电力系统低频振荡
电力系统低频振荡的源头识别及抑制

电力系统低频振荡的源头识别及抑制一、概述电力系统低频振荡是电力系统中一个常见的问题,会严重影响电力系统的稳定运行。
在电力系统中,低频振荡大多数都是由电力系统的调节系统和功率系统之间的相互作用引起的。
因此,准确地识别低频振荡的源头是电力系统治理的重要一环。
这篇文章将介绍电力系统低频振荡的源头识别及抑制方法。
二、电力系统低频振荡的概述电力系统低频振荡指的是电力系统中的频率在0.1Hz到1Hz范围内的振荡。
低频振荡会使电力系统中的负载和发电机之间的功率流动不稳定,最终导致电力系统失稳。
通常电力系统低频振荡会在发电机、输电线路、变电站和用户负载之间发生。
三、电力系统低频振荡的源头首先,电力系统中的低频振荡可能由多个因素引起,例如负载变化、容量调整、运营策略等。
然而,电力系统的调节系统和功率系统之间的相互作用是低频振荡的主要源头。
调节系统和功率系统之间的相互作用是指在电力系统中,调节系统监测电力系统中的电压和频率,并通过控制功率系统来保持稳定。
然而,当电力系统中的功率系统的行为与预期不符,调节系统就会试图纠正这种情况,这使得系统变得不稳定,从而导致低频振荡。
四、电力系统低频振荡的识别方法四.a 记录数据为了识别低频振荡,可以使用功率系统工具来记录数据。
其中一种工具是称为振荡解析程序的计算机程序。
这种程序可以发现低频振荡,并记录下电力系统中不同点之间的相对相位。
四.b 使用频率扫描另一种识别低频振荡的方法是使用频率扫描技术。
该技术使用一些工具将扫描信号输送到电力系统中的几个位置,以确定振荡频率和幅度。
使用该方法可以确定出低频振荡的源头。
五、电力系统低频振荡的抑制方法五.a 激励控制一种常见的低频振荡抑制方法是使用激励控制。
激励控制是指在调节系统中添加人工信号,以抑制低频振荡。
这种方法可以调节因子并纠正电力系统中可能导致低频振荡的行为。
五.b 阻尼控制另一种常见的低频振荡抑制方法是使用阻尼控制。
阻尼控制是指在电力系统中的调节器中添加阻尼控制器,在调节器中添加人工阻尼,以抑制振荡。
电力系统低频振荡的原因

电力系统低频振荡的原因引言电力系统是现代社会不可或缺的基础设施,它为我们提供了稳定的电能供应。
然而,有时候电力系统会出现低频振荡问题,给系统的稳定运行带来困扰。
本文将探讨电力系统低频振荡的原因,以及可能导致这些振荡的因素。
低频振荡概述低频振荡是指电力系统中频率较低的周期性波动。
一般情况下,电力系统的标准工作频率为50Hz或60Hz,而低频振荡往往发生在0.1Hz到1Hz范围内。
这种振荡可能导致电网不稳定、设备损坏甚至停电。
常见原因动力系统负载变化动力系统负载变化是引起低频振荡的常见原因之一。
当负载突然增加或减少时,会导致发电机和负载之间的失衡,从而引起低频振荡。
这种失衡可能是由于大型工业设备启动或停止、大规模用电设备切换等原因引起的。
发电机调节不当发电机是电力系统的核心组成部分,它负责将机械能转换为电能。
发电机调节不当可能导致低频振荡。
如果发电机的调节系统响应缓慢或不灵敏,就会导致频率波动,从而引起低频振荡。
线路参数变化电力系统中的线路参数变化也可能导致低频振荡。
线路的阻抗、电感和电容等参数会受到温度、湿度和环境条件等因素的影响而发生变化。
这些变化可能导致系统的谐振现象,从而引起低频振荡。
控制系统故障控制系统是保持电力系统稳定运行的关键组成部分。
控制系统故障可能导致低频振荡。
自动发电机控制器(AVR)故障可能导致发电机输出功率不稳定,从而引起低频振荡。
高压直流输电系统干扰高压直流输电系统在长距离输送大功率时具有优势,但它也可能对交流输电网产生干扰。
由于高压直流输电系统的存在,可能会引起电力系统中的低频振荡。
振荡的影响低频振荡对电力系统的影响是严重的。
它可能导致设备损坏,包括发电机、变压器和开关设备等。
低频振荡可能导致电网不稳定,从而引起停电和能源供应中断。
低频振荡还可能对用户造成经济损失,并对社会生活产生负面影响。
预防和控制为了预防和控制低频振荡问题,需要采取一系列措施。
应确保发电机和负载之间的平衡。
电力系统低频振荡

电力系统低频振荡
是指电力系统中出现的周期为数秒到几十秒不等的周期性波动,其频率通常在0.1到1Hz之间。
这种现象通常被认为是由于电力
系统的不稳定性造成的,严重影响了电力系统的运行和稳定性。
首先,低频振荡的出现是由于电力系统中存在着多种不稳定因素。
例如,电力系统中的发电机、输电线路、变电站等设施都可
能会因为负载变化、故障等因素而引起不稳定性,从而导致低频
振荡的出现。
此外,电力系统中的负载、非线性负荷等因素也可
能对系统的稳定性造成影响,从而使低频振荡频繁出现。
其次,低频振荡的出现会严重影响电力系统的稳定性和运行。
低频振荡得以存在,可能会引起许多问题,如对发电机的运行造
成较大的损害、使电力系统的传输和分配受到限制等。
此外,低
频振荡还可能引起系统的崩溃和停电,给用户和生产带来极大的
影响。
因此,为了解决问题,需要采取一系列措施。
首先,应该加强
对电力系统的监测和预警,及时发现问题并采取应对措施。
其次,应该加强对电力系统的调控和优化,通过优化负载分配、提高发
电机和输电线路的质量等方式来提升系统的稳定性。
此外,还应
该加强对电力系统的维护和管理,定期检查设备,及时处理故障,防止故障扩大影响。
总之,低频振荡是电力系统面临的一个重大问题,需要全面、
科学、合理地进行管理和维护。
只有这样,才能保障电力系统的
稳定运行,为社会的发展和进步做出贡献。
电网低频振荡现场处置方案

电网低频振荡现场处置方案电网低频振荡是电力系统稳定性的一种常见故障。
其表现为电力系统中发生频率为0.1到1Hz之间的低频振荡现象,会对电力系统带来影响,进而危及电网的稳定运行。
因此,在低频振荡发生时,必须采取相应的应急处置措施,以保障电力系统的稳定运行。
故障原因与特征电网低频振荡的本质是由于系统的负荷变化引起的电力系统动态稳定性问题。
其主要原因包括负荷突变、抽水蓄能机组失效、输电线路烧毁、逆变器故障等。
一旦低频振荡发生,其特点包括波形半周期增幅较大、持续时间长、频率变化缓慢,且有可能伴随高频振荡等现象。
现场处置方案第一步:急停发电机组一旦发生低频振荡,首先要立即采取措施,急停发电机组。
经实践验证,急停发电机组能够有效减小电力系统中的不稳定因素,避免振荡现象进一步加剧。
具体操作包括:1.手动关闭发电机组断路器,保障发电机组不再向电网输入负荷;2.停止调速器控制,保障发电机组不再调节电网电压和频率;3.减缓发电机组旋转速度,将其逐渐降至静止状态。
第二步:减少负荷在急停发电机组之后,应该立即减少负荷,以减小电力系统的负荷变化,从而尽可能减少低频振荡的影响。
具体操作包括:1.手动关闭负荷断路器,依次将电网中的载荷逐个切断;2.对于无法切断负荷的情况,应该及时启动备用电源,并通过负荷转移等方式减少负荷。
第三步:加固电网硬件设施在减少负荷之后,应该加固电网硬件设施,以保障电力系统的稳定运行。
具体操作包括:1.对电力系统逐一进行巡视和检查,发现电线松动、绝缘子破损等情况应该立即修理;2.对于输电线路烧毁等情况,应该先进行临时补救措施,避免低频振荡加剧;3.加强对电力系统的监测和预警机制,及时发现低频振荡的迹象,避免事故的发生。
总结电网低频振荡是电力系统常见的稳定性故障,发生时必须采取相应的应急措施。
具体的处置方案包括:急停发电机组、减少负荷、加固电网硬件设施等措施,以保障电力系统的正常运行。
同时,我们应该加强对电力系统的预警和监测,提高电力系统的运行安全性,避免低频振荡事故的发生。
电力系统低频振荡及电力系统稳定器

sin 0
XL
Me K1 K2Eq'
K1
Xq Xd
X
' d
Xe
Iq0U sin0
U cos0
Xq Xe
EQ0
UdG Xq Iq
UdG Ucos0 XL Iq
Iq
U
cos 0
X q X L
K2
Xq
X
' d
电力系统低频振荡及电力系统 稳定器
North China Electric Power University
学 习 目录
一、电力系统低频振荡的基本概念
二、研究低频振荡的同步发电机动态模型
三、计及励磁系统的同步发电机稳定性分析
四、电力系统稳定器PSS
2019-5-31 North China Electric Power University
运行点线性化
Eq'
Eq
(Xd
X
' d
)
I
d
EQ
Eq'
(Xq
X
' d
)
I
d
同步发电机相量图
UqG Eq X d Id
UqG Eq X d Id
运行点线性化
UdG X q Iq
运行点 线性化
UdG X q Iq
2019-5-31 North China Electric Power University page4
1 d2TE2Q
K5
1 K6
电力系统中低频振荡的稳定性分析

电力系统中低频振荡的稳定性分析引言电力系统是现代社会不可或缺的基础设施之一,它的稳定性对于保障供电的可靠性至关重要。
然而,电力系统中常常会出现一些稳定性问题,其中低频振荡是一个常见的现象。
本文将就电力系统中低频振荡的稳定性进行深入的分析。
一、低频振荡的概念在电力系统中,低频振荡指的是频率较低的振荡现象。
通常,频率低于2Hz的振荡被认为是低频振荡。
低频振荡会对电力系统的稳定性产生一定的影响,因此需要进行分析和控制。
二、低频振荡的原因低频振荡通常是由于电力系统中的系统参数失稳或失控所导致的。
下面列举了几个常见的低频振荡原因。
1. 功率系统失稳:当电力系统中的负载功率发生突变时,系统可能会出现低频振荡。
这是因为负载功率的突变会导致系统频率和功角的变化,从而引起系统的不稳定性。
2. 电力系统设备故障:电力系统中的设备故障也可能引发低频振荡。
例如,变压器的短路故障、发电机的失速等都可能导致低频振荡的发生。
3. 控制系统失效:电力系统中的控制系统对于稳定性起着至关重要的作用。
当控制系统失效时,可能会引发低频振荡。
例如,自动电压调节器(AVR)失效、励磁系统故障等都可能导致低频振荡的出现。
三、低频振荡的影响低频振荡对电力系统的影响主要表现在以下几个方面。
1. 频率稳定性影响:低频振荡会导致电力系统中的频率波动,从而影响到电力负荷的正常运行。
如果频率波动过大,可能会导致负载设备的故障甚至损坏。
2. 功率稳定性影响:低频振荡也会引起电力系统中的功率波动,导致电力传输的不稳定性。
这会降低电力系统的传输效率,并可能引发更大范围的电力系统失稳。
3. 控制系统失效:低频振荡如果长时间持续,可能会导致电力系统中的控制系统失效。
这将进一步加剧低频振荡和整个系统的不稳定性。
四、低频振荡的稳定性分析方法为了保证电力系统的稳定性,我们需要对低频振荡进行稳定性分析。
下面介绍几种常用的稳定性分析方法。
1. 功率-角稳定性分析:这种方法通过分析电力系统中发电机的功率-角特性曲线,来判断系统是否存在低频振荡的风险。
电力系统的低频振荡

发电机的转子角、转速,以及相关电气量,如线路功率、母线电压等发生近似等幅或增幅的振荡,因振荡频率较低,一般在0.1-2.5Hz,故称为低频振荡。
其产生的原因主要为电力系统中发电机并列运行时,在扰动下发生发电机转子间的相对摇摆,并在缺乏阻尼时持续振荡导致。
低频振荡是随着电网互联而产生的。
联网初期,同步发电机之间联系紧密,阻尼绕组可产生足够的阻尼,低频振荡少有发生。
随着电网互联规模的扩大,高放大倍数快速励磁技术的广泛采用,以及受经济性、环保等因素影响下电网的运行更加接近稳定极限,在世界各地许多电网陆续观察到低频振荡。
大致可分为局部模式振荡和区域间模式振荡两种。
一般来说,涉及机组越多、区域越广,则振荡频率越低。
低频振荡的多重扰动特征一般认为,低频振荡是电力系统在遭受扰动后联络线上的功率摇摆。
系统动态失稳是扰动后由于阻尼不足甚至是负阻尼引起的发散振荡导致的。
失稳的因素主要是系统电气阻尼不足或缺乏合适的有功配合,通常是由以下几种扰动引发的:(1)切机;(2)输电线故障或保护误动;(3)断路器设备事故;(4)损失负荷。
扰动现象一般要经历产生、传播、消散的过程,在传播过程中可能引起新的扰动,同时针对扰动的操作本身也是一种扰动。
所以,这些情况往往不是孤立的,而是相互关联的,在时间、空间上呈现多重现象。
这就是多重扰动存在的实际物理背景。
持续恶化的互相作用最终将导致系统失稳、解列,形成大规模的停电事故。
电厂系统低频振荡的现象及处理主要现象:系统频率在一定范围内振荡,且具有与同步振荡类似现象。
处理:1) 应根据振荡频率、振荡分布等信息正确判断低频振荡源;2) 如振荡源为本厂,则降低机组有功,直至振荡平息;3) 提高振荡区域系统电压;4) 若有运行机组PSS未投入,应立即将其投入。
电力系统低频振荡鉴别及控制技术研究

电力系统低频振荡鉴别及控制技术研究随着电力系统的快速发展,低频振荡问题越来越突出。
低频振荡可以导致电路中电能的损失、对设备产生破坏、系统稳定性丧失等问题,严重危及电网的运行安全。
因此,研究电力系统低频振荡鉴别及控制技术具有相当的重要性。
低频振荡的成因低频振荡是电力系统中一种不稳定的振荡,其频率通常在0.1~2Hz之间。
低频振荡涉及到多种因素,如系统负荷、地形地貌、交流线路传输性能等。
其中,负荷扰动是引起低频振荡的主要因素。
当负荷变化不均匀或者负荷增加时,会产生系统频率扰动,从而导致低频振荡的发生。
低频振荡鉴别技术低频振荡鉴别技术是指通过采集实时数据,利用数学模型进行分析,从而确定是否存在低频振荡并对其进行识别的过程。
低频振荡鉴别技术涉及到多学科的知识,如电力系统理论、数据分析、算法等。
目前,常用的低频振荡鉴别技术主要包括功率谱分析、小波分析、时频分析、奇异值分解等。
功率谱分析是一种较为直观的低频振荡鉴别方法。
它通过对电压或电流信号进行傅里叶变换,将信号分解为一系列频率成分。
然后再计算每一频率成分对应的功率谱密度,进而确定是否存在低频振荡。
小波分析是一种局部频率分析方法,它可以对信号进行精细分解,从而获得更加准确的频率信息。
通过对低频信号进行小波分析,可以更加清晰地观测低频振荡的特征,从而提高鉴别准确度。
时频分析是将功率谱和小波分析的优点结合起来,能够同时显示信号的频率和时间特性。
通过时频分析方法,可以精确地确定低频振荡持续时间、振幅大小、振动频率等重要参数。
奇异值分解是一种线性代数分析方法,它可以将原始数据分解成矩阵形态,进而分离出不同频率成分。
因此,奇异值分解也被用于低频振荡的鉴别与分析。
低频振荡控制技术低频振荡控制技术是指针对低频振荡进行控制的方法,它可以通过调节各种设备的参数,改善电网的稳定性,从而达到控制低频振荡的目的。
中央化调度、相邻节点协调调节等方法是低频振荡控制的传统手段,但这些方法存在调节速度较慢、控制效果不理想等缺陷。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
冬季方式
136.35 343.57 134.74 369.07 118.07 1101.81
• 扰动
东北
高姜线
f1
华北
辛聊线
山东
辛嘉线
川渝
万龙线、万三线
f2
华中
2000-10-9
• 扰动1
(a)东北-华北
(b)华北-华中
(c)川渝-华中
(c)山东-华北
2000-10-9
• 扰动2
(a)东北-华北
k ,l , j R2
n
n
h
2
j kl
y k 0 y l 0 e k l t
k 1 l 1
k ,l , j R2
n k 1
n l 1
C
j kl
yk0
yl0
te jt
k ,l , j R2
xi t
n
uij
y j0
n
n h2kjl yk0 yl0
e
jt
j1
• 0.27 Hz oscillation is poorly damped
MALN_Malin_Bus_Voltage_VMag
550 548 546 544 542 540 538 536 534
60
MALN_Malin_Bus_Voltage_VMag vs time
80
100
120
140
160
LOAD SVC
P
P
PDC
LOAD SVC
P
SVC
LOA D
LOAD
2000-10-9
开始 读取PMU数据
4.2 流程图
扰 动?
Yes
No
Ambient数据的 振荡模式分析
受扰轨线的振荡 模式分析 -
滑动窗口模式校核
滑动窗口模式校核
2000-10-9
存在
Yes
弱阻尼/负阻尼模式?
No
预警 控制触发
xT
H1x
xT Hnx
xuy U 可逆
y Λy F 2Y
yzh2(z)
忽略3阶及
z Λ zO 3
z Λz
当不存在2
以上高阶项
次谐振时
2000-10-9
zj j zj
yj t
zj0ejt
n
n
h2k j z lk0zl0ek lt
k 1l 1
x itnu iz jj0 e jtnu i j n nh 2 k jz lk0 zl0 e k lt
k1 l1
k,l, jR2
n
n
n
uij
h2 kjl
yk0
yl 0 e k
l
t
j1 k1 l1
k,l, j R2
n
j1
n k 1
n l 1
uij Ckjl
yk0
yl 0
te j t
k,l, j R2
2000-10-9
n
xi t
L ijM ijtejtn
n
K k i e lk lt
Negative damping Growing 0.24 Hz oscillations
TVA Cumberland event
2000-10-9
1.3 功角稳定性
小扰动功角稳定性与大扰动功角稳定性
2000-10-9
1、绪论 2、低频振荡机理 3、电力系统低频振荡分析方法 4、振荡监控系统
2000-10-9
• 超低频振荡
认为系统中出现的超低频振荡跟发电机调速器有关。
2000-10-9
1、绪论 2、低频振荡机理 3、电力系统低频振荡分析方法 4、振荡监控系统
2000-10-9
3.1 基于模型的解析方法 • 特征根方法
2000-10-9
xuy
泰勒展开
忽略高阶项
U 可逆
x f (x)
xAxH.O. .T
电力系统低频振荡
1、绪论 2、低频振荡机理 3、电力系统低频振荡分析方法 4、振荡监控系统
2000-10-9
1.1 引言
1 2
3 4
正阻尼 Oscillations damp out
2000-10-9
1
3
2
负阻尼 Growing oscillations
1.2 大停电事故
世界范围内的大停电事故的发生:
y3
j
j y2 j j y3 j
n
k 1 n
n
Ckjl y1k y1l
l 1
n
Ckjl y1k y2l
y2k y1l
k 1 l1
2000-10-9
忽略2阶以 上的高阶项
y j t y1 j t y 2 j t
y j0
n
n
h
2
j kl
yk0
yl0
e jt
k 1 l 1
2000-10-9
稳定
振荡型稳定 非振荡型稳定
j
不稳定
j
r+ j
振荡型失稳
1
等幅振荡
j
r j
非振荡型失稳
图3-1 特征值的类型与系统的动态模式
2000-10-9
• 正规形方法
泰勒展开 x f (x)
x Ax 12xxTTHH 1nxx H.O.T.
忽略2阶及 以上高阶项
x
Ax
1 2
(b)华北-华中
(c)川渝-华中
2000-10-9
(c)山东-华北
1、绪论 2、低频振荡机理 3、电力系统低频振荡分析方法 4、振荡监控系统
2000-10-9
4.1 振荡监控系统
• 目的 ▪ 早期发现弱阻尼/负阻尼振荡 ▪ 实施控制
• PMU给OMS带来可能 ▪ PMUs 数量增加 ▪ 实时监控的要求 ▪ 局部模式/区域模式监控
180
Time (s)
2000-10-9
TVA Website example
2000-10-9
TVA Website example
谢谢!
2000-10-9
x Ax
y u1AuΛy
y it u T ix 0 e it y i0 e it
x i t u i 1 y 1 0 e 1 t u i 2 y 2 0 e 2 t u iy n 0 e n t
2000-10-9
电力系统的动态行为
电力系统的动态模式
非振荡型失稳模式 振荡型稳定模式 振荡型失稳模式
2000-10-9
3.3 基于受扰轨迹的模式提取方法 • 平稳信号的模式提取方法:Prony方法 • 非平稳信号的模式提取方法:小波方法、HHT方法
2000-10-9
受扰轨迹的时变非线性振荡模式: 时变振荡频率: 时变振荡阻尼:
2000-10-9
功角/(o)
280 176 72 -32 -136 -240
2000-10-9
2000-10-9
• 自参数(互参数)谐振
系统的一个自然模式作为周期性扰动作用于另一个自然模式的现象。
Tamura Y, Yorino N. Possibility of Auto- & Hetero-Parametric Resonance in Power Systems and Their Relationship with Longterm Dynamics. IEEE Trans on Power Systems, 1987, 2 (4): 890~896
j 1
k 1l 1
其中: Lij uij yj0 kn 1l n1h2kj y lk0yl0 k,l,j R2
Mij n n uijCkjyl k0yl0
k1l1
k,l,jR2
Kki
lyk0yl0
n
uijh2kj
l
j1
k,l,jR2
2000-10ห้องสมุดไป่ตู้9
3.2 模型解析法的局限性 • 不能计及相继故障以及离散控制的影响; • 不能计及时滞环节等本质非线性因素的影响; • 无法计及时变因素的影响。
Yorino N, Sasaki H, Tamura Y, et al. A Generalized Analysis Method of Auto-Parametric Resonance in Power Systems. IEEE Trans on Power Systems, 1989, 4 (3): 1057~1064
2.1 低频振荡的机理
• 阻尼转矩不足
F. P. deMello, C. Concordia. Concepts of synchronous machine stability as affected by excitation control. IEEE Transactions on Power Apparatus and Systems, PAS-88 316-329. Apr. 1969.
1.2 Hz at +1.5% damping. Local Mode.
840
Nov. 29th 2007 TVA event
860
880
900
Time (s)
920
940
2000-10-9
• WECC Aug. 4, 2000
• Alberta system separated at 19:56 GMT
2000-10-9
• 强迫功率振荡
认为当系统中存在持续的周期功率扰动且扰动频率接近于系统的固有 频率时,会引起大幅度的功率波动,导致低频振荡的发生。