电力系统低频振荡的产生原因及危害性

合集下载

电力系统低频振荡的源头识别及抑制

电力系统低频振荡的源头识别及抑制

电力系统低频振荡的源头识别及抑制一、概述电力系统低频振荡是电力系统中一个常见的问题,会严重影响电力系统的稳定运行。

在电力系统中,低频振荡大多数都是由电力系统的调节系统和功率系统之间的相互作用引起的。

因此,准确地识别低频振荡的源头是电力系统治理的重要一环。

这篇文章将介绍电力系统低频振荡的源头识别及抑制方法。

二、电力系统低频振荡的概述电力系统低频振荡指的是电力系统中的频率在0.1Hz到1Hz范围内的振荡。

低频振荡会使电力系统中的负载和发电机之间的功率流动不稳定,最终导致电力系统失稳。

通常电力系统低频振荡会在发电机、输电线路、变电站和用户负载之间发生。

三、电力系统低频振荡的源头首先,电力系统中的低频振荡可能由多个因素引起,例如负载变化、容量调整、运营策略等。

然而,电力系统的调节系统和功率系统之间的相互作用是低频振荡的主要源头。

调节系统和功率系统之间的相互作用是指在电力系统中,调节系统监测电力系统中的电压和频率,并通过控制功率系统来保持稳定。

然而,当电力系统中的功率系统的行为与预期不符,调节系统就会试图纠正这种情况,这使得系统变得不稳定,从而导致低频振荡。

四、电力系统低频振荡的识别方法四.a 记录数据为了识别低频振荡,可以使用功率系统工具来记录数据。

其中一种工具是称为振荡解析程序的计算机程序。

这种程序可以发现低频振荡,并记录下电力系统中不同点之间的相对相位。

四.b 使用频率扫描另一种识别低频振荡的方法是使用频率扫描技术。

该技术使用一些工具将扫描信号输送到电力系统中的几个位置,以确定振荡频率和幅度。

使用该方法可以确定出低频振荡的源头。

五、电力系统低频振荡的抑制方法五.a 激励控制一种常见的低频振荡抑制方法是使用激励控制。

激励控制是指在调节系统中添加人工信号,以抑制低频振荡。

这种方法可以调节因子并纠正电力系统中可能导致低频振荡的行为。

五.b 阻尼控制另一种常见的低频振荡抑制方法是使用阻尼控制。

阻尼控制是指在电力系统中的调节器中添加阻尼控制器,在调节器中添加人工阻尼,以抑制振荡。

电力系统中的低频振荡监测与抑制方法研究

电力系统中的低频振荡监测与抑制方法研究

电力系统中的低频振荡监测与抑制方法研究1. 引言电力系统是现代社会的重要基础设施,稳定运行对于保障国民经济的正常运行和人民生活的便利至关重要。

然而,由于电力系统的复杂性和不可控制因素的存在,系统中常常出现低频振荡,给系统的稳定运行带来了严重威胁。

因此,研究电力系统中的低频振荡监测与抑制方法,对于确保电力系统的安全稳定运行具有重要意义。

2. 低频振荡的危害低频振荡指的是电力系统中频率低于系统基频的振荡,通常在0.1-1 Hz范围内。

这种振荡会引起系统电压和频率的波动,导致电力设备的过电流、过电压等问题,对系统稳定性造成威胁。

低频振荡还会对用户设备造成损坏,影响用电质量,甚至引发整个系统的崩溃。

因此,对低频振荡进行监测和抑制是至关重要的。

3. 低频振荡监测方法3.1 电流与电压信号分析低频振荡通常导致电压和电流信号的振荡,通过对电压和电流信号进行频谱分析可以发现低频振荡的存在。

常用的频谱分析方法有傅里叶变换和小波变换等。

3.2 相角差分算法相角差分算法是测量系统振荡频率和阻尼的一种有效方法。

通过测量相邻两个采样点之间的相角差,可以计算出系统振荡频率,并可以通过相角的变化率来判断系统是否进入振荡状态。

4. 低频振荡抑制方法4.1 系统参数调整系统参数调整是对低频振荡进行抑制的一种常用方法。

通过调整发电机励磁系统和自动电压调整器(AVR)的参数,可以提高系统的阻尼,减小振荡的幅度。

4.2 新型控制策略近年来,研究人员提出了一系列基于控制理论的新型控制策略用于低频振荡的抑制。

例如,模糊控制、神经网络控制和自适应控制等方法在电力系统中得到了广泛应用,有效地抑制了低频振荡。

5. 实验与仿真研究为了验证监测和抑制方法的有效性,研究人员进行了大量的实验和仿真研究。

通过搭建小型电力系统实验平台或运用计算机仿真软件,可以模拟不同条件下的电力系统运行,从而研究和验证监测和抑制方法的可行性和效果。

6. 结论低频振荡对电力系统的稳定运行造成了极大的威胁。

弱电源电网低频振荡分析

弱电源电网低频振荡分析

弱电源电网低频振荡分析分析了弱电源电网低频振荡问题的形成机理,论述了振荡现象出现的原因,并如何防范和解决振荡问题,提出了相应的解决对策。

标签:低频振荡;分析;防范随着电力系统的快速发展,远距离、负荷重输电系统已逐步投入运行,快速自动励磁调节器与快速励磁系统的应用与普及,使得电力系统面临着各类低频振荡问题,对电力系统的运行造成了很大影响。

深入分析和探索电网低频振荡问题,对于电力系统的可靠运行有着极大的现实意义。

1 低频振荡的形成机理电力系统中,发电机经输电线路处于并列运行状态时,在扰动的影响下,发电机转子间会出现互相摇摆的现象,且在缺乏弱阻尼或是负阻尼时,其振荡频率将保持在0. 2-2. 5H,一般也叫低频振荡。

与此同时,在输电线路上,同样也会出现这样的振荡现象。

发电机电磁力矩通常可分为同步力矩(PE)与阻尼力矩两种类型,前者和转子角度变化率的相位相同,而后者则与转速偏差(也就是转子速度变化率)的相位相同。

假如同步力矩不够,则可能出现滑行失步现象;而如阻尼力矩过小,则可能引起振荡失步。

现有的研究大多表明:低频振荡的形成机理,即在某种特定情形下,系统所具有的负阻尼作用与系统电机、机械以及励磁绕组等方面的正阻尼相互抵消,导致系统总阻尼变小甚至为负,当系统阻尼较大时,自发振荡很少会出现,且在扰动后会很快消失;当系统阻尼>零,阻尼相对偏小的情况下(弱阻尼),受扰动影响,振荡可能需要较长时间后方可平息如果振荡平息前又发生了新的扰动,那么我们观察到的持续振荡现象可能会时大时小:当系统阻尼<0(负阻尼),则可能会形成自发振荡,且幅值还会慢慢上升。

2 电力系统低频振荡原因分析迄今为止,对于低频振荡的诱因尚无确切定论,最广泛接受的是欠阻尼机理。

然而,该机理仍无法解释系统出现的各种异常动态行为。

为此,近年来强迫振荡机理和谐振机理等其他机理解释重新成为人们讨论的热点。

一是模态谐振机理,电力系统的线性和模态随参数的变化而变化,当两个或多个阻尼振荡模态变化至接近或者相同的状态,由于相互影响导致一个状态变得不稳定。

电力系统低频振荡的原因

电力系统低频振荡的原因

电力系统低频振荡的原因引言电力系统是现代社会不可或缺的基础设施,它为我们提供了稳定的电能供应。

然而,有时候电力系统会出现低频振荡问题,给系统的稳定运行带来困扰。

本文将探讨电力系统低频振荡的原因,以及可能导致这些振荡的因素。

低频振荡概述低频振荡是指电力系统中频率较低的周期性波动。

一般情况下,电力系统的标准工作频率为50Hz或60Hz,而低频振荡往往发生在0.1Hz到1Hz范围内。

这种振荡可能导致电网不稳定、设备损坏甚至停电。

常见原因动力系统负载变化动力系统负载变化是引起低频振荡的常见原因之一。

当负载突然增加或减少时,会导致发电机和负载之间的失衡,从而引起低频振荡。

这种失衡可能是由于大型工业设备启动或停止、大规模用电设备切换等原因引起的。

发电机调节不当发电机是电力系统的核心组成部分,它负责将机械能转换为电能。

发电机调节不当可能导致低频振荡。

如果发电机的调节系统响应缓慢或不灵敏,就会导致频率波动,从而引起低频振荡。

线路参数变化电力系统中的线路参数变化也可能导致低频振荡。

线路的阻抗、电感和电容等参数会受到温度、湿度和环境条件等因素的影响而发生变化。

这些变化可能导致系统的谐振现象,从而引起低频振荡。

控制系统故障控制系统是保持电力系统稳定运行的关键组成部分。

控制系统故障可能导致低频振荡。

自动发电机控制器(AVR)故障可能导致发电机输出功率不稳定,从而引起低频振荡。

高压直流输电系统干扰高压直流输电系统在长距离输送大功率时具有优势,但它也可能对交流输电网产生干扰。

由于高压直流输电系统的存在,可能会引起电力系统中的低频振荡。

振荡的影响低频振荡对电力系统的影响是严重的。

它可能导致设备损坏,包括发电机、变压器和开关设备等。

低频振荡可能导致电网不稳定,从而引起停电和能源供应中断。

低频振荡还可能对用户造成经济损失,并对社会生活产生负面影响。

预防和控制为了预防和控制低频振荡问题,需要采取一系列措施。

应确保发电机和负载之间的平衡。

电力系统低频振荡的成因重新解析

电力系统低频振荡的成因重新解析

电力系统低频振荡的成因重新解析电力系统低频振荡是指在电力系统中出现的频率较低且持续一段时间的振荡现象。

这种振荡通常具有较大的振幅,对电力系统的稳定性和可靠性产生负面影响。

在过去的研究中,对电力系统低频振荡的成因进行了一定的解析,但是由于电力系统的复杂性和多变性,对于该问题的理解和解释仍有待进一步深入。

为了重新解析电力系统低频振荡的成因,我们需要从其根本原因出发,即电力系统的动态特性和稳定性。

电力系统由发电机、变压器、输电线路、负载等多个组成部分组成,它们之间通过复杂的电力网相互连接。

系统中存在大量的多相流动和耦合效应,以及动态响应和稳态响应之间的相互作用。

电力系统低频振荡的成因可能与电力系统的固有特性有关。

电力系统中的各个组成部分都具有一定的惯性和阻尼特性,如发电机的转子惯性、变压器的电感和阻尼、输电线路的阻抗等。

这些特性在系统负荷发生变化或发生故障时会引起系统的动态响应,可能导致系统振荡的发生。

电力系统中还存在很多复杂的非线性和时变特性,如各种控制设备、保护装置等,它们的作用也可能对系统的稳定性产生影响。

电力系统低频振荡的成因还与系统运行状态有关。

电力系统是一个大规模的复杂网络,其中包含了多个节点和支路。

系统的运行状态是指各节点和支路的电压、电流、功率等参数的数值。

当系统运行状态接近不稳定边界时,系统的动态响应会增加,可能引发低频振荡。

当发电机负荷过重或输电线路过载时,系统容易产生低频振荡。

还有一些外部因素,如输电线路的突然故障、恶劣天气条件等,也可能对系统的稳定性产生影响。

电力系统低频振荡的成因还与系统的控制方法和运行策略有关。

电力系统通过各种控制设备和调度控制中心来实现对系统的监视和控制。

这些控制方法和运行策略的选择对系统的稳定性和抗扰性产生重要影响。

调度中心对系统的发电机输出功率、变压器的变比、输电线路的有功和无功功率等进行调节时,可能引发系统的低频振荡。

不合理的控制策略和参数设置也可能导致系统的不稳定。

电力系统低频振荡的原因及抑制方法分析

电力系统低频振荡的原因及抑制方法分析

电力系统低频振荡的原因及抑制方法分析电力系统低频振荡的原因及抑制方法分析随着电力系统低频振荡对系统稳定性危害的逐渐显现,对系统低频振荡的分析越来越受到关注,本文分析了系统低频振荡产生的原因,比拟了常见的抑制低频振荡的措施,比照了优缺点,对柔性交流输电系统技术在抑制低频振荡中的应用进行展望。

【关键词】低频振荡抑制措施电力系统电力系统联网开展初期,发电厂同步发电机联系较为紧密,阻尼绕组会产生足够大的阻尼,抑制振荡开展,低频振荡在那时少有产生。

随着电网规模互联的不断扩大,出现了大型电力系统之间的互联,电力系统联系因而变得越来越密切,世界许多地区电网都发现了0.2Hz至2.5Hz范围内的低频振荡,低频振荡问题逐渐受到业内关注。

电力系统低频振荡一旦发生,如果没有及时抑制,将会导致电网不稳定乃至解列,严重威胁电力系统的稳定平安运行,甚至诱发联锁事故,造成严重后果。

1 低频振荡产生的原因1.1 负阻尼导致低频振荡有文献记载了运用阻尼转矩的方法,针对单机无穷大系统分析低频振荡的原因,最主要的原因是系统中产生负阻尼因素,从而抵消系统自有的正阻尼性,导致系统的总阻尼很小甚至为负值。

如果系统阻尼很小,在受到扰动后,系统中功率振荡始终难以平息,就会造成等幅或减幅的低频振荡。

如果系统阻尼为负值,在受到扰动后,低频振荡会不断积累增加,影响系统稳定。

1.2 发电机电磁惯性导致低频振荡电力系统中励磁控制是通过调整励磁电压来改变励磁电流,从而到达调整发电机运行工况的目的。

控制励磁电流就是在调整气隙合成磁场,它使得发电机机端的电压调整为所需值,同时也调整了电磁转矩。

故改变励磁电流大小便可以调整电磁转矩和机端电压。

在励磁自动控制时,因发电机励磁绕组有电感,励磁电流比励磁电压滞后,故会产生一个滞后的控制,滞后的控制在一定因素下会引起系统低频振荡。

1.3 电力系统非线性奇异现象导致低频振荡依据小扰动分析法,系统的特征根中有一个零根或一对虚根时,系统处在稳定边界;系统的特征根都为负实部时,系统处于稳定的;系统特征根中有一对正实部的复数或一个正实数时,系统处于不稳定。

电力系统低频振荡

电力系统低频振荡

电力系统低频振荡
是指电力系统中出现的周期为数秒到几十秒不等的周期性波动,其频率通常在0.1到1Hz之间。

这种现象通常被认为是由于电力
系统的不稳定性造成的,严重影响了电力系统的运行和稳定性。

首先,低频振荡的出现是由于电力系统中存在着多种不稳定因素。

例如,电力系统中的发电机、输电线路、变电站等设施都可
能会因为负载变化、故障等因素而引起不稳定性,从而导致低频
振荡的出现。

此外,电力系统中的负载、非线性负荷等因素也可
能对系统的稳定性造成影响,从而使低频振荡频繁出现。

其次,低频振荡的出现会严重影响电力系统的稳定性和运行。

低频振荡得以存在,可能会引起许多问题,如对发电机的运行造
成较大的损害、使电力系统的传输和分配受到限制等。

此外,低
频振荡还可能引起系统的崩溃和停电,给用户和生产带来极大的
影响。

因此,为了解决问题,需要采取一系列措施。

首先,应该加强
对电力系统的监测和预警,及时发现问题并采取应对措施。

其次,应该加强对电力系统的调控和优化,通过优化负载分配、提高发
电机和输电线路的质量等方式来提升系统的稳定性。

此外,还应
该加强对电力系统的维护和管理,定期检查设备,及时处理故障,防止故障扩大影响。

总之,低频振荡是电力系统面临的一个重大问题,需要全面、
科学、合理地进行管理和维护。

只有这样,才能保障电力系统的
稳定运行,为社会的发展和进步做出贡献。

电网低频振荡现场处置方案

电网低频振荡现场处置方案

电网低频振荡现场处置方案电网低频振荡是电力系统稳定性的一种常见故障。

其表现为电力系统中发生频率为0.1到1Hz之间的低频振荡现象,会对电力系统带来影响,进而危及电网的稳定运行。

因此,在低频振荡发生时,必须采取相应的应急处置措施,以保障电力系统的稳定运行。

故障原因与特征电网低频振荡的本质是由于系统的负荷变化引起的电力系统动态稳定性问题。

其主要原因包括负荷突变、抽水蓄能机组失效、输电线路烧毁、逆变器故障等。

一旦低频振荡发生,其特点包括波形半周期增幅较大、持续时间长、频率变化缓慢,且有可能伴随高频振荡等现象。

现场处置方案第一步:急停发电机组一旦发生低频振荡,首先要立即采取措施,急停发电机组。

经实践验证,急停发电机组能够有效减小电力系统中的不稳定因素,避免振荡现象进一步加剧。

具体操作包括:1.手动关闭发电机组断路器,保障发电机组不再向电网输入负荷;2.停止调速器控制,保障发电机组不再调节电网电压和频率;3.减缓发电机组旋转速度,将其逐渐降至静止状态。

第二步:减少负荷在急停发电机组之后,应该立即减少负荷,以减小电力系统的负荷变化,从而尽可能减少低频振荡的影响。

具体操作包括:1.手动关闭负荷断路器,依次将电网中的载荷逐个切断;2.对于无法切断负荷的情况,应该及时启动备用电源,并通过负荷转移等方式减少负荷。

第三步:加固电网硬件设施在减少负荷之后,应该加固电网硬件设施,以保障电力系统的稳定运行。

具体操作包括:1.对电力系统逐一进行巡视和检查,发现电线松动、绝缘子破损等情况应该立即修理;2.对于输电线路烧毁等情况,应该先进行临时补救措施,避免低频振荡加剧;3.加强对电力系统的监测和预警机制,及时发现低频振荡的迹象,避免事故的发生。

总结电网低频振荡是电力系统常见的稳定性故障,发生时必须采取相应的应急措施。

具体的处置方案包括:急停发电机组、减少负荷、加固电网硬件设施等措施,以保障电力系统的正常运行。

同时,我们应该加强对电力系统的预警和监测,提高电力系统的运行安全性,避免低频振荡事故的发生。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电力系统低频振荡的产生原因及危害性(图文) 2010-10-23 10:28:14 互联网浏览:1111 发布评论(0) 介绍电力系统低频振荡的产生原因及危害性、PSS的基本原理、参数、作用及现场试验过程,并对实验结果进行探讨。

关键词:低频振荡励磁调节器电力系统稳定器(PSS)1 前言天津大唐盘山发电有限责任公司是装机容量为2×600MW的新建大型火力发电厂,它同原有天津国华盘山发电有限责任公司的2×500MW俄罗斯汽轮机组构成一个电源点,经三条500KV线路向系统送电,地处京津唐负荷中心,对电网稳定起着重要的支撑作用。

作为京津唐电网最大的发电机组,其发电机励磁系统性能的优劣对华北电网的稳定运行具有举足轻重的影响。

根据国家十五计划实现全国联网的要求,华北电网规定,新建大型发电机组励磁系统应有系统稳定措施并调整好后才能并网运行,为此我厂先后完成了对3#、4#机组的电力系统稳定器(PSS)定值整定和试验工作,实验效果明显。

应国家电力调度中心要求,2003年6月18日,在华北电力调度局方式处的组织下PSS正式投入运行。

2 低频振荡产生原因分析及危害性电力系统低频振荡在国内外均有发生,通常出现在远距离、重负荷输电线路上,或者互联系统的弱联络线上,在采用快速响应高放大倍数励磁系统的条件下更容易出现。

随着电力电子技术的快速发展,快速励磁调节器的时间常数大为减少,这有效地改善了电压调节特性,提高了系统的暂态稳定水平。

但由于自动励磁调节器产生的附加阻尼为负值,抵消了系统本身所固有的正阻尼,使系统的总阻尼减少或成为负值,以至系统在扰动作用后的功率振荡长久不能平息,甚至导致自发的低频振荡,低频振荡的频率一般在0.2-2Hz之间。

(风险管理世界)低频振荡会引起联络线过流跳闸或系统与系统或机组与系统之间的失步而解列,严重威胁电力系统的稳定。

解决低频振荡问题成为电网安全稳定运行的重要课题之一。

3 PSS原理及其作用为了既能利用高放大倍数的励磁调节器又能避免其负阻尼效应,人们对传统励磁系统进行了改进。

对一个可能引起负阻尼的励磁调节器,向其中注入某些附加控制信号,使之可以提供正的阻尼,平息振荡,这就是PSS最基本的原理。

PSS作为一种附加励磁控制环节,即在励磁电压调节器中,通过引入附加信号,产生一个正阻尼转矩,去克服励磁调节器引起的负阻尼,控制量可以采用电功率偏差(△P)、机端电压频率偏差(△f)、过剩功率(△Pm)、和发电机轴速度偏差(△w)以及它们的组合等。

它不仅可以补偿励磁调节器的负阻尼,而且可以增加正阻尼,使发电机有效提高遏制系统低频振荡能力。

尽管PSS已是成熟的普遍技术,但它仍是消除互联电网负阻尼低频振荡最经济有效的方法。

当系统规模较小、互联程度较低时,系统振荡不明显,PSS整定不为人们所关注。

但在当今大电网互联迅速发展的情况下,PSS的作用已经引起人们的高度重视。

1994年我国南方联营电网发生的系统振荡事故是典型的一例,事后分析表明,若在此系统的主力机组上加装PSS,可以有效地阻尼振荡,防止有严重后果的动态稳定破坏事故的发生。

4 PSS的构成和传递函数早期的PSS由分立元件构成,在微机式励磁调节器中PSS由软件构成,我厂3#、4#机组均是哈尔滨电机厂生产的三机无刷励磁发电机组,型号为QFSN-600-2YH,励磁调节器采用英国ROLLS-ROYCE(简称R-R)公司的数字式励磁调节器, PSS完全由软件构成,其PSS输入信号采用发电机电功率即△P,其结构如图1:图1 电力系统稳定器(PSS)方框图ROLLS-ROYCE公司的电力系统稳定器(PSS)输入信号为发电机的负电功率信号,由此生成一个相位补偿及增益控制的调节信号以对有功功率振荡产生阻尼作用。

现场运行参数为:PSS自动投入值:0.3PU 功率,返回值0.14PU 功率,Kp=2、Te=10 、T1=2、T2=0.35、T3=4、T4=0.2、T5=0.05、T6=0.08、T7=0.05,PSS输出限幅:±5%5 PSS实验过程5.1 励磁系统在线无补偿频率特性的测量励磁控制系统无补偿频率特性即励磁系统滞后特性。

因励磁控制系统滞后特性的存在,加到励磁调节器的附加信号经滞后才能产生附加力矩。

测量励磁控制系统滞后特性应测量附加力矩对PSS迭加点的滞后角度。

因为在发电机高功率因数运行时,机端电压对PSS迭加点的滞后角度近似等于附加力矩对PSS迭加点的滞后角度。

实验时,发电机并网运行,记录有功、无功、机端电压值,PSS不投入,用频谱仪将噪音信号加入到调节器的相加点上,测量励磁系统的相频特性。

测得的励磁系统在线无补偿相频特性见表1。

表1 励磁系统相频特性由表1可见,在线无补偿频率特性基本正常,相位滞后比一般的交流励磁机励磁系统稍大些。

(励磁机励磁系统约为-40°---150°)5.2 励磁系统在线有补偿频率特性的测量有补偿频率特性由无补偿频率特性与PSS单元相频特性相加得到,用来反映PSS相位补偿后的附加力矩相位。

DL/T650-1998<<大行汽轮发电机自并励静止励磁系统技术条件>>提出有补偿频率特性在该电力系统低频振荡区内满足-80°至-135°要求,此角度以机械功率方向为零度。

一般试验采用的方法为:(1)断开PSS输入端,在PSS 输入端加噪声信号,测量机端电压相对PSS输入信号的相角。

(2)PSS环节的相角加上励磁控制系统滞后相角。

在现场试验中,PSS参数的预选择,可以用以上方法进行,此试验的目的是找出一组较好的PSS参数,并尽量使整个低频振荡频率范围内都得到较好的相位补偿。

由于R-R公司的励磁调节器中未设置PSS输入端,也未有相应的软件,此试验在现场无法进行。

因此,由中国电科院技术人员根据厂家提供的PSS的传递函数框图,预设置一组PSS参数,用MATLAB自编程序进行仿真计算。

PSS参数:Kp=2 Te=10 T1=2 T2=0.35 T3=4 T4=0.2 T5=0.05 T6=0.08 T7=0.05,计算所得PSS得相频特性见图2、Kp=2.0时幅频特性曲线见图3将计算所得的各低频振荡频率下PSS相位角Φp与现场测得的在线无补偿频率特性上同频率下励磁系统滞后角Φe相加,得到在线有补偿频率特性计算值。

计算所得的在线有补偿频率特性见下表2。

从表2可见,在低频震荡频率0.2Hz-1.7 Hz范围内都基本满足滞后-80°---(-135°)的要求,此组PSS参数是比较合适的。

图2 PSS系统相频特性曲线图3 Kp=2.0时幅频特性曲线表2 在线有补偿频率特性计算值其中:Φ=Φe + Φp5.3 阶越响应(以4#机组为例)试验条件:发电机并网运行,P=589.6MW Q=77.4Mvar Vt=19.44KV先进行PSS不投入时2%电压阶越响应试验。

通过调节励磁调节器的输出,在发电机机端产生±2%的阶越,录取发电机机端有功功率、机端电压、无功功率、励磁电压波形(见图4)。

由图4可见,在PSS未投入运行的条件下,做机端电压±2%阶越响应试验,在上阶越时有功功率产生三摆振荡,振荡频率为1.5Hz。

在下阶越时有功功率产生三摆振荡,振荡频率为1.5Hz。

通过自动励磁调节器(AVR)控制屏幕调整PSS增益Kp=0.5,投入PSS,重做±2%阶越试验。

通过调节励磁调节器的输出,在发电机机端产生±2%的阶越,录取发电机机端有功功率、机端电压、无功功率、励磁电压波形(见图5)。

图4 无PSS时的2%电压阶越响应图5 有PSS(Kp=0.5)时的2%电压阶越响应录波图由录波图5可见,PSS起到了抑制功率振荡的作用,无论是上阶越还是下阶越时,只产生一摆振荡,振荡频率为1.5Hz。

图6 有PSS(Kp=1.0)时的2%电压阶越响应录波图相同工况下,通过AVR控制屏幕调整Kp分别为1和2、3继续做±2%阶越试验,录取发电机机端有功功率、机端电压、无功功率、励磁电压波形(见图6、7、8),比较PSS的增益不同时阻尼功率振荡的能力。

以找出较合理的PSS增益值。

图7 有PSS(Kp=2.0)时的2%电压阶越响应录波图由录波图可见,PSS阻尼功率振荡能力随Kp的增大而逐步增强,无论是上阶跃还是下阶跃时,只产生一摆振荡,振荡频率为1.5Hz。

5.4 PSS增益整定通过以上Kp取不同值时的阶越响应结果可知,PSS阻尼功率振荡能力随Kp的增大而逐步增强,但是增益过大同样会产生不稳定危害,根据图3( Kp=2.0时的幅频特性计算曲线),PSS在0.5Hz-2Hz时的交流放大倍数约为0.3-0.5,已经足够大。

由图5至图8录波图结果,认为取Kp=2比较合适。

5.5 PSS反调试验对于采用发电机电功率信号的PSS,主要的副作用是无功反调,当通过减小原动机的输入功率来减少发电机的出力时,若调整速度较快,发电机的无功输出会突然大幅度增加,几秒后又恢复到原来无功水平。

如果增加了有功,则无功会会瞬间大幅度减少,几秒钟后恢复到原来水平。

无功反调现象严重时将对系统运行带来不利影响。

试验时,PSS投入运行,按正常运行增减负荷速度改变有功功率,观察调节器输出电压和电流,不出现随有功功率变化而大幅度摆动现象。

图8 有PSS(Kp=3.0)时的2%电压阶越响应录波图6 实验结论虽然本次实验出于安全性考虑未作大干扰的系统试验,只做了小干扰的机组实验,但是通过实验结果和录波图可看出PSS在增加系统阻尼,抑制发电机有功率振荡、提高系统稳定性方面有明显的效果。

同时由于我厂是三机无刷旋转励磁方式,虽然励磁调节器性能优越,反应速度很快,但是根据三机励磁方式本身特有的局限性,我们相信在自并励等其它快速励磁系统上,PSS的效果会更好。

相关文档
最新文档