高中数学两个向量的数量积知识点解析共32页

合集下载

高二数学选修2-1第三章空间向量的数量积运算知识点

高二数学选修2-1第三章空间向量的数量积运算知识点

高二数学选修2-1第三章空间向量的数量积运算知识点高二数学向量的数量积是《向量》这一章的重要内容,下面是店铺给大家带来的高二数学选修2-1第三章空间向量的数量积运算知识点,希望对你有帮助。

高二数学空间向量的数量积运算知识点定义:两个非零向量的夹角记为〈a,b〉,且〈a,b〉∈[0,π]。

定义:两个向量的数量积(内积、点积)是一个数量,记作a·b。

若a、b不共线,则a·b=|a|·|b|·cos〈a,b〉;若a、b共线,则a·b=+-∣a∣∣b∣。

向量的数量积的坐标表示:a·b=x·x'+y·y'。

向量的数量积的运算率a·b=b·a(交换率);(a+b)·c=a·c+b·c(分配率);向量的数量积的性质a·a=|a|的平方。

a⊥b 〈=〉a·b=0。

|a·b|≤|a|·|b|。

向量的数量积与实数运算的主要不同点1、向量的数量积不满足结合律,即:(a·b)·c≠a·(b·c);例如:(a·b)^2≠a^2·b^2。

2、向量的数量积不满足消去律,即:由a·b=a·c (a≠0),推不出b=c。

3、|a·b|≠|a|·|b|4、由 |a|=|b| ,推不出 a=b或a=-b。

高中数学学习方法(1)记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中拓展的课外知识。

记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。

(2)建立数学纠错本。

把平时容易出现错误的知识或推理记载下来,以防再犯。

争取做到:找错、析错、改错、防错。

达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。

向量的数量积

向量的数量积

向量的数量积向量的数量积是线性代数中的一个重要概念,也是向量运算中的一种常用运算。

它可以帮助我们计算向量之间的夹角、判断向量是否垂直等问题。

本文将详细介绍向量的数量积的定义、性质以及应用。

一、定义在二维空间或三维空间中,我们可以用向量来表示有方向和大小的量。

设有两个向量A和B,向量A的坐标表示为(A1,A2,A3),向量B的坐标表示为(B1,B2,B3),则向量A和向量B的数量积定义为:A·B=|A||B|cosθ,其中|A|表示向量A的长度,|B|表示向量B的长度,θ表示向量A和向量B之间的夹角。

二、性质1. 交换律:A·B=B·A2. 结合律:(kA)·B=A·(kB)=k(A·B),其中k为实数3. 分配律:(A+B)·C=A·C+B·C三、计算方法1. 若向量A和向量B的坐标分别为(A1,A2,A3)和(B1,B2,B3),则A·B=A1B1+A2B2+A3B3。

2. 若向量A和向量B的坐标形式为A=a1i+a2j+a3k和B=b1i+b2j+b3k,其中i,j,k分别是坐标轴上的单位向量,则A·B=a1b1+a2b2+a3b3。

四、应用1. 判断向量是否垂直:如果向量A·B的结果为0,则向量A和向量B垂直;如果向量A·B的结果大于0,则向量A和向量B之间的夹角为锐角;如果向量A·B的结果小于0,则向量A和向量B之间的夹角为钝角。

2. 计算向量的模长:|A|=√(A·A)3. 计算向量的夹角:cosθ=(A·B)/(|A||B|)4. 计算向量的投影:向量A在向量B上的投影记作projBA=(A·B)/|B|总结:本文详细介绍了向量的数量积的定义、性质和应用。

向量的数量积是一种常用的向量运算,可以帮助我们计算向量之间的夹角、判断向量是否垂直等问题。

高中数学两个向量的数量积知识点解析

高中数学两个向量的数量积知识点解析
第三章
§3.1 空间向量及其运算
3.1.3 两个向量的数量积
XUEXIMUBIAO
学习目标
1.掌握空间向量夹角概念及表示方法.
2.掌握两个向量的数量积的概念、性质、计算方法及运算规律.
3.掌握两个向量的数量积的主要用途,能运用数量积求向量夹角和判 断向量的共线与垂直.
内容索引
NEIRONGSUOYIN
→ → 解析 易知①②正确;AD1与A1B的夹角为 120° ,
∴③不正确.故选B.
1
2
3
4
5
2 4.已知 a, b 为两个非零空间向量, 若|a|=2 2, |b|= 2 , a· b=- 2, 则 〈a, b〉 3π 4 =______.
a· b 2 3π 解析 cos〈a,b〉= =- 2 ,∴〈a,b〉= 4 . |a||b|
→ → (3)EF· DC; → → 1→ → 解 EF· DC=2BD· DC 1→ → → → =2|BD|· |DC|cos〈BD,DC〉 1 1 =2cos 120° =-4. → → (4)AB· CD. → → → → → → → → → 解 AB· CD=AB· (AD-AC)=AB· AD-AB· AC
k (3)空间向量没有除法运算:即若 a· b=k,没有 a= . b
跟踪训练1
已知长方体ABCD-A1B1C1D1中,AB=AA1=2,AD=4,E为侧面
AB1的中心,F为A1D1的中点.试计算:
→ → (1)BC· ED1;
解 → → 如图,设AB=a,AD=b,
→ AA1=c,则|a|=|c|=2,|b|=4,
a· b=b· c=c· a=0.
1 → → 2 2 c - a + b BC· ED1=b· = | b | = 4 =16. 2

高中数学第六章平面向量及其应用-向量的数量积课件及答案

高中数学第六章平面向量及其应用-向量的数量积课件及答案

【对点练清】 1.(2020·全国卷Ⅱ)已知单位向量 a ,b 的夹角为 45°,ka -b 与 a 垂直,则 k=_____.
解析:由题意,得 a ·b =|a |·|b |cos 45°= 22.因为向量a =ka
2-a ·b =k-
22=0,解得
【学透用活】 [典例 3] (1)已知 e1 与 e2 是两个互相垂直的单位向量,若向量 e1+ke2 与 ke1+e2 的夹角为锐角,则 k 的取值范围为_________. (2)已知非零向量 a ,b 满足 a +3b 与 7a -5b 互相垂直,a -4b 与 7a -2b 互相垂直,求 a 与 b 的夹角. [解析] (1)∵e1+ke2 与 ke1+e2 的夹角为锐角, ∴(e1+ke2)·(ke1+e2)=ke21+ke22+(k2+1)e1·e2=2k>0,∴k>0.当 k =1 时,e1+ke2=ke1+e2,它们的夹角为 0,不符合题意,舍去.综上, k 的取值范围为 k>0 且 k≠1. 答案:(0,1)∪(1,+∞)
(3)设非零向量 a 与 b 的夹角为 θ,则 cos θ>0⇔a ·b >0.
(√)
(4)|a ·b |≤a ·b .
( ×)
2.若向量 a ,b 满足|a |=|b |=1,a 与 b 的夹角为 60°,则 a ·b 等于 ( )
1 A.2
3 B.2
C.1+
3 2
D.2
答案:A
3.已知|a |=1,|b |=2,设 e 是与 a 同方向上的单位向量,a 与 b 的夹 角为π3,则 b 在 a 方向上的投影向量为______.
(4)|a ·b |≤__|_a_|_|_b_|.
2.平面向量数量积的运算律:

高中数学公式大全向量的数量积与向量的投影公式

高中数学公式大全向量的数量积与向量的投影公式

高中数学公式大全向量的数量积与向量的投影公式高中数学公式大全:向量的数量积与向量的投影公式在高中数学中,向量是一个重要的概念。

它不仅可以用于表示力、速度、位移等物理量,还可以用于解决几何和代数问题。

在研究向量时,数量积和投影是两个经常被使用的概念。

本文将为您介绍向量的数量积与向量的投影公式,帮助您更好地理解和应用这些公式。

一、向量的数量积向量的数量积是两个向量的乘积,它的结果是一个标量。

假设有两个向量a和b,它们的数量积写作a·b或者ab,计算公式如下:a·b = |a| × |b| ×cosθ其中,|a|和|b|分别表示向量a和b的模,θ表示向量a和b之间的夹角。

向量的数量积有以下几个重要的性质:1. a·b = b·a (交换律)2. a·(kb) = k(a·b) (数乘结合律)3. a·(b+c) = a·b + a·c (分配律)二、向量的投影向量的投影是指一个向量在另一个向量上的投影长度,它的结果是一个标量。

假设有一个向量a和一个非零向量b,它们之间的夹角为θ,那么向量a在向量b上的投影长度计算公式如下:projb a = |a| × cosθ其中,|a|表示向量a的模,θ表示向量a和向量b之间的夹角。

向量的投影有以下几个重要的性质:1. 投影是一个与向量b同向或反向的向量,其长度小于等于向量a的长度。

2. 如果投影为正值,则向量a与向量b的夹角在0度到90度之间;如果投影为负值,则夹角在90度到180度之间。

三、向量的数量积与向量的投影公式的应用向量的数量积和投影在解决几何和代数问题时起着重要的作用。

下面将介绍一些应用。

1. 判断向量是否垂直如果两个向量的数量积为0,那么它们垂直。

数学表达式为a·b = 0。

2. 计算向量的模向量的模可以通过向量自身的数量积计算得到。

向量的数量积的概念讲解

向量的数量积的概念讲解

向量的数量积的概念讲解向量的数量积是指两个向量之间的数乘积。

在三维空间中,向量通常用箭头表示,例如AB。

向量的数量积通常用小括号“()”表示,例如(A,B),其中A和B为两个向量。

向量的数量积在向量运算中有着重要的应用。

向量的数量积取决于两个向量的长度和它们之间的夹角。

两个向量的数量积定义如下:(A, B) = A B cosθ其中,A 和B 分别是向量A和向量B的长度,θ是A和B之间的夹角。

这个公式意味着当两个向量的夹角为0或180度时,它们的数量积为正或负的最大值。

当两个向量垂直时,它们的数量积为0。

这个公式也可以写成:(A, B) = Ax Bx + Ay By + Az Bz其中,Ax、Ay和Az是向量A的x、y和z分量,Bx、By和Bz是向量B的x、y和z分量。

这个形式更直观,也更方便计算。

向量数量积的应用非常广泛,以下列举几个常见的方面:1.计算向量的模长向量的数量积可以用来计算向量的模长。

根据上述公式,对一个向量A,它的模长可以表示为:A = √(A·A)其中,A·A是向量A与它自己的数量积,也就是A的长度的平方。

这个公式可以推广到任意维度的向量。

2.计算向量之间的夹角向量的数量积可以用来计算两个向量之间的夹角。

两个向量之间夹角的余弦可以通过它们的数量积计算,即:cosθ= (A, B) / A B其中,A和B为两个向量。

这个公式也可以写成:cosθ= (Ax Bx + Ay By + Az Bz) / ( A B )注意,因为余弦值只在0到π之间取值,所以这个公式只能确定向量夹角的绝对值,而无法确定它们的正负或是具体的夹角角度。

3.求解向量的投影向量的数量积可以用来计算一个向量在另一个向量上的投影长度。

对于两个非零向量A和B,在B方向上的投影长度可以表示为:P = (A, e) / B其中,e是B的单位向量,即e = B / B这个公式的推导可以通过三角函数得到。

《两个向量的数量积》PPT课件

《两个向量的数量积》PPT课件

精选ppt
17
3.1.3
跟踪训练 3 如图所示,已知线段 AB 在平面 α 内,线段 AC⊥α,线段 BD⊥AB,线段 DD′⊥α 于 D′,如果∠DBD′=30°,AB=a,AC= BD=b,求 CD 的长.
解 由 AC⊥α,可知 AC⊥AB.
由∠DBD′=30°,可知〈C→A,B→D〉=60°,
=|b||c|cos 60°-|a||c|cos 60°=0, ∴C→C1⊥B→D,即 CC1⊥BD.
3.1.3
精选ppt
14
3.1.3
探究点三 利用数量积求向量的模
问题 类比平面向量,说出利用数量积求长度或距离的方法.
答案 利用数量积 a·b=|a||b|cos θ 知 a·a=|a||a|cos〈a,a〉=|a|2.
精选ppt
19
3.1.3
2.已知 a,b 均为单位向量,它们的夹角为 60°,那么|a+3b|等

(C )
A. 7 B. 10 C. 13 D.4
解析 |a+3b|2=(a+3b)2=a2+6a·b+9b2 =1+6·cos 60°+9=13.∴|a+3b|= 13.
精选ppt
20
3.如图所示,已知 PA⊥平面 ABC,∠ABC =120°,PA=AB=BC=6,则 PC 等于
精选ppt17313小结求向量的模可以转化为求向量的数量积求两点间的距离或某条线段的长度可以转化为求对应向量的模其中的关键是将线段长度用向量的模表示出来
3.1.3
3.1.3 两个向量的数量积
【学习要求】 1.掌握空间向量夹角的概念及表示方法,掌握两个向量的数量
积的概念、性质和计算方法及运算规律. 2.掌握两个向量的数量积的主要用途,会用它解决立体几何中

空间向量的数量积运算 高中数学新教材人教A版

空间向量的数量积运算 高中数学新教材人教A版

若 ∙ =k,能不能写成 =

(或

解析:由 ∙ =k,不能写成 =
有除法运算

= )的形式?



(或 = )的形式,即向量没


知识点一 空间向量的投影
思考5
对于三个均不为0的数a,b,c,有(ab )c =a(bc).
对于向量,,,( − )=( − )成立吗?为什么?
(3)因为AA’ · AD=5×3×cos
2
15
60°= ,AD
2
· AB=3×4×cos 90°=0
所以 =(++’)
= 2 + 2 + ’ 2 +2(·+·’+’·)
15
2
=42 +32 +52 +2(0+10+ )=85,所以 = 85.
= + .
将上式两边分别与向量作数量积运算,得
⋅ = ⋅ + ⋅ ,
因为 ⋅ =0, ⋅ =0(为什么?),所以 ⋅ =0.所以 ⊥ .
这就证明了直线垂直于平面α内的任意一条直线,所以 ⊥平面α.




课堂检测
1.如图,在正三棱柱ABC-A1B1C1中,若AB= BB1,则AB1与
在平面β上的投影向量.这时,向量,A′B′的夹角就是向量α所在直线
与平面β所成的角.

β



(3)

空间向量的数量积满足如下的运算律:
()·=(·),∈R
·=·(交换律)
·(+)=·+·(分配律)
知识点一 空间向量的投影
思考3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档