =<<过原点的切线为xy e=,又(e,1)不是f(x)图像上的点,故f(x)图像上不存在两点A,B 与O 共线,所以函数()()0f x lnx x e =<<不是;③()f x cosx =;④()24f x x =-.显然都是柯西函数.故选B 【点睛】本题主要考查柯西不等式,考查学生对新概念的理解和应用,意在考查学生对这些知识的理解掌握水平和分析推理能力.8.B解析:B 【解析】 【分析】由题意结合柯西不等式成立的条件得到关于x ,y ,z 的方程,解方程即可求得x ,y ,z 的值. 【详解】由柯西不等式,得(x 2+y 2+z 2)(22+32+42)≥(2x+3y+4z )2=100, 则x 2+y 2+z 2≥100.29当且仅234x y z ==当时,取到最小值,所以联,23423410,x y zx y z ⎧==⎪⎨⎪++=⎩立可得x 203040,,.292929y z === 本题选择B 选项. 【点睛】本题主要考查柯西不等式求最值,柯西不等式等号成立的条件,方程的数学思想等知识,意在考查学生的转化能力和计算求解能力.9.C解析:C 【解析】 【分析】首先求得平方的最大值,然后确定y 的最大值即可. 【详解】函数有意义,则210x -≥,即11x -≤≤, 且2112y =+≤+=,则y =x当且仅当221xx =-,即2x =时等号成立. 本题选择C 选项. 【点睛】本题主要考查函数最值的求解,均值不等式的应用等知识,意在考查学生的转化能力和计算求解能力.10.D解析:D 【解析】()()()22222221111119,3ab c a b c a b c ++++≥⨯+⨯+⨯=∴++≥,1a b c ===时等号成立,故选D. 11.C解析:C 【解析】 由柯西不等式,得()1212111......n n x x x x x x ⎛⎫++++++⎪⎝⎭2...⎫≥()2211...1n =+++=,当且仅当12...n x x x ===时取等号,故选C. 12.B解析:B 【解析】试题分析:由柯西不等式()()()2222222221111a b c da b c d ++++++≥+++,因为1a b c d +++=,于是由上式得()222241a b c d +++≥,于是222214a b c d +++≥,当且仅当14a b c d ====时取等号,故选B .考点:柯西不等式.【名师点睛】一般形式的柯西不等式:设a 1,a 2,a 3,…,a n ,b 1,b 2,b 3,…,b n 是实数,则(a +a +…+a)·(b +b +…+b)≥(a 1b 1+a 2b 2+…+a n b n )2,当且仅当bi =0(i =1,2,…,n)或存在一个数k ,使得ai =kb i (i =1,2,…,n)时,等号成立.当遇到求最值问题中变量较多时,一般可联想用柯西不等式,可以很快得出结论,当变量只有两个或三个时,有时应用基本不等式也能容易得出结论.二、填空题13.【分析】如图所示:设则根据柯西不等式证明得到利用上面不等式得到得到答案【详解】如图所示:过作于设故当时根据柯西不等式:故当时等号成立即即即故当三点共线且时等号成立故答案为:【点睛】本题考查了柯西不等【分析】如图所示:设OA x =,OB y =,OC z =,AD a =,BD b =,OD h =,则sin sin sin 2ABC xy xz yz S αβγ∆++=,根据柯西不等式证明222()a b a b x y x y++≥+,得到()22222346a h b h z ++++=,利用上面不等式得到)()6ABC m z a b ∆≥++≥,得到答案.【详解】如图所示:过O 作⊥OD AB 于D ,设OA x =,OB y =,OC z =,AD a =,BD b =,OD h =,AOB α∠=,AOC β∠=,BOC γ∠=.故sin sin sin 2ABC xy xz yz S αβγ∆++=.当0x >,0y >时,根据柯西不等式:22222()a b ⎡⎤⎛⎫⎡⎤⎢⎥++≥+⎣⎦⎢⎥⎣⎦,故222()a b a b x y x y++≥+,当a b x y =时等号成立.222346x y z ++=,即()22222346a h b h z ++++=,即22224346a h b z +++=.即()())()222222611111111434443ABC h z a b a h b z h z a b ∆+++++=≥+≥++≥++,故2ABC S ∆≤OCD 三点共线,且3a b =,h z =时等号成立.【点睛】本题考查了柯西不等式求最值,将sin sin sin xy xz yz αβγ++表示成三角形面积是解题的关键.14.9【分析】首先根据题意利用代1法可得再借助柯西不等式即可得出结论【详解】是正数且当且仅当时取等号的最小值是9故答案为:9【点睛】本题主要考查利用柯西不等式求最小值的问题属于基础题解析:9 【分析】首先根据题意,利用代“1”法,可得1232323y z y z x x x y z ⎛⎫⎛⎫++=++++ ⎪ ⎪⎝⎭⎝⎭,再借助柯西不等式,即可得出结论. 【详解】,,x y z 是正数,且1231x y z++=, 1232323y z y z x x x y z ⎛⎫⎛⎫∴++=++++ ⎪ ⎪⎝⎭⎝⎭22323y z x y z x ≥ 2(111)=++ 9=,当且仅当3x =,6y =,9z =时取等号,23y zx ∴++的最小值是9. 故答案为:9. 【点睛】本题主要考查利用柯西不等式求最小值的问题,属于基础题.15.【分析】首先利用柯西不等式可以得到从而求得两边开放得到从而求得其最大值【详解】由柯西不等式知所以所以当且仅当时等号成立故答案为:【点睛】该题考查的是有关式子的最值问题涉及到的知识点有柯西不等式在解题解析:2 【分析】 首先利用柯西不等式可以得到2222222(2)[2(1)](2)x y z x y z ++++-≥+-,从而求得2222(2)1122x y z x y z +-≤++≤. 【详解】 由柯西不等式知2222222(2)[2(1)](2)x y z x y z ++++-≥+-, 所以2222(2)1122x y z x y z +-≤++,≤,当且仅当202x y z ==->时等号成立,故答案为:2. 【点睛】 该题考查的是有关式子的最值问题,涉及到的知识点有柯西不等式,在解题的过程中,注意对柯西不等式形式的配凑,属于较难题目.16.【解析】分析:根据线性规划先求出的范围再根据柯西不等式求解详解:画出不等式组表示的可行域如图阴影部分所示表示可行域内的点到原点的距离结合图形可得点A 到原点的距离最大由解得故∴由柯西不等式得当且仅当时【解析】的范围,再根据柯西不等式求解.详解:画出不等式组表示的可行域如图阴影部分所示.22x y +A 到原点的距离最大, 由224x x y =⎧⎨+=⎩,解得21x y =⎧⎨=⎩,故()2,1A , ∴225x y +≤ 由柯西不等式得2222225ax by a b x y x y +≤+++≤x y a b=时等号成立. ∴ax by +5点睛:在应用柯西不等式求最大值时,要注意等号成立的条件,柯西不等式在排列上规律明显,具有简洁、对称的美感,运用柯西不等式求解时,可按照“一看、二构造、三判断、四运用”的步骤求解.17.【解析】因为所以故函数的最大值为 解析:52【解析】 因为(()()2223141341150x x x x +-≤+++-=,所以52y ≤3141y x x =+-5218.64【解析】试题分析:设依次填入的三个数分别为则根据柯西不等式所以时最小值为64考点:柯西不等式解析:64【解析】试题分析:设依次填入的三个数分别为,,x y z ,则根据柯西不等式()()21916134x y z x y z ⎛⎫++++≥++ ⎪⎝⎭64=,所以8,24,32x y z ===时,最小值为64.考点:柯西不等式.19.【解析】试题分析:所以原式转化为根据基本不等式所以原式等号成立的条件是所以求原式的最小值转化为求的最小值令当时函数单调递减当函数单调递减所以当时函数取得最小值当时取得最小值最小值等于考点:1基本不等 解析:【解析】 试题分析:,所以,原式转化为,根据基本不等式,,所以原式,等号成立的条件是,所以求原式的最小值转化为求的最小值,,令,,,当时,,函数单调递减,当,,函数单调递减,所以当时,函数取得最小值,当时,,取得最小值,最小值等于. 考点:1.基本不等式;2.导数研究函数的极值与最值.20.【解析】试题分析:由柯西不等式得所以即考点:柯西不等式 解析:10k >【解析】 试题分析:由柯西不等式得22(3)(13)()x y x y ≤++,所以310x y x y ≤+10k >考点:柯西不等式三、解答题21.(1)答案见解析;(2)f (n )≤g(n ),证明见解析.【分析】(1)利用解析式计算、比较可得答案;(2)由(1)的结果猜想可得f (n )≤g(n ),再利用数学归纳法进行证明可得答案.【详解】(1)当n =1时,f (1)=1,g(1)=1,所以f (1)=g(1);当n =2时,f (2)=98,g(2)=118,所以f (2)<g(2); 当n =3时,f (3)=251216,g(3)=312216,所以f (3)<g(3).(2)由(1)猜想: f (n )≤g(n ),用数学归纳法证明.①当n =1,不等式显然成立.②假设当n =k (k ∈N *)时不等式成立,即1+312+313+314++31k ≤32-212k , 则当n =k +1时,f (k +1)=f (k )+31(1)k +≤32-212k +31(1)k +22233111122(1)2(1)2(1)k k k k =-+-++++, 因为212(1)k +-23112(1)k k ++=332(1)k k ++-212k =32312(1)k k k --+<0, 所以f (k +1)<32-212(1)k +=g(k +1). 由①②可知,对一切n ∈N *,都有f (n )≤g(n )成立.【点睛】关键点点睛:掌握数学归纳法原理是本题解题关键.22.(1)证明见解析;(2)[]4,5-.【分析】(1)由柯西不等式即可证明;(2)可先化简计算221111x y ⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭的最小值,再分2a ≥,1a 2-<<,1a ≤-三种情况讨论即可得到答案.【详解】(1)由柯西不等式得: 22222)11x x ⎡⎤⎛⎡⎤++≥⋅⎢⎥ ⎣⎦⎝⎢⎥⎣⎦, ()22243()13x y x y ∴+⨯≥+=, 当且仅当334x y ==时取等号, 22334x y ∴+≥; (2)由0,0x y >>,1x y +=, 得222211(1)(1)(1)(1)112111x x y y x y x y x y x y xy ⎛⎫+-+-++⎛⎫--=⋅=⋅=+ ⎪ ⎪⎝⎭⎝⎭ 114x y xy=+≥≥当且仅当12x y ==时等号成立, 要使得不等式221111|2||1|a a x y ⎛⎫⎛⎫--≥-++ ⎪⎪⎝⎭⎝⎭恒成立, 即可转化为|2||1|9a a -++≤, 当2a ≥时,219a -≤,可得25a ≤≤,当1a 2-<<时,39≤,可得1a 2-<<,当1a ≤-时,219a -+≤,可得41a -≤≤-,a ∴的取值范围为:[]45-,.【点睛】易错点睛:本题主要考查柯西不等式,均值不等式,绝对值不等式的综合应用. 柯西不等式以及均值不等式注意等号成立的条件.23.(1)()4,2-;(2)证明见解析.【分析】(1)当1a =时,由()6f x <,得|1||3|6x x -++<.利用零点分段法去绝对值,分三段解不等式即可求解;(2)由绝对值三角不等式可得()f x 的最小值为334a a +=,解得1a =,可得11m n+=, 利用柯西不等式即可求证.【详解】(1)当1a =时,由()6f x <,得|1||3|6x x -++<.当3x ≤-时,136x x ---<,即226x --<,解得:4x >-,所以43x -<≤-; 当31x -<<时,136x x -++<,即46<,所以31x -<<;当1≥x 时,136x x -++<,即226x +<,解得2x <,所以12x ≤<.综上所述:不等式()6f x <的解集为()4,2-.(2)证明:因为333()|3|(3)3f x x a x a x a x a a a =-++≥--+=+,且0a >,所以()f x 的最小值为334a a +=.因为函数3()3g a a a =+为增函数,且()14g =,所以1a =. 从而11m n+=,因为0m >,0n >,所以由柯西不等式得()222112mn ⎛⎫++≥ ⎪⎝⎭,即25≥,≤(当且仅当15m =,54n =时等号成立) 【点睛】方法点睛:解绝对值不等式的常用方法(1)基本性质法:a 为正实数,x a a x a <⇔-<<,x a x a >⇔<-或x a >; (2)平方法:两边平方去掉绝对值,适用于x a x b -<-或x a x b ->-型的不等式的求解;(3)分类讨论法(零点分区间法):含有两个或两个以上绝对值的不等式,可用分类讨论法去掉绝对值,将其转化为与之等价的不含绝对值符号的不等式求解;(4)几何法:利用绝对值不等式的几何意义,画出数轴,将绝对值问题转化为数轴上两点的距离问题求解;(5)数形结合法:在直角坐标系中,作出不等式两边所对应的两个函数的图象,利用函数图像求解.24.[]1,2-.【分析】 由柯西不等式得()2222236a b c a b c ++++≥=,转化条件得()3f x ≤,结合绝对值三角不等式()12123f x x x x x =++-≥+-+=,即可得解.【详解】 由柯西不等式可得()()()22222222121a b c a b c ++≤++++,所以()2222236a b c a b c ++++≥=,当且仅当121a b c ==即b =a c ==时,等号成立, 所以()222a b c f x ≥++恒成立()3f x ⇔≤,因为()12123f x x x x x =++-≥+-+=,当且仅当12x -≤≤时,等号成立, 所以()3f x ≤的解集为12x -≤≤,所以实数x 的取值范围[]1,2-.【点睛】本题考查了柯西不等式与绝对值三角不等式的综合应用,考查了计算能力与转化化归思想,属于中档题.25.120,5⎡⎤⎢⎥⎣⎦. 【分析】利用柯西不等式可得关于a 的不等式,解不等式可得实数a 的取值范围.【详解】 因为()222222*********()(3)3233a b c b c b c a ⎛⎫-=+=+++=- ⎪⎝⎭ 所以25120a a -,解得1205a. 综上,实数a 的取值范围是120,5⎡⎤⎢⎥⎣⎦. 【点睛】 本题考查柯西不等式求参数的取值范围,考查逻辑推理能力、运算求解能力. 26.(1)13,,22⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭;(2)【分析】(1)分别在0x ≤、01x <<和1x ≥三种情况下解不等式求得结果;(2)利用绝对值三角不等式可求得2228a b +=,利用柯西不等式可求得结果.【详解】(1)当1a =,0b =时,()1f x x x =-+,当0x ≤时,()122f x x =-≥,解得:12x ≤-; 当01x <<时,()112f x x x =-+=≥,解集为∅;当1x ≥时,()212f x x =-≥,解得:32x ≥; 综上所述:()2f x ≥的解集为13,,22⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭; (2)2222222228x a x b x a x b a b -++≥---=+=(当且仅当()()2220x a x b -+≤时取等号),()()222212242a b a b ⎛⎫∴++=≥+ ⎪⎝⎭(当且仅当a b =时取等号),2a b ∴+≤即2+a b 的最大值为.【点睛】本题考查分类讨论法解绝对值不等式、绝对值三角不等式的应用、利用柯西不等式求最值的问题,属于常考题型.。

高二选修4-5_证明不等式的基本方法4

高二选修4-5_证明不等式的基本方法4

把 以 上 四 个 不 等 式 相 加得 abcd a b c d abcd abd bca cbd dac
abcd. 即 ab cd
1 a b c d 2 abd bca cba dac
分式型放缩可改变分子或分母, 或分子、分母同时改变,达到放缩的目的.
例2
已知a,b是实数,求证 a b 1 a b
【解析】当
n>1
1 1 11 时,n2>nn+1=n-n+1.
所以212+312+412+…+n12>2×1 3+3×1 4+4×1 5+…+nn1+1= 12-13+13-14+14-15+…+1n-n+1 1=12-n+1 1.
【例 1】


:12

1 n+1

1 22

1 32

1 42


x 1x
y 1 y
B
A B
方法2:特值法: 因为x>0,y.>0, 所以取x=1,y=1代入可比较。
含根式不等式的放缩
【例 3】 已知实数 x,y,z 不全为零,求证: x2+xy+y2+ y2+yz+z2+ z2+zx+x2>32(x+y+z).
【解题探究】 欲证不等式左端是三个根式的和,而右端 是有理式,若两边平方则十分复杂,可考虑对根号内的式子进 行配方后再用放缩法.
1.放缩法:在证明不等式的过程中,有时 利用不等式的_传__递_性____,通过对不等式的某些 部分作适当的__放_大_或_缩_小______,达到证明的目 的.
2.放缩法的实质是__非_等_价_转__化________,放 缩没有__一_定_的_准_则__和_程_序__________,需按题意适当 放缩,否则达不到目的.

北师大版高中数学选修4-5《不等式选讲》全套教案

北师大版高中数学选修4-5《不等式选讲》全套教案

课 题: 第01课时 不等式的基本性质 目的要求: 重点难点: 教学过程: 一、引入:不等关系是自然界中存在着的基本数学关系。

《列子•汤问》中脍炙人口的“两小儿辩日”:“远者小而近者大”、“近者热而远者凉”,就从侧面表明了现实世界中不等关系的广泛存在;日常生活中息息相关的问题,如“自来水管的直截面为什么做成圆的,而不做成方的呢?”、“电灯挂在写字台上方怎样的高度最亮?”、“用一块正方形白铁皮,在它的四个角各剪去一个小正方形,制成一个无盖的盒子。

要使制成的盒子的容积最大,应当剪去多大的小正方形?”等,都属于不等关系的问题,需要借助不等式的相关知识才能得到解决。

而且,不等式在数学研究中也起着相当重要的作用。

本专题将介绍一些重要的不等式(含有绝对值的不等式、柯西不等式、贝努利不等式、排序不等式等)和它们的证明,数学归纳法和它的简单应用等。

人与人的年龄大小、高矮胖瘦,物与物的形状结构,事与事成因与结果的不同等等都表现出不等的关系,这表明现实世界中的量,不等是普遍的、绝对的,而相等则是局部的、相对的。

还可从引言中实际问题出发,说明本章知识的地位和作用。

生活中为什么糖水加糖甜更甜呢?转化为数学问题:a 克糖水中含有b 克糖(a>b>0),若再加m(m>0)克糖,则糖水更甜了,为什么?分析:起初的糖水浓度为a b ,加入m 克糖 后的糖水浓度为m a m b ++,只要证m a m b ++>ab 即可。

怎么证呢?二、不等式的基本性质:1、实数的运算性质与大小顺序的关系:数轴上右边的点表示的数总大于左边的点所表示的数,从实数的减法在数轴上的表示可知:0>-⇔>b a b a0=-⇔=b a b a 0<-⇔<b a b a得出结论:要比较两个实数的大小,只要考察它们的差的符号即可。

2、不等式的基本性质:①、如果a>b ,那么b<a ,如果b<a ,那么a>b 。

北师大版高中数学选修4-5不等式选讲:柯西不等式

北师大版高中数学选修4-5不等式选讲:柯西不等式

x x

3y 3y

1得

x y

1 4 1 6
4x2 9 y2的最小值为1 ,最小值点为( 1 , 1 )
2
46
例1.Δ ABC之三边长为4,5,6,P为三角形 內部一点P,P到三边的距离分別为x,y,z, 求x2+y2+z2的最小值。
C
6
F
E
zP y
5
x
A
B D4
225
x2+y2+z2 44
例2.已知x1, x2, , xn R , 求证
x12 x22 x2 x3

x2 n1
xn

xn2 x1

x1
x2

xn.
变式.设x1,x2, xn R ,且x1 x2 xn 1,
求证 : x12 x22 xn2 1
1 x1 1 x2
1 xn n 1
例3 已知实数a,b, c, d, e满足a b c d e 8, a2 b2 c2 d 2 e2 16,求e的取值范围.
解 : 4(a2 b2 c2 d 2 ) (1 1 1 1)(a2 b2 c2 d 2 ) (a b c d)2
1 xn

(1
x1

1
x2
1
xn
)

( 1
x12 x1

x22 1 x2

xn2 ) ( 1 xn
1 x1
x1 1 x1
1 x2
x2 1 x2

选修4-5 第二节 不等式证明的基本方法

选修4-5 第二节 不等式证明的基本方法
返回
4.反证法 先假设要证的命题 不成立 ,以此为出发点,结合已知条 件,应用公理、定义、定理、性质等,进行正确的 推理 ,得到和命题的条件(或已证明的定理、性质、明显 成立的事实等) 矛盾 的结论,以说明假设 不正确 ,从而 证明原命题成立,我们把它称为反证法.
5.放缩法 证明不等式时,通过把不等式中的某些部分的值放大 或, 缩小 简化不等式,从而达到证明的目的,我们把这种方法 称为放缩法.
返回
解析:∵1<1a<1b,∴0<b<a<1. ∴logab>1>logba>0. ∴A、B、C选项均正确,选项D错误.
答案:D
返回
4.若|x|<1,|y|<1,则xy+1与x+y的大小关系为________. 解析:xy+1-x-y =(y-1)(x-1), ∵|x|<1,|y|<1,∴y-1<0,x-1<0. ∴(y-1)(x-1)>0.∴xy+1>x+y. 答案:xy+1>x+y
返回
(2) bac+ abc+ acb=a+abb+c c.
在(1)中已证 a+b+c≥ 3.
因此要证原不等式成立,只需证明
1≥ abc
a+
b+
c,
即证 a bc+b ac+c ab≤1,
即证 a bc+b ac+c ab≤ab+bc+ca.
返回
而 a bc= ab·ac≤ab+2 ac, b ac≤ab+2 bc,c ab≤bc+2 ac. ∴a bc+b ac+c ab≤ab+bc+ca(当且仅当 a=b=c= 33时 等号成立). ∴原不等式成立.
返回
2.综合法 从已知条件 出发,利用定义、公理、定理、性质等,经 过一系列的推理、论证而得出命题成立,即“由因导果” 的方法,这种证明不等式的方法称为综合法或顺推法.

《选修4-5--不等式选讲》知识点详解+例题+习题(含详细答案)

《选修4-5--不等式选讲》知识点详解+例题+习题(含详细答案)

选修4-5不等式选讲最新考纲:1.理解绝对值的几何意义,并了解下列不等式成立的几何意义及取等号的条件:(1)|a +b|≤|a|+|b|(a,b∈R).(2)|a-b|≤|a-c|+|c-b|(a,b∈R).2.会利用绝对值的几何意义求解以下类型的不等式:|ax+b|≤c,|ax+b|≥c,|x-c|+|x-b|≥a.3.了解柯西不等式的几种不同形式,理解它们的几何意义,并会证明.4.通过一些简单问题了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法、数学归纳法.ab≤0且|a ab≥0且|a定理2:如果a、b为正数,则≥,当且仅当a=b时,等号成立.定理3:如果a、b、c为正数,则≥,当且仅当a=b=c时,等号成立.定理4:(一般形式的算术—几何平均值不等式)如果a1、a2、…、a n为n个正数,则≥,当且仅当a1=a2=…=a n时,等号成立.4.柯西不等式(1)柯西不等式的代数形式:设a,b,c,d为实数,则(a2+b2)·(c2+d2)≥(ac+bd)2,当且仅当ad=bc时等号成立.(2)若a i,b i(i∈N*)为实数,则()()≥(i b i)2,当且仅当b i=0(i=1,2,…,n)或存在一个数k,使得a i=kb i(i=1,2,…,n)时,等号成立.(3)柯西不等式的向量形式:设α,β为平面上的两个向量,则|α|·|β|≥|α·β|,当且仅当这两个向量同向或反向时等号成立.1(1)(2)(3)|(4)(5)[2AC[[答案] A3.设|a|<1,|b|<1,则|a+b|+|a-b|与2的大小关系是() A.|a+b|+|a-b|>2 B.|a+b|+|a-b|<2C.|a+b|+|a-b|=2 D.不能比较大小[解析]|a+b|+|a-b|≤|2a|<2.[答案] B4.若a,b,c∈(0,+∞),且a+b+c=1,则++的最大值为()A.1 B.C. D.2[∴([5[为-2≤a[解|(1)(2)把这些根由小到大排序,它们把定义域分为若干个区间.(3)在所分区间上,去掉绝对值符号组成若干个不等式,解这些不等式,求出它们的解集.(4)这些不等式解集的并集就是原不等式的解集.解绝对值不等式的关键是恰当的去掉绝对值符号.(1)(2015·山东卷)不等式|x-1|-|x-5|<2的解集是()A.(-∞,4) B.(-∞,1)C.(1,4) D.(1,5)(2)(2014·湖南卷)若关于x的不等式|ax-2|<3的解集为,则a=________.[解题指导]切入点:“脱掉”绝对值符号;关键点:利用绝对值的性质进行分类讨论.[解析](1)当x<1时,不等式可化为-(x-1)+(x-5)<2,即-4<2,显然成立,所以此时不等当当(2)当当当[对点训练已知函数f(x)=|x+a|+|x-2|.(1)当a=-3时,求不等式f(x)≥3的解集;(2)若f(x)≤|x-4|的解集包含[1,2],求a的取值范围.[解](1)当a=-3时,f(x)=当x≤2时,由f(x)≥3得-2x+5≥3,解得x≤1;当2<x<3时,f(x)≥3无解;当x≥3时,由f(x)≥3得2x-5≥3,解得x≥4;所以f(x)≥3的解集为{x|x≤1或x≥4}.(2)f(x)≤|x-4|?|x-4|-|x-2|≥|x+a|.当?4右|x 1.是(2)[[解析](1)∵|x-1|+|x+2|≥|(x-1)-(x-2)|=3,∴a2+a+2≤3,解得≤a≤.即实数a的取值范围是.(2)解法一:根据绝对值的几何意义,设数x,-1,2在数轴上对应的点分别为P,A,B,则原不等式等价于P A-PB>k恒成立.∵AB=3,即|x+1|-|x-2|≥-3.故当k<-3时,原不等式恒成立.解法二:令y=|x+1|-|x-2|,则y=要使|x+1|-|x-2|>k恒成立,从图象中可以看出,只要k<-3即可.故k<-3满足题意.[答案](1)(2)(-∞,-3)解含参数的不等式存在性问题,只要求出存在满足条件的x即可;不等式的恒成立问题,可转化为最值问题,即f(x)<a恒成立?a>f(x)max,f(x)>a恒成立?a<f(x)min.(1)(2)[解-a?a-3≤x≤3.故(2)f不等式的证明方法很多,解题时既要充分利用已知条件,又要时刻瞄准解题目标,既不仅要搞清是什么,还要搞清干什么,只有兼顾条件与结论,才能找到正确的解题途径.应用基本不等式时要注意不等式中等号成立的条件.(2015·新课标全国卷Ⅱ)设a,b,c,d均为正数,且a+b=c+d,证明:(1)若ab>cd,则+>+;(2)+>+是|a-b|<|c-d|的充要条件.[解题指导]切入点:不等式的性质;关键点:不等式的恒等变形.[证明](1)因为(+)2=a+b+2,(+)2=c+d+2,由题设a+b=c+d,ab>cd得(+)2>(+)2.因此+>+.(2)①若|a-b|<|c-d|,则(a-b)2<(c-d)2,即(a+b)2-4ab<(c+d)2-4cd.由a+(1)ab+bc+ac≤;(2)++≥1.[证明](1)由a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca得a2+b2+c2≥ab+bc+ca. 由题设得(a+b+c)2=1,即a2+b2+c2+2ab+2bc+2ca=1.所以3(ab+bc+ca)≤1,即ab+bc+ca≤.(2)因为+b≥2a,+c≥2b,+a≥2c,故+++(a+b+c)≥2(a+b+c),即++≥a+b+c.所以++≥1.———————方法规律总结————————[12条件.3.[121[解析]|2x-1|<3?-3<2x-1<3?-1<x<2.[答案](-1,2)2.若不等式|kx-4|≤2的解集为{x|1≤x≤3},则实数k=__________.[解析]∵|kx-4|≤2,∴-2≤kx-4≤2,∴2≤kx≤6.∵不等式的解集为{x|1≤x≤3},∴k=2.[答案] 23.不等式|2x+1|+|x-1|<2的解集为________.[解析]当x≤-时,原不等式等价为-(2x+1)-(x-1)<2,即-3x<2,x>-,此时-<x≤-.当-<x<1时,原不等式等价为(2x+1)-(x-1)<2,即x<0,此时-<x<0.当x≥1时,原不等式等价为(2x +1)+(x-1)<2,即3x<2,x<,此时不等式无解,综上,原不等式的解为-<x<0,即原不等式的解集为.[答案]4[[5.[故[6.[3a-1+2a=[7.若关于x的不等式|a|≥|x+1|+|x-2|存在实数解,则实数a的取值范围是__________.[解析]∵f(x)=|x+1|+|x-2|=∴f(x)≥3.要使|a|≥|x+1|+|x-2|有解,∴|a|≥3,即a≤-3或a≥3.[答案](-∞,-3]∪[3,+∞)8.已知关于x的不等式|x-a|+1-x>0的解集为R,则实数a的取值范围是__________.[解析]若x-1<0,则a∈R;若x-1≥0,则(x-a)2>(x-1)2对任意的x∈[1,+∞)恒成立,即(a-1)[(a+1)-2x]>0对任意的x∈[1,+∞)恒成立,所以(舍去)或对任意的x∈[1,+∞]恒成立,解得a<1.综上,a<1.[答案](-∞,1)9.设a,b,c是正实数,且a+b+c=9,则++的最小值为__________.[=≥2[10.[即∴[11[解析]∵|x-1|+|x|+|y-1|+|y+1|=(|1-x|+|x|)+(|1-y|+|1+y|)≥|(1-x)+x|+|(1-y)+(1+y)|=1+2=3,当且仅当(1-x)·x≥0,(1-y)·(1+y)≥0,即0≤x≤1,-1≤y≤1时等号成立,∴|x-1|+|x|+|y-1|+|y+1|的最小值为3.[答案] 312.若不等式|x+1|-|x-4|≥a+,对任意的x∈R恒成立,则实数a的取值范围是________.[解析]只要函数f(x)=|x+1|-|x-4|的最小值不小于a+即可.由于||x+1|-|x-4||≤|(x+1)-(x -4)|=5,所以-5≤|x+1|-|x-4|≤5,故只要-5≥a+即可.当a>0时,将不等式-5≥a+整理,得a2+5a+4≤0,无解;当a<0时,将不等式-5≥a+整理,得a2+5a+4≥0,则有a≤-4或-1≤a<0.综上可知,实数a的取值范围是(-∞,-4]∪[-1,0).[13(1)(2)[解若若若(2)f(x)作出函数f(x)的图象,如图所示.由图象可知,f(x)≥1,∴2a>1,a>,即a的取值范围为.14.(2015·新课标全国卷Ⅰ)已知函数f(x)=|x+1|-2|x-a|,a>0.(1)当a=1时,求不等式f(x)>1的解集;(2)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.[解](1)当a=1时,f(x)>1化为|x+1|-2|x-1|-1>0.当x≤-1时,不等式化为x-4>0,无解;当-1<x<1时,不等式化为3x-2>0,解得<x<1;当x≥1时,不等式化为-x+2>0,解得1≤x<2.(2)a+1,0),C(a,a15(1)(2)[解f(x).(2)若a=1,f(x)=2|x-1|,不满足题设条件;若a<1,f(x)=f(x)的最小值为1-a;若a>1,f(x)=f(x)的最小值为a-1.∴对于?x∈R,f(x)≥2的充要条件是|a-1|≥2,∴a的取值范围是(-∞,-1]∪[3,+∞).16.(2015·福建卷)已知a>0,b>0,c>0,函数f(x)=|x+a|+|x-b|+c的最小值为4.(1)(2)[解又(2)(42=即a当且仅当==,即a=,b=,c=时等号成立.故a2+b2+c2的最小值为.。

数学选修4-5学案 §2.1.2不等式的证明(2)

数学选修4-5学案 §2.1.2不等式的证明(2)

§2.1.2不等式的证明(2)综合法与分析法学案 姓名☆学习目标: 1. 理解并掌握综合法与分析法;2. 会利用综合法和分析法证明不等式☻知识情景:1. 基本不等式:10. 如果,a b R ∈, 那么222a b ab +≥. 当且仅当a b =时, 等号成立.20. 如果,a b R +∈, 那么2a b +≥. 当且仅当a b =时, 等号成立.30. 如果,,a b c R +∈, 那么3a b c++≥, 当且仅当a b c ==时, 等号成立.2.均值不等式:如果,a b R +∈,那么 22ab a ba b++≤≤≤常用推论:10. 20a ≥; 0;a ≥ 12(0)a a a+≥>;20.2(0)a b ab b a +≥>; 30.a cb bac ++≥(,,a b c R +∈).3.不等式证明的基本方法:10. 作差法与作商法(两正数时). 20. 综合法和分析法.30. 反证法、换元法、放缩法☆案例学习:综合法:从①已知条件、②不等式的性质、③基本不等式等出发,通过逻辑推理, 推导出所要证明的结论. 这种证明方法叫做综合法.又叫由 导 法. 用综合法证明不等式的逻辑关系:12n A B B B B ⇒⇒⇒⇒⇒ 例1 ,,0,,a b c >已知且不全相等222222()()()6a b c b c a c a b abc +++++>求证:例2分析法:从要证的结论出发, 逐步寻求使它成立的充分条件, 直至所需条件为已知条件或一个明显成立的事实(定义、公理或已证的定理、性质等),从而得出要证的命题成立,这种证明方法叫做分析法. 这是一种执 索 的思考和证明方法. 用分析法证明不等式的逻辑关系:例3例4例5 证明:.)())((22222bd ac d c b a +≥++12n 12n 12,,,R ,1,(1)(1)(1)2n n a a a a a a a a a +∈=+++≥ 已知且求证:12 ( ) n B B B B A ⇐⇐⇐⇐⇐ 结步步寻求不等式已论成立的充分条件知<求证222222,,0,a b b c c a a b c abca b c++>≥++已知求证:§2.1.2不等式的证明(2) 练习 姓名1、已知,,0,0y x y x ≠>>求证.411yx yx+>+2、已知,0>>b a 求证.b a b a ->-3、已知.0,0>>b a 求证:(1).4))((11≥++--b a b a (2).8))()((333322b a b a b a b a ≥+++4、已知d c b a ,,,都是正数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

选修4-5 第二节 不等式证明的基本方法例题
1.已知a 、b 、x 、y 均为正实数,且1a >1
b
,x >y .
求证:
x
x +a >
y
y +b
.
证明:∵
x
x +a -
y
y +b

bx -ay
x +a y +b

又1a >1
b
,且a 、b 均为正实数,
∴b >a >0. 又x >y >0, ∴bx >ay . ∴
bx -ay x +a y +b >0,即x x +a >y
y +b
.
2.已知a ,b ,c 均为正数,证明:a 2+b 2+c 2
+(1a +1b +1c
)2≥63,并确定a ,b ,c 为何值时,等号成立.
证明:法一:因为a ,b ,c 均为正数,由平均值不等式得
a 2+
b 2+
c 2
≥3(abc )23
,①
1
a +1
b +1
c
≥3(abc )1
3-,②
所以(1
a +1
b +1c
)2
≥9(abc ) 2
3-.
故a 2
+b 2
+c 2
+(1a +1b +1
c
)2
≥3(abc ) 23

9(abc )
23
-
.
又3(abc ) 23
+9(abc ) 23
-≥227=63,③
所以原不等式成立.
当且仅当a =b =c 时,①式和②式等号成立.当且仅当3(abc ) 23
=9(abc )
23
-
时,③式
等号成立.
即当且仅当a =b =c =314
时,原式等号成立. 法二:因为a ,b ,c 均为正数,由基本不等式得
a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ac. 所以a2+b2+c2≥ab+bc+ac,①
同理1
a2+
1
b2

1
c2

1
ab

1
bc

1
ac
,②
故a2+b2+c2+(1
a

1
b

1
c
)2≥ab+bc+ac+
3
1
ab
+3
1
bc
+3
1
ac
≥6 3.③
所以原不等式成立.
当且仅当a=b=c时,①式和②式等号成立,当且仅当a=b=c,(ab)2=(bc)2=(ac)2=3时,③式等号成立.
即当且仅当a=b=c=31
4时,原式等号成立.
3.(2012·豫南九校联考)已知x,y均为正数,且x>y,求证:2x+1
x2-2xy+y2
≥2y +3.
解:因为x>0,y>0,x-y>0,
2x+
1
x2-2xy+y2
-2y=2(x-y)+
1
x-y2
=(x-y)+(x-y)+
1
x-y2
≥33
x-y2
1
x-y2
=3,
所以2x+
1
x2-2xy+y2
≥2y+3.
4.已知正实数a,b,c满足
1
a

2
b

3
c
=1,求证:a+
b
2

c
3
≥9.证明:因为a,b,c均为正实数,
所以
1
a

2
b

3
c
≥3
31
a
·
2
b
·
3
c
.同理可证:
a+
b
2

c
3
≥3
3

b
2
·
c
3
.
所以(a+
b
2

c
3
)(
1
a

2
b

3
c
)≥
3
3

b
2
·
c
3
·3
31
a
·
2
b
·
3
c
=9.
因为
1
a

2
b

3
c
=1,所以a+
b
2

c
3
≥9,
当且仅当a=3,b=6,c=9时,等号成立.
5.已知x 、y 、z ∈R, 且2x +3y +3z =1,求x 2+y 2+z 2
的最小值. 解:由柯西不等式得,
(2x +3y +3z )2
≤(22
+32
+32
)(x 2
+y 2
+z 2
). ∵2x +3y +3z =1,∴x 2
+y 2
+z 2

122
, 当且仅当x 2=y 3=z 3,即x =111,y =z =3
22
时,等号成立,
∴x 2+y 2+z 2
的最小值为122
.
6.设f (x )=2x 2
-2x +2 010,若实数a 满足|x -a |<1 ,求证:|f (x )-f (a )|<4(|a |+1).
证明:∵f (x )=2x 2-2x +2 010, ∴|f (x )-f (a )|=2|x 2
-x -a 2
+a | =2|x -a |·|x +a -1|<2|x +a -1|, 又∵2|x +a -1|=2|(x -a )+2a -1| ≤2(|x -a |+|2a -1|) <2(1+|2a |+1)=4(|a |+1). 7.求证:
1n +1+1n +2+…+13n >12
(n ≥2,n ∈N *
). 证明:法一:利用数学归纳法:
(1)当n =2时,左边=13+14+15+16>1
2,不等式成立.
(2)假设当n =k (k ≥2,k ∈N *
)时不等式成立. 即
1k +1+1k +2+…+13k >12
. 则当n =k +1时, 1k +1+1

1k +1
+2
+…+
13k +13k +1+13k +2+13k +3=1k +1+1k +2+ (13)
+(
13k +1+13k +2+13k +3-1k +1)>12+(3×13k +3-1k +1)=1
2. 所以当n =k +1时不等式也成立,
由(1),(2)知原不等式对一切n ≥2,n ∈N *
均成立. 法二:利用放缩法: ∵n ≥2,∴
1n +1+1n +2+…+13n >13n +13n +…+13n =23>12.即1n +1+1n +2+…+13n >1
2
(n ≥2,n ∈N *
).
8.已知a ,b ,c 为实数,且a +b +c +2-2m =0,a 2
+14b 2+19c 2+m -1=0.
(1)求证:a 2
+14b 2+19
c 2

a +
b +c
2
14

(2)求实数m 的取值范围.
解:(1)由柯西不等式得[a 2+(12b )2+(13c )2]()12+22+32≥(a +b +c )2

即(a 2+14b 2+19c 2)×14≥(a +b +c )2
.
∴a 2
+14b 2+19
c 2

a +
b +c
2
14
.
当且仅当|a |=14|b |=1
9|c |取得等号.
(2)由已知得a +b +c =2m -2,
a 2+14
b 2+19
c 2=1-m ,
∴14(1-m )≥(2m -2)2
. 即2m 2
+3m -5≤0.∴-52≤m ≤1.
又∵a 2
+14b 2+19c 2=1-m ≥0,
∴m ≤1, ∴-5
2≤m ≤1.。

相关文档
最新文档