磁芯选用

合集下载

交流磁芯材料选用原则

交流磁芯材料选用原则

交流磁芯材料选用原则磁芯材料是电子器件中的重要组成部分,用于存储和传输磁能。

不同的磁芯材料具有不同的特性和应用范围,正确选择适合的材料对于电子器件的性能和稳定性至关重要。

本文将介绍一些常见的磁芯材料以及选用原则。

1. 铁氧体材料(Ferrite)铁氧体材料是最常见的磁芯材料之一,具有良好的磁导率和低电导率。

它们广泛应用于变压器、电感器和电源滤波器等领域。

选用铁氧体材料时需要考虑其工作频率范围、饱和磁场强度以及磁介质损耗等因素。

对于高频应用,需要选择高饱和磁场强度和低磁介质损耗的铁氧体材料。

2. 硅钢材料(Silicon Steel)硅钢材料主要用于制造电动机和变压器的磁芯。

它们具有高导磁率和低磁滞损耗,可以有效地减少能源损耗。

选用硅钢材料时需要考虑其导磁率、饱和磁感应强度和电阻率等因素。

通常情况下,高导磁率和低电阻率的硅钢材料适用于高频率应用,而高饱和磁感应强度的硅钢材料适用于高功率应用。

3. 铁镍合金材料(Iron-Nickel Alloy)铁镍合金材料是一种特殊的磁芯材料,具有高导磁率和低磁滞损耗。

它们广泛应用于高精密仪器和通信设备中。

选用铁镍合金材料时需要考虑其导磁率、饱和磁感应强度和温度系数等因素。

在高温环境下,需要选择具有低温度系数的铁镍合金材料。

4. 铁氮合金材料(Iron-Nitrogen Alloy)铁氮合金材料是一种新型的磁芯材料,具有高导磁率、低磁滞损耗和低成本的特点。

它们适用于高频率和高功率应用。

选用铁氮合金材料时需要考虑其导磁率、饱和磁感应强度和磁滞损耗等因素。

对于高频率应用,需要选择具有高导磁率和低磁滞损耗的铁氮合金材料。

5. 铁氧氮合金材料(Iron-Oxide-Nitride Alloy)铁氧氮合金材料是一种新型的磁芯材料,具有高导磁率、低磁滞损耗和低温度系数的特点。

它们适用于高频率和高温度应用。

选用铁氧氮合金材料时需要考虑其导磁率、饱和磁感应强度和温度系数等因素。

常用磁芯与应用功率 对照表

常用磁芯与应用功率 对照表

常用磁芯与应用功率对照表是一种表格,其中列出了不同的磁芯类型和应用功率。

通过这个表格,人们可以快速了解不同磁芯的适用功率范围,从而更好地选择适合自己需求的磁芯。

在对照表中,常见的磁芯类型包括铁氧体磁芯、硅钢磁芯、坡莫合金磁芯等。

这些磁芯在不同的应用场合有不同的适用功率范围。

例如,铁氧体磁芯适用于较低功率的应用,如电源供应器、充电器等,其优点是成本较低、温度稳定性好,但缺点是饱和磁感应强度较低。

硅钢磁芯适用于中等功率的应用,如电机、发电机等,其优点是饱和磁感应强度高、磁导率高,但缺点是成本较高、温度稳定性较差。

坡莫合金磁芯适用于高功率的应用,如高频变压器、脉冲变压器等,其优点是饱和磁感应强度高、磁导率高、电阻率高,但缺点是成本极高、温度稳定性差、容易氧化。

除了磁芯类型和应用功率外,对照表还可以包括其他相关信息,如磁芯的材料、形状、尺寸等。

这些信息有助于人们更好地了解不同磁芯的特点和适用范围,从而更好地选择适合自己需求的磁芯。

总之,常用磁芯与应用功率对照表是一种方便实用的参考资料,可以帮助人们更好地了解不同磁芯的特点和适用范围,从而更好地选择适合自己需求的磁芯。

浅谈高频变压器磁芯的选用如何选型

浅谈高频变压器磁芯的选用如何选型

浅谈高频变压器磁芯的选用如何选型高频变压器磁芯的选用是变压器设计中非常重要的一环,直接影响了变压器的性能和效率。

选用合适的磁芯可以提高变压器的能量转换效率、降低功率损耗、增加功率密度等。

在选择高频变压器磁芯时,需要考虑以下几个关键因素:1.磁导率:磁导率是磁芯材料的一个重要参数,它反映了磁芯对磁场的导磁能力。

选择具有较高磁导率的磁芯能够提高能量传输效率。

目前常用的高频变压器磁芯材料包括铁氧体、磁性不锈钢、钴铁和镍铁合金等。

不同磁芯材料的磁导率各有差异,需要根据具体的设计要求和性能指标进行选择。

2.饱和磁场强度:饱和磁场强度是指材料的磁场强度达到一定程度时,磁化强度不再增加的临界值。

选择具有较高饱和磁场强度的磁芯可以提高变压器的能量转换效率和输出功率。

一般来说,磁导率越高的磁芯,其饱和磁场强度也较高。

3.损耗:磁芯材料的损耗是选择磁芯时需要考虑的另一个重要因素。

高频变压器在工作过程中会产生一定的涡流损耗和磁滞损耗。

较低的损耗能够提高变压器的效率和功率密度。

一般来说,铁氧体材料具有较低的涡流损耗和磁滞损耗,因此在高频变压器中应用较为广泛。

4.成本和可获性:在选用磁芯时,还需要考虑材料的成本和可获性。

一些高性能的磁芯材料可能价格较高或难以获得,而一些常见的磁芯材料则价格比较低廉。

因此,需要在高性能和经济性之间进行权衡,选择适合的磁芯材料。

5.尺寸和形状:磁芯的尺寸和形状也是选择磁芯时需要考虑的因素。

变压器磁芯的尺寸和形状会直接影响变压器的体积、重量和功率密度等。

因此,在设计变压器时需要综合考虑磁芯的尺寸和形状,以满足实际需求。

综上所述,高频变压器磁芯的选用是一个综合考虑磁导率、饱和磁场强度、损耗、成本和可获性、尺寸和形状等多个因素的过程。

通过合理选择磁芯材料和形状,可以提高高频变压器的性能和效率,满足不同的设计要求和性能指标。

高频变压器方案时挑选磁芯的两种办法

高频变压器方案时挑选磁芯的两种办法

高频变压器方案时挑选磁芯的两种办法1面积乘积法这儿讲的面积乘积。

是指磁芯的可绕线的窗口面积和磁芯的截面积,这两个面积的乘积。

标明办法为WaAe,有些讲义和书本上简写为Ap,单位为。

依据法拉第规矩,咱们有:窗口面积运用状况有:KWalpha;=NAw变压器有初级、次级两个绕组。

因而有:KWalpha;=2NAw或0.5KWalpha;=NAw咱们知道:Aw=而电流有用值I=Ip得到以下联络式:0.5KWalpha;=即:所以就有如下式:因为:Edelta;Ip=Pi又有:Pi=究竟得到如下公式:这个公式适用于单端变压器,如正激式和反激式。

delta;<0.5,Bm-T,K-0.3~0.4,eta;-0.8~0.9,J-A/。

推挽式的公式则为:半桥式的公式则为:这儿的delta;>0.5,例如0.8~0.9。

单端变压器如正激式和反激式:Bm=△B=Bs-Br。

双端变压器如推挽式、半桥式和桥式:Bm=2Bpk。

全桥式公式与推挽式相同,但delta;>0.5,例如0.8~0.9。

在J=400A/,K=0.4,eta;=0.8,delta;=0.4(单端变压器),delta;=0.8(双端变压器)。

公式简化如下:(单端变压器)(推挽式)(半桥式和桥式)2几许标准参数法这个办法是把绕组线圈的损耗,即铜损作为方案参数。

因而,公式恰是由核算绕组线圈的铜损的公式演化而来的。

变压器有两个绕组这儿为初级绕组电阻,为次级绕组电阻。

因为因而每个绕组各占一半窗口面积,悉数绕组线圈的铜损的公式:公式简化:改换两个参数的方位,公式变成:初级安匝与次级安匝持平的联络,以及电流有用值同峰值的联络。

上式进一步演化成:同理(碰头积乘积法)有:将两个式子代入,得出公式:与面积乘积法的办法相一同,公式变成如下办法:此公式合适各种电路办法。

Bm取值同面积乘积法。

3实习举例单端反激式电路。

输出功率Po=34W,输入最小直流电压Vi(min)=230V,输入电流峰值1.18A,占空比=0.25,频率f=68kHz,t=14.7mu;s,初级电感Lp=716mu;H,变压器功率eta;=0.8,电流密度J=400A/cm,Bm=0.11T,K=0.4,Pcu=0.34W。

电磁铁的铁芯为什么应选用软铁而不用钢?

电磁铁的铁芯为什么应选用软铁而不用钢?

电磁铁的铁芯为什么应选用软铁而不用钢?展开全文电磁铁的铁芯为什么应选用软铁而不用钢?这是因为电磁铁要求其磁性强弱随着通入电流大小的变化而发生明显变化。

软铁属软磁体,被磁化后磁性很容易消失;而钢是硬磁体,通电后会磁化成为永磁体,用钢作铁芯的电磁铁,其磁性强弱随电流大小的变化就不明显了。

电工软铁的Ms(最大磁化强度)较大,Ms越大,则电磁铁能产生的饱和磁感应强度就越大,因此,软铁铁芯电磁铁产生的磁力大于一般材料如钢、硅钢、坡莫合金等做铁芯的。

软磁材料是指剩磁和矫顽力均很小的铁磁材料,如硅钢片、纯铁等。

特点是易磁化、易去磁且磁滞回线较窄。

软磁材料常用来制作电机、变压器、电磁铁等电器的铁心。

软磁材料易于磁化,也易于退磁,广泛用于电工设备和电子设备中。

应用最多的软磁材料是铁硅合金(硅钢片)以及各种软磁铁氧体等。

软磁材料种类繁多,通常按成分分为:①纯铁和低碳钢。

含碳量低于0.04%,包括电磁纯铁、电解铁和羰基铁。

其特点是饱和磁化强度高,价格低廉,加工性能好;但其电阻率低、在交变磁场下涡流损耗大,只适于静态下使用,如制造电磁铁芯、极靴、继电器和扬声器磁导体、磁屏蔽罩等。

②铁硅系合金。

含硅量 0.5%~ 4.8%,一般制成薄板使用,俗称硅钢片。

在纯铁中加入硅后,可消除磁性材料的磁性随使用时间而变化的现象。

随着硅含量增加,热导率降低,脆性增加,饱和磁化强度下降,但其电阻率和磁导率高,矫顽力和涡流损耗减小,从而可应用到交流领域,制造电机、变压器、继电器、互感器等的铁芯。

③铁铝系合金。

含铝6%~16%,具有较好的软磁性能,磁导率和电阻率高,硬度高、耐磨性好,但性脆,主要用于制造小型变压器、磁放大器、继电器等的铁芯和磁头、超声换能器等。

④铁硅铝系合金。

在二元铁铝合金中加入硅获得。

其硬度、饱和磁感应强度、磁导率和电阻率都较高。

缺点是磁性能对成分起伏敏感,脆性大,加工性能差。

主要用于音频和视频磁头。

⑤镍铁系合金。

镍含量30%~90%,又称坡莫合金,通过合金化元素配比和适当工艺,可控制磁性能,获得高导磁、恒导磁、矩磁等软磁材料。

反激式开关电源设计的思考三(磁芯的选取)

反激式开关电源设计的思考三(磁芯的选取)

反激式开关电源设计的思考三(磁芯的选取)在DCM状态下选择:Uin-电源输入直流电压Uinmin-电源输入直流电压最小值D-占空比Np-初级绕组匝数Lp-初级绕组电感量Ae-磁芯有效面积Ip-初级峰值电流f-开关频率Ton-开关管导通时间I-初级绕组电流有效值η-开关电源效率J-电流密度通过(3)式可方便计算出反激式开关电源在电流断续模式时磁芯的AeAw值,通过查厂商提供的磁芯参数表就可选择合适的磁芯,在选择磁芯时要留一定的余量。

例如:有一反激式开关电源输出功率为10W,开关频率为40KHz, ΔB为0.16T,电流密度取4.5A/mm2磁芯选用EE系列,那么由公式(3)可知:考虑到实际绕线的绝缘层等的影响,须考虑填充系数(取0.8),即:Ap = AeAw/0.8=1.736×1000 / 0.8 = 2207.5通过上面计算,EE19磁芯比较接近,考虑到辅助绕组和其他因素选择EE20磁芯。

为计算方便,(3)式可修正为:Ap = AwAe = 6500×P0 / (△B×J×f) (4)单位:P0 ----- 瓦特;△B ---- 特斯拉J ------ 安培/平方毫米f ------ 千赫兹Ap ------ 毫米的四次方在实际使用中一定要注意公式的应用条件,公式(4)是在单端反激式开关电源电流断续模式下推导出来的,并且用了一系列假设:1.窗口使用系数SF:0.42.初级绕组面积Ap = 次级绕组面积 As3.当直流输入电压最低时Dm=0.54.电源效率η= 0.85.填充系数为0.8因此,该计算值在使用中要根据实际情况酌情修正,并且作为我们选择磁芯的一个大致参考,由于工艺的原因必须通过实践验证而最终确定。

另外单端反激式开关电源中,他激式和自激式的效率差别比较大,一般自激式的效率比较低,大概在0.7左右,使用公式(4)时要乘以(0.8/0.7=)1.15进行修正。

开关电源使用的磁性器件中磁芯的选用及设计

开关电源使用的磁性器件中磁芯的选用及设计

开关电源使用的磁性器件中磁芯的选用及设计开关电源中使用的磁性器件较多,其中常用的软磁器件有:作为开关电源核心器件的主变压器(高频功率变压器)、共模扼流圈、高频磁放大器、滤波阻流圈、尖峰信号抑制器等。

不同的器件对材料的性能要求各不相同。

 (一)、高频功率变压器 变压器铁芯的大小取决于输出功率和温升等。

变压器的设计公式如下: P=KfNBSI×10-6T=hcPc+hWPW 其中,P为电功率;K为与波形有关的系数;f为频率;N为匝数;S为铁芯面积; B为工作磁感;I为电流;T为温升;Pc为铁损;PW为铜损;hc和hW为由实验确定的系数。

 由以上公式可以看出:高的工作磁感B可以得到大的输出功率或减少体积重量。

但B值的增加受到材料的Bs值的限制。

而频率f可以提高几个数量级,从而有可能使体积重量显着减小。

而低的铁芯损耗可以降低温升,温升反过来又影响使用频率和工作磁感的选取。

一般来说,开关电源对材料的主要要求是:尽量低的高频损耗、足够高的饱和磁感、高的磁导率、足够高的居里温度和好的温度稳定性,有些用途要求较高的矩形比,对应力等不敏感、稳定性好,价格低。

单端式变压器因为铁芯工作在磁滞回线的第一象限,对材料磁性的要求有别于前述主变压器。

它实际上是一只单端脉冲变压器,因而要求具有大的B=Bm-Br,即磁感Bm和剩磁Br之差要大; 同时要求高的脉冲磁导率。

特别是对于单端反激式开关主变压器,或称储能变压器,要考虑储能要求。

 线圈储能的多少取决于两个因素:一个是材料的工作磁感Bm值或电感量L,另一个是工作磁场Hm或工作电流I,储能W=1/2LI2。

这就要求材料有。

磁芯材料的选择

磁芯材料的选择

磁芯材料的选择
(1)高频损耗和饱和磁通密度,三种电感电流和磁通的交变成分大小不同,应区别对待。

①高频交流电感:例如,用于软开关电路中LC 谐振电路的谐振电感,
其特点是,电流只有高频交流成分,没有直流成分,磁通也是双方向磁化,
Bw=2Bm,Bm 取大时磁心损耗也较大,应适当选取Bm 和选用损耗小的材料。

当选用磁粉心材料时,μ小的损耗也较小。

②直流滤波电感:电感电流以直流电流成分为主,高频交流成分较小,
通常交流成分峰值仅占直流额定电流的20%;高频损耗相对较小。

为了减小体积应选用Bs 较大的磁心材料,如铁粉磁心等。

③储能电感:分为电流连续型(CCM)和不连续型(DCM)两种:连
续型的储能电感如同上述直流滤波电感;不连续型的储能电感的交流电流成分
与直流电流成分相当,高频交流损耗较大,比高频交流电感小些。

(2)电感磁心型式尺寸的选择:电感磁心的尺寸大小与磁场能量大小有关。

对于功率体积设计法,由Aw·Ac来选择,对于调整率体积设计法,由Kd 来选择。

(3)气隙的集中和分散。

电感的磁动势(电流乘以匝数)是全部用来产生
磁通的,为在磁心中产生适当的磁通密度,Bw 可以从两种方案中选择。

①方案一:采用通常高频变压器用的〃值较高的磁心材料(μ值的大小
并不重要),磁路中加适当的集中式气隙(垫纸或纸板),以防止磁通进入饱和
状态;集中气隙的杂散磁场较大。

②方案二:采用低初始磁导率μi;的恒磁导率铁磁粉心环形磁心。

其外
形无气隙,实际上是用来黏合磁粉材料的黏合剂形成许多微小气隙、均匀地分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2)磁芯选用
①选取磁芯材料和磁芯结构
选用R2KB铁氧体材料制成的EE型铁氧体磁芯。

其具有品种多,引线空间大,接线操作方便,价格便宜等优点。

②确定工作磁感应强度Bm
R2KB软磁铁氧体材料的饱和磁感应强度Bs=0.47T,考虑到高温时Bs会下降,同时为防止合闸瞬间高频变压器饱和,选定Bm=1/3Bs=0.15T。

③计算并确定磁芯型号
磁芯的几何截面积S和磁芯的窗口面积Q与输出功率Po存在一定的函数关系。

对于半桥变换器,当脉冲波形近似为方波时为
式中:η——效率;
j——电流密度,一般取300~500A/cm2;
Kc——磁芯的填充系数,对于铁氧体Kc=1;
Ku——铜的填充系数,Ku与导线线径及绕制的工艺及绕组数量等有关,一般为0.1~0.5左右。

由厂家手册知,EE55磁芯的S=3.54cm2,Q=3.1042cm2,则SQ=10.9cm4,EE55磁芯的SQ值大于计算值,选定该磁芯。

3)计算原副边绕组匝数
按输入电压最低及输出满载的情况(此时占空比最大)来计算原副边绕组匝数,已知Umin=176V经整流滤波后直流输入电压Udmin=1.2×176=211.2V。

对于半桥电路、功率变压器初级绕组上施加的电压等于输入电压的一半,即Upmin=Udmin/2=105.6V,设最大占定比Dmax=0.9,则
次级匝数计算时取输出电压最大值Uomax=16V。

次级电路采用全波整流,Us为次级绕组上的感应电压,Uo为输出电压,Uf为整流二极管压降,取1V。

Uz为滤波电感等线路压降,取0.3V,则
4)选定导线线径在选用绕组的导线线径时,要考虑导线的集肤效应,一般要求导线线径小于两倍穿透深度,而穿透深度Δ由式(2)决定
式中:ω为角频率,ω=2πfs;
μ为导线的磁导率,对于铜线相对磁导率μr=1,则μ=μ0×μr=4π×10-7H/m;
γ为铜的电导率,γ=58×10-6Ωm;
穿透深度Δ的单位为m。

变压器工作频率50kHz,在此频率下铜导线的穿透深度为Δ=0.2956mm,因此绕组线径必须是直径小于0.59mm的铜线。

另外考虑到铜线电流密度一般取3~6A/mm2,故这里选用0.56mm的漆包线8股并联绕制初级共10匝,次级选用厚0.15mm扁铜带绕制2匝。

相关文档
最新文档