向量知识点题型归纳

合集下载

根据向量知识点总结及题型归纳

根据向量知识点总结及题型归纳

根据向量知识点总结及题型归纳一、向量的基本概念向量是由大小和方向确定的物理量,用箭头表示。

向量有两个重要特征:模和方向,用 |v| 和→v 表示。

A、向量的模:向量的模表示向量的大小或长度,用数值表示。

B、向量的方向:向量的方向表示从起点指向终点的直线方向,一般用角度或方向余弦表示。

二、向量的加减法A、向量的加法:向量相加按照平行四边形法则进行,首尾相接,和向量的起点为第一个向量的起点,终点为最后一个向量的终点。

即 A + B = C,表示从向量 A 的起点到向量 B 的终点的向量 C。

B、向量的减法:向量相减等于将减去的向量的方向反向,然后与要减的向量相加。

即 A - B = A + (-B),表示由向量 A 的起点到向量 B 的终点的负向量。

三、向量的数量积和向量积A、向量的数量积:向量的数量积是两个向量的模和它们的夹角的余弦的乘积。

记作A·B = |A||B|cosθ,其中 |A| 和 |B| 分别表示两个向量的模,θ表示两个向量的夹角。

B、向量的向量积:向量的向量积是两个向量的模和它们的夹角的正弦的乘积。

记作A×B = |A||B|sinθ,其中 |A| 和 |B| 分别表示两个向量的模,θ表示两个向量的夹角。

四、向量的题型归纳1、向量的加减法题:根据给定的向量,进行向量的加法或减法运算。

2、向量的数量积题:根据给定的向量,计算向量的数量积及其性质。

3、求模问题:根据已知的向量的模和方向,求解未知向量的模。

4、夹角问题:根据已知的向量和夹角,计算向量的数量积或向量的向量积。

5、平行四边形问题:根据已知的向量和平行四边形的性质,判断向量的关系。

6、垂直问题:根据已知的向量和垂直性质,判断向量的关系。

7、三角形面积问题:根据已知的向量,计算三角形的面积。

8、平面问题:根据已知的向量和平面的性质,判断向量的关系。

以上是根据向量的基本概念、加减法、数量积和向量积等知识点总结的,包括了常见的向量题型归纳。

高三数学向量专题复习(高考题型汇总及讲解)(1)

高三数学向量专题复习(高考题型汇总及讲解)(1)

向量专题复习向量是高考的一个亮点,因为向量知识,向量观点在数学、物理等学科的很多分支有着广泛的应用,而它具有代数形式和几何形式的“双重身份”能融数形于一体,能与中学数学教学内容的许多主干知识综合,形成知识交汇点,所以高考中应引起足够的重视。

一、平面向量加、减、实数与向量积 (一)基本知识点提示1、重点要理解向量、零向量、向量的模、单位向量、平行向量、反向量、相等向量、两向量的夹角等概念。

2、了解平面向量基本定理和空间向量基本定理。

3、向量的加法的平行四边形法则(共起点)和三角形法则(首尾相接)。

4、向量形式的三角形不等式:||a |-|b ||≤|a ±b |≤|a |+|b |(试问:取等号的条件是什么?);向量形式的平行四边形定理:2(|a |2+|b |2)=|a -b |2+|a +b |25、实数与向量的乘法(即数乘的意义)实数λ与向量的积是一个向量,记λ,它的长度与方向规定如下:(1)|λa |=|λ|²|a |;(2)当λ>0时,λa 的方向与a 的方向相同;当λ<0时,λa 的方向与a 的方向相反;当λ=0时,λ=,方向是任意的.6、共线向量定理的应用:若≠,则∥⇔存在唯一实数对λ使得=λ⇔x 1y 2-x 2y 1=0(其中=(x 1,y 1),=(x 2,y 2)) (二)典型例题例1、O 是平面上一 定点,A 、B 、C 是平面上不共线的三个点,动点P 满足).,0[||||+∞∈++=λλAC AB 则P 的轨迹一定通过△ABC 的( )A .外心B .内心C .重心D .垂心+是在∠BAC 的平分线上,∴选B例2、对于任意非零向量与,求证:|||-|||≤|±|≤||+||证明:(1)两个非零向量与不共线时,+的方向与,的方向都不同,并且||-||<|±|<||+||(3)两个非零向量a 与b 共线时,①a 与b 同向,则a +b 的方向与a 、b 相同且|a +b |=|a |+|b |.②a 与b 异向时,则a +b 的方向与模较大的向量方向相同,设|a |>||,则|+|=||-||.同理可证另一种情况也成立。

2023年高中数学基础知识梳理及基础题型归纳-立体几何模块-第七节 立体几何中的向量方法

2023年高中数学基础知识梳理及基础题型归纳-立体几何模块-第七节 立体几何中的向量方法

第七节 立体几何中的向量方法一、空间向量与平行关系【知识点11】直线的方向向量与平面的法向量 (1)直线的方向向量的定义直线的方向向量是指和这条直线平行或共线的非零向量,一条直线的方向向量有无数个. (2)平面的法向量的定义直线l ⊥α,取直线l 的方向向量a ,则a 叫做平面α的法向量. 注:直线的方向向量(平面的法向量)不唯一?【例1】如图3,已知ABCD 是直角梯形,∠ABC =90°,SA ⊥平面ABCD ,SA =AB =BC =1,AD =12,试建立适当的坐标系.(1)求平面ABCD 的一个法向量; (2)求平面SAB 的一个法向量; (3)求平面SCD 的一个法向量.【反思】1.利用待定系数法求平面法向量的步骤 (1)设向量:设平面的法向量为n =(x ,y ,z). (2)选向量:在平面内选取两个不共线向量,. (3)列方程组:由列出方程组. (4)解方程组:(5)赋非零值:取其中一个为非零值(常取±1). (6)得结论:得到平面的一个法向量. 2.求平面法向量的三个注意点(1)选向量:在选取平面内的向量时,要选取不共线的两个向量.(2)取特值:在求n 的坐标时,可令x ,y ,z 中一个为一特殊值得另两个值,就是平面的一个法向量.(3)注意0:提前假定法向量n=(x,y,z)的某个坐标为某特定值时一定要注意这个坐标不为0.[练习1]正方体ABCD­A1B1C1D1中,E、F分别为棱A1D1、A1B1的中点,在如图3­2­2所示的空间直角坐标系中,求:图3­2­2(1)平面BDD1B1的一个法向量;(2)平面BDEF的一个法向量.【知识点12】空间中平行关系的向量表示【类型一】用向量证明线线平行【例1】如图3­2­3所示,在正方体ABCD­A1B1C1D1中,E,F分别为DD1和BB1的中点.求证:四边形AEC1F是平行四边形.图3­2­3111111112EB1,BF=2F A1.求证:EF∥AC1.【类型二】用向量证明线面平行【例2】在正方体ABCD­A1B1C1D1中,M,N分别是CC1,B1C1的中点.求证:MN∥平面A1BD.【练习2】在如图所示的多面体中,EF⊥平面AEB,AE⊥EB,AD∥EF,EF∥BC,BC=2AD =4,EF=3,AE=BE=2,G是BC的中点,求证:AB∥平面DEG.【类型三】利用向量证明面面平行【例3】在正方体ABCD­A1B1C1D1中,M,N分别是CC1,B1C1的中点,试证明平面A1BD∥平面CB1D1.【练习3】如图3­2­9,在正方体ABCD­A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点.设Q是CC1上的点,则当点Q在什么位置时,平面D1BQ∥平面P AO?图3­2­9二、空间向量与垂直关系【知识点13】空间中垂直关系的向量表示【类型一】用向量证明线面垂直【例1】如图所示,正三棱柱ABC­A1B1C1的所有棱长都为2,D为CC1的中点.求证:AB1⊥平面A1BD.【练习1】如图3­2­15,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=2,AF=1,M是线段EF的中点.求证:AM⊥平面BDF.图3­2­15【类型二】用向量法证明面面垂直【例2】如图3­2­12所示,在直三棱柱ABC­A1B1C1中,AB⊥BC,AB=BC=2,BB1=1,E 为BB1的中点,证明:平面AEC1⊥平面AA1C1C.=2BD.求证:平面DEA⊥平面ECA.三、空间向量与空间角【知识点14】空间角的向量求解方法【类型一】求两条异面直线所成的角【例1】如图,在三棱柱OAB­O1A1B1中,平面OBB1O1⊥平面OAB,∠O1OB=60°,∠AOB =90°,且OB=OO1=2,OA=3,求异面直线A1B与AO1所成角的余弦值的大小.θ=φθ=π-φ点,则AE,SD所成的角的余弦值为多少?【类型二】求直线与平面所成的角【例2】如图,四棱锥P­ABCD中,P A⊥底面ABCD,AD∥BC,AB=AD=AC=3,P A=BC =4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明MN∥平面P AB;(2)求直线AN与平面PMN所成角的正弦值.【练习2】如图,在四棱锥P ­ABCD 中,平面P AD⊥平面ABCD ,P A ⊥PD ,P A =PD ,AB ⊥AD ,AB =1,AD =2,AC =CD = 5.(1)求证:PD ⊥平面P AB .(2)求直线PB 与平面PCD 所成角的正弦值.(3)在棱P A 上是否存在点M ,使得BM ∥平面PCD ?若存在,求AMAP 的值;若不存在,说明理由.【类型三】求二面角【例3】如图,在四棱锥P ­ABCD 中,AB ∥CD ,且∠BAP =∠CDP =90°.(1)证明:平面P AB ⊥平面P AD ;(2)若P A =PD =AB =DC ,∠APD =90°,求二面角A ­PB ­C 的余弦值.旋转轴旋转120°得到的,G 是DF ︵的中点.图3­2­24(1)设P 是CE ︵上的一点,且AP ⊥BE ,求∠CBP 的大小;(2)当AB =3,AD =2时,求二面角E ­AG ­C 的大小.【练习4】如图,在三棱锥P­ABQ中,PB⊥平面ABQ,BA=BP=BQ,D,C,E,F分别是AQ,BQ,AP,BP的中点,AQ=2BD,PD与EQ交于点G,PC与FQ交于点H,连接GH.(1)求证:AB∥GH;(2)求二面角D­GH­E的余弦值.四、空间向量与距离【知识点15】利用空间向量求距离(※)【例1】已知正方体ABCD-A1B1C1D1的棱长为2,E,F,G分别是C1C,D1A1,AB的中点,求点A到平面EFG的距离.【练习1】如图所示,在棱长为1的正方体ABCD-A1B1C1D1中,E,F分别为BB1,CC1的中点,DG=13DD1,过E,F,G的平面交AA1于点H,求D1A1到平面EFGH的距离.点到平面的距离:先确定平面的法向量,再求点与平面内一点的连线形成的斜线段在平面的法向量上的射影长.如图,设n=(a,b,c)是平面α的一个法向量,P0(x0,y0,z0)为α外一点,P(x,y,z)是平面α内的任意一点,则点P0到平面α的距离:d=|PP0→·n||n|=|a(x0-x)+b(y0-y)+c(z0-z)|a2+b2+c2.注:线面距离、面面距离都可以转化为点到平面的距离.。

空间向量知识点总结题型

空间向量知识点总结题型

空间向量知识点总结题型一、基本概念1. 空间中的向量空间中的向量是指具有大小和方向的量,在数学中以有向线段的形式表示,通常用字母加上一个箭头来表示向量,如a→。

2. 向量的运算空间中的向量可以进行加法、减法、数乘等运算。

加法运算是将两个向量的对应分量相加;减法运算是将两个向量的对应分量相减;数乘运算是将一个向量的每个分量都乘以一个实数。

3. 向量的模向量的模是指向量的大小,用||a||来表示,其计算公式为:||a|| = √(a1^2 + a2^2 + a3^2)。

二、向量的表示1. 分量表示空间中的向量可以用分量表示法来表示,即将向量投影到坐标轴上,得到三个分量。

例如,向量a可以表示为a = (a1, a2, a3)。

2. 向量的坐标向量的坐标通常用方向余弦来表示,即向量与坐标轴的夹角的余弦值。

向量a的坐标可表示为cosα,cosβ,cosγ。

三、向量的数量积和向量积1. 向量的数量积向量的数量积也称为点积,表示为a·b,其计算公式为a·b = a1b1 + a2b2 + a3b3。

其几何意义为:a·b = ||a|| ||b|| cosθ,其中θ为a与b之间的夹角。

2. 向量的向量积向量的向量积也称为叉积,表示为a×b,其计算公式为a×b = (a2b3 - a3b2, a3b1 - a1b3,a1b2 - a2b1)。

其几何意义为:a×b的大小为平行四边形的面积,方向垂直于平行四边形,满足右手定则。

四、空间中的直线和平面1. 空间中的直线空间中的直线可以用点和方向向量来表示,通常表示为l:r = a + λb,其中a为直线上的一个点,b为直线的方向向量,λ为参数。

2. 空间中的平面空间中的平面可以用一个点和法向量来表示,通常表示为Ax + By + Cz + D = 0,其中A、B、C为法向量的分量,D为平面到原点的距离。

五、空间向量的应用空间向量在物理、工程、计算机图形学等领域有广泛的应用,如力的合成、三维坐标系的运动、三维图形的计算等。

高三数学向量知识点题型总结

高三数学向量知识点题型总结

高三数学向量的知识点题型主要有以下几种:
1. 向量的概念和表示:这种题型会要求你理解向量的定义和性质,以及向量的表示方法。

2. 向量的运算:包括向量的加法、减法、数乘以及向量的数量积、向量积等。

3. 向量的坐标表示:要求你能够根据向量的坐标,利用向量的坐标运算来解决问题。

4. 向量的应用:这类题型通常会结合实际问题,要求你能够利用向量的知识来解决实际问题。

对于这些题型,你需要熟练掌握向量的概念和性质,以及向量的各种运算方法。

同时,你还需要理解向量的坐标表示,以及如何利用向量的坐标来进行运算。

最后,你需要能够将向量知识应用到实际问题中,以解决实际问题。

以下是一些学习向量的建议:
1. 理解向量的概念和性质:向量是一种有方向和大小的量,具有许多独特的性质。

理解这些性质是学习向量的基础。

2. 学习向量的运算:向量的运算包括加法、减法、数乘、数量积、向量积等。

这些运算都有其特定的规则和意义,需要认真学习。

3. 掌握向量的坐标表示:向量的坐标表示是一种方便快捷的表示方法,能够将向量转化为数轴上的点。

掌握这种表示方法能够使你更好地理解和应用向量。

4. 了解向量的应用:向量不仅仅是一种数学工具,也是一种重
要的物理和工程工具。

了解向量的应用能够使你更好地理解向量的意义和价值。

5. 做题巩固知识:通过做题来巩固和加深对向量的理解是一个有效的方法。

可以选择一些经典的向量题目进行练习,以加深对向量的理解。

空间向量知识点与题型归纳总结

空间向量知识点与题型归纳总结

空间向量知识点与题型归纳总结知识点精讲一、空间向量及其加减运算1.空间向量在空间,我们把具有大小和方向的量叫做空间向量,向量的大小叫做向量的长度或模.空间向量也可用有向线段表示,有向线段的长度表示向量的模,若向量a 的起点是A ,终点是B ,则向量a 也可以记作AB ,其模记为a 或AB .2.零向量与单位向量规定长度为0的向量叫做零向量,记作0.当有向线段的起点A 与终点B 重合时,0AB =. 模为1的向量称为单位向量. 3.相等向量与相反向量方向相同且模相等的向量称为相等向量.在空间,同向且等长的有向线段表示同一向量或相等向量.空间任意两个向量都可以平移到同一个平面,成为同一平面内的两个向量.与向量a 长度相等而方向相反的向量,称为a 的相反向量,记为a -. 4.空间向量的加法和减法运算(1)OC OA OB a b =+=+,BA OA OB a b =-=-.如图8-152所示.(2)空间向量的加法运算满足交换律及结合律 a b b a +=+,()()a b c a b c ++=++ 二、空间向量的数乘运算1.数乘运算实数λ与空间向量a 的乘积a λ称为向量的数乘运算.当0λ>时,a λ与向量a 方向相同;当0λ<时,向量a λ与向量a 方向相反. a λ的长度是a 的长度的λ倍.2.空间向量的数乘运算满足分配律及结合律()a b a b λλλ+=+,()()a a λμλμ=.3.共线向量与平行向量如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量,a 平行于b ,记作//a b .4.共线向量定理对空间中任意两个向量a ,b ()0b ≠,//a b 的充要条件是存在实数λ,使a b λ=. 5.直线的方向向量如图8-153所示,l 为经过已知点A 且平行于已知非零向量a 的直线.对空间任意一点O ,点P 在直线l 上的充要条件是存在实数t ,使OP OA ta =+①,其中向量a 叫做直线l 的方向向量,在l 上取AB a =,则式①可化为()()1OP OA t AB OA t OB OA t OA tOB =+=+-=-+②①和②都称为空间直线的向量表达式,当12t =,即点P 是线段AB 的中点时,()12OP OA OB =+,此式叫做线段AB 的中点公式.6.共面向量如图8-154所示,已知平面α与向量a ,作OA a =,如果直线OA 平行于平面α或在平面α内,则说明向量a 平行于平面α.平行于同一平面的向量,叫做共面向量.7.共面向量定理如果两个向量a ,b 不共线,那么向量p 与向量a ,b 共面的充要条件是存在唯一的有序实数对(),x y ,使p xa yb =+.推论:(1)空间一点P 位于平面ABC 内的充要条件是存在有序实数对(),x y ,使AP xAB y AC =+;或对空间任意一点O ,有OP OA x AB y AC -=+,该式称为空间平面ABC 的向量表达式.(2)已知空间任意一点O 和不共线的三点A ,B ,C ,满足向量关系式OP xOA yOB zOC =++(其中1x y z ++=)的点P 与点A ,B ,C 共面;反之也成立. 三、空间向量的数量积运算1.两向量夹角已知两个非零向量a ,b ,在空间任取一点O ,作OA a =,OB b =,则AOB ∠叫做向量a ,b 的夹角,记作,a b ,通常规定0,a b π≤≤,如果,2a b π=,那么向量a ,b 互相垂直,记作a b ⊥.2.数量积定义Aaaα图 8-154O已知两个非零向量a ,b ,则cos ,a b a b 叫做a ,b 的数量积,记作a b ⋅,即cos ,a b a b a b ⋅=.零向量与任何向量的数量积为0,特别地,2a a a ⋅=.3.空间向量的数量积满足的运算律: ()()a b a b λλ⋅=⋅,a b b a ⋅=⋅(交换律); ()a b c a b a c ⋅+=⋅+⋅(分配律). 四、空间向量的坐标运算及应用(1)设()123,,a a a a =,()123,,b b b b =,则()112233,,a b a b a b a b +=+++;()112233,,a b a b a b a b -=---;()123,,a a a a λλλλ=; 112233a b a b a b a b ⋅=++;()112233//0,,a b b a b a b a b λλλ≠⇒===; 1122330a b a b a b a b ⊥⇒++=.(2)设()111,,A x y z ,()222,,B x y z ,则()212121,,AB OB OA x x y y z z =-=---.这就是说,一个向量在直角坐标系中的坐标等于表示该向量的有向线段的终点的坐标减起点的坐标. (3)两个向量的夹角及两点间的距离公式. ①已知()123,,a a a a =,()123,,b b b b =,则221a a a ==+221b b b ==+;112233a b a b a b a b ⋅=++;cos ,a b =;②已知()111,,A x y z ,()222,,B x y z ,则(AB x =或者(),d A B AB =.其中(),d A B 表示A 与B 两点间的距离,这就是空间两点的距离公式.(4)向量a 在向量b 上的射影为cos ,a b a a b b⋅=.(5)设()0n n ≠是平面M 的一个法向量,AB ,CD 是M 内的两条相交直线,则0n AB ⋅=,由此可求出一个法向量n (向量AB 及CD 已知).(6)利用空间向量证明线面平行:设n 是平面的一个法向量,l 为直线l 的方向向量,证明0l n ⋅=,(如图8-155所示).已知直线l (l α⊄),平面α的法向量n ,若0l n ⋅=,则//l α.(7)利用空间向量证明两条异面直线垂直:在两条异面直线中各取一个方向向量a ,b ,只要证明a b ⊥,即0a b ⋅=.(8)利用空间向量证明线面垂直:即证平面的一个法向量与直线的方向向量共线.(9)证明面面平行、面面垂直,最终都要转化为证明法向量互相平行、法向量互相垂直.(10)空间角公式.①异面直线所成角公式:设a ,b 分别为异面直线1l ,2l 上的方向向量,θ为异面直线所成角的大小,则cos cos ,a b a b a bθ⋅==.②线面角公式:设l 为平面α的斜线,a 为l 的方向向量,n 为平面α的法向量,θ为l 与α所成角的大小,则sin cos ,a n a n a nθ⋅==.③二面角公式:设1n ,2n 分别为平面α,β的法向量,二面角的大小为θ,则12,n n θ=或12,n n π-(需要根据具体情况判断相等或互补),其中1212cos n n n n θ⋅=.(11)点A 到平面α的距离为d ,B α∈,n 为平面α的法向量,则AB n d n⋅=.题型归纳及思路提示题型1 空间向量及其运算 思路提示空间向量的运算包括空间向量的加法、减法、数乘、数量积的几何意义及坐标运算,可以类比平面向量的运算法则.一、空间向量的加法、减法、数乘运算例8.41 如图8-156所示,已知空间四边形OABC ,点,M N 分别为OA ,BC 的中点,且OA a =,OB b =,OC c =,用a ,b ,c 表示MN ,则MN = .解析 1122OM OA a ==,()()1122ON OB OC b c =+=+,()()111222MN ON OM b c a b c a =-=+-=+-.变式1 如图8-157所示,已知空间四边形OABC ,其对角线为OB ,AC ,M 和N 分别是对边OA 和BC的中点,点G 在线段MN 上,且2MG GN =,现用基向量OA ,OB ,OC 表示向量OG ,设OG xOA yOB zOC =++,则,,x y z 的值分别是( ).A 111,,333x y z === .B 111,,336x y z ===.C 111,,363x y z === .D 111,,633x y z ===变式2 如图8-158所示,在四面体O ABC -中,OA a =,OB b =,OC c =,D 为BC 的中点,E 为AD 的中点,则OE = (用a ,b ,c 表示).变式 3 在空间四边形ABCD 中,连接对角线,AC BD ,若BCD ∆是正三角形,且E 为其重心,则1322AB BC DE AD +--的化简结果为 .变式4 如图8-159所示,在平行六面体1111ABCD A B C D -中,M 为11A C 与11B D 的交点,若AB a =,AD b =,1AA c =,则下列向量中与BM 相等的向量是( ).A 1122a b c -++ .B 1122a b c ++ .C 1122a b c --+ .D 1122a b c -+二、空间共线向量定理的应用空间共线向量定理:()//0a b b a b λ≠⇔=. 利用此定理可解决立体几何中的平行问题.例8.42 已知3240m a b c =--≠,()182n x a b yc =+++,且,,a b c 不共面,若//m n ,求,x y 的值.解析 因为//m n 且0m ≠,所以n m λ=,即()()182324x a b yc a b c λ+++=--.又因为,,a b c 不共面,所以138224x y λλλ+=⎧⎪=-⎨⎪=-⎩,解得138x y =-⎧⎨=⎩.二、空间向量的数量积运算121212cos ,a b a b a b x x y y z z ⋅==++;求模长时,可根据2222111a a x y z ==++;求空间向量夹角时,可先求其余弦值cos ,a b a b a b⋅=.要判断空间两向量垂直时,可以求两向量的数量积是否为0,即0a b a b ⋅=⇔⊥.,a b 为锐角0a b ⇒⋅>;,a b 为钝角0a b ⇒⋅<.由此,通常通过计算a b ⋅的值来判断两向量夹角是锐角还是钝角.例8.43 已知空间四边形ABCD 的每条边和对角线的长都等于a ,点,E F 分别是,BC AD 的中点,AE ⋅AF 的值为( )..A 2a .B 21.2B a 21.4C a 23.4D a 解析 依题意,点,EF 分别是,BC AD 的中点,如图8-160所示,AE ⋅AF ()1122AB AC AD =+⋅()14AB AD AC AD =⋅+⋅ ()22211cos60cos6044a a a =︒+︒=. 故选C . 变式1 如图8-161所示,已知平行六面体1111ABCD A B C D -中,1160A AD A AB DAB ∠=∠=∠=︒,且11A A AB AD ===,则1AC = .变式2 如图8-162所示,设,,,A B C D 是空间不共面的4个点,且满足0AB AC ⋅=,0AD AC ⋅=,0AD AB ⋅=,则BCD ∆的形状是( )..A 钝角三角形 .B 直角三角形 .C 锐角三角形 .D 无法确定例8.44 如图8-163所示,在45︒的二面角l αβ--的棱上有两点,A B ,点,C D 分别在,αβ内,且AC AB ⊥,45ABD ∠=︒,1AC BD AB ===,则CD 的长度为 .分析 求CD 的长度转化为求空间向量CD 的模.解析 因为CD CA AB BD =++,故()22CD CA AB BD =++ 222222CA AB BD CA AB AB BD CA BD =+++⋅+⋅+⋅1110211cos1352CA BD =++++⨯⨯⨯︒+⋅,设点C 在β内的射影为H ,则HA AB ⊥,,135HA BD =︒.故()CA BD CH HA BD CH BD HA BD ⋅=+⋅=⋅+⋅10cos1351cos 45cos1352HA BD =+︒=⨯︒︒=-.故222CD =,则22CD =-变式1 已知二面角l αβ--为60︒,动点,P Q 分别在面,αβ内,P 到β3Q 到α的距离为3,P Q 两点之间距离的最小值为( )..2.2B .23C .4D变式2 在直角坐标系中,设()3,2A ,()2,3B --,沿y 轴把坐标平面折成120︒的二面角后,AB 的长为( )..6A .42B .23C .211D例8.45 如图8-164所示,设动点P 在棱长为1的正方体1111ABCD A B C D -的对角线1BD 上,记11D PD Bλ=.当APC ∠为钝角时,求λ的取值范围.解析 由题设可知,以1,,DA DC DD 为单位正交基底,建立如图8-165所示的空间直角坐标系D xyz -,则有()1,0,0A ,()1,1,0B ,()0,1,0C ,()10,0,1D . 由()11,1,1D B =-,()11,,D P D B λλλλ==-,()()()111,0,1,,1,,1PA D A D P λλλλλλ=-=---=---,()()()110,1,1,,,1,1PC DC D P λλλλλλ=-=---=---. 显然APC ∠不是平角,所以APC ∠为钝角,cos cos ,0PA PC APC PA PC PA PC⋅∠==<,等价于0PA PC ⋅<,即()()()()()21110λλλλλ--+--+-<,得113λ<<.因此,λ的取值范围是1,13⎛⎫⎪⎝⎭.评析 利用向量知识将APC ∠为钝角转化为cos ,0PA PC <求解是本题的关键.变式 1 已知正方体1111ABCD A B C D -的棱长为1,点P 在线段1BD 上,当APC ∠最大时,三棱锥P ABC -的体积为( ).1.24A 1.18B 1.9C 1.12D 例8.46 如图8-166所示,在四棱锥P ABCD -中,侧面PAD 为正三角形,底面ABCD 为正方形,侧面PAD ⊥底面ABCD ,M 为底面ABCD 内的一个动点,且满足MP MC =,则点M 在正方形ABCD 内的轨迹为( ).解析 取AD 的中点O ,以OA 为x 轴,垂直于OA 的OE 为y 轴,OP 为z 轴,建立空间直角坐标系如图8-167所示.设(),,0M x y ,正方形的边长为a ,30,0,2P a ⎛⎫ ⎪ ⎪⎝⎭,,,02a C a ⎛⎫- ⎪⎝⎭, 则()222a MC x y a ⎛⎫=++- ⎪⎝⎭,22234MP x y a =++,MP MC =,得()22222324a a x y a x y ⎛⎫++-=++ ⎪⎝⎭,即202a x y -+=.所以点M 在正方形ABCD 内的轨迹为一条线段,且过D 点和AB 的中点.故选A .评注 本题利用空间线面位置关系求解也很快.由题意知空间内与两定点距离相等的点均在线段中垂面内,即M 在线段PC 的中垂面内.又M 为底面ABCD 内一动点,则M 的轨迹为两平面的交线落在底面内的部分,排除C 、D .又BP BC >,故排除B .故选A .变式1 到两互相垂直的异面直线距离相等的点,在过其中一条直线且平行于另一条直线的平面内的轨迹是( )..A 直线 .B 椭圆 .C 抛物线 .D 双曲线变式2 空间点到平面的距离定义如下:过空间一点作平面的垂线,这个点和垂足之间的距离叫做这个点到这个平面的距离,已知平面α,β,γ两两互相垂直,点A α∈,点A 到β,γ的距离都是3,点P 是α上的动点,满足P 到β的距离是点P 到点A 距离的2倍,则点P 的轨迹上的点到γ的距离的最小值是( )..33A - .323B - .63C - .3D题型2 空间向量在立体几何中的应用 思路提示用向量法可以证点共线、线共点、线(或点)共面、两直线(或线与面、面与面)垂直的问题,也可以求空间角和距离.因此,凡涉及上述类型的问题,都可以考虑利用向量法求解,且其解法一般都比较简单.用向量法解题的途径有两种:一种是坐标法,即通过建立空间直角坐标系,确定出一些点的坐标,进而求出向量的坐标,再进行坐标运算;另一种是基底法,即先选择基向量(除要求不共面外,还要能够便于表示所求的目标向量,并优先选择相互夹角已知的向量作为基底,如常选择几何体上共点而不共面的三条棱所在的向量为基底),然后将有关向量用基底向量表示,并进行向量运算.一、证明三点共线(如A ,B ,C 三点共线)的方法先构造共起点的向量AB ,AC ,然后证明存在非零实数λ,使得AB AC λ=.例8.47 如图8-168所示,已知在长方体1111ABCD A B C D -中,点M 为1DD 的中点,点N 在AC 上,且:2:1AN NC =,点E 为BM 的中点.求证:1A ,E ,N 三点共线.解析 以D 为坐标原点建立空间直角坐标系-D xyz ,如图8-169所示.不妨设DA a =,DC b =,1DD c =,则0,0,2c M ⎛⎫ ⎪⎝⎭,(),,0B a b ,,,224a b c E ⎛⎫ ⎪⎝⎭,()1,0,A a c ,2,,033a b N ⎛⎫⎪⎝⎭,则13,,224a b c A E ⎛⎫=-- ⎪⎝⎭,122,,33a b A N c ⎛⎫=-- ⎪⎝⎭,因为1143A N A E =,故1A ,E ,N 三点共线.变式 1 在正方体1111ABCD A B C D -中,E ,F 分别为棱1AA 和1CC 的中点,则在空间中与三条直线11A D ,EF ,CD 都相交的直线( )..A 不存在 .B 有且只有两条 .C 有且只有三条 .D 有无数条变式2 如图8-170所示,在空间四边形ABCD 中,M ,N 分别是AB 和CD 的中点,P 为线段MN 的中点,Q 为BCD ∆的重心.求证:,,A P Q 三点共线.二、证明多点共面的方法要证明多点(如A ,B ,C ,D )共面,可使用以下方法解题.先作出从同一点出发的三个向量(如AB ,AC ,AD ),然后证明存在两个实数,x y ,使得AD x AB y AC =+.例8.48 如图8-171所示,平面ABEF ⊥平面ABCD ,四边形ABEF 与ABCD 都是直角梯形,90BAD FAB ∠=∠=︒,1//2BC AD ,1//2BE AF .求证:,,,C D E F 四边共面.解析 由平面ABEF ⊥平面ABCD ,又AF AB ⊥,平面ABEF 平面ABCD AB =,得AF ⊥平面ABCD ,以A 为坐标原点,建立空间直角坐标系A xyz -,如图8-172所示.设AB a =,BC b =,BE c =,则(),0,0B a ,(),,0C a b ,()0,2,0D b ,(),0,E a c ,()0,0,2F c .()0,,CE b c =-,()0,2,2DF b c =-,因为2DF CE =,所以//DF CE ,则,CE DF 确定一个平面,即,,,C D E F 四点共面.变式1 如图8-173所示,已知平行六面体1111ABCD A B C D -,,,,E F G H 分别是棱11111,,,A D D C C C AB 的中点.求证:,,,E F G H 四点共面.三、证明直线和直线平行的方法将证线线平行转化为证两向量共线.设,a b 是两条不重合的直线,它们的方向向量分别为,a b ,则()//,0a b a b R λλλ⇔=∈≠.例8.49 如图8-174所示,在正方体1111ABCD A B C D -中,MN 是异面直线1A D 与AC 的公垂线段.求证:1//MN BD .解析 以点D 为坐标原点,建立空间直角坐标系D xyz -,如图8-175所示.设正方体的棱长为a ,则()1,0,A a a ,(),0,0A a ,()0,,0C a ,(),,0B a a ,()10,0,D a .设(),,z MN x y =,由MN 是异面直线1A D 与AC 的公垂线段,得1MN A D ⊥,MN AC ⊥,又()1,0,A D a a =--,(),,0AC a a =-,故100MN A D MN AC ⎧⋅=⎪⎨⋅=⎪⎩,00ax az ax ay --=⎧⎨-+=⎩, 令1x =,则1z =-,1y =,所以()1,1,1MN =-,()1,,BD a a a aMN =--=-,即1//BD MN .因此1//MN BD .四、证明直线和平面平行的方法(1)利用共面向量定理.设,a b 为平面α内不共线的两个向量,证明存在两个实数,x y ,使得l xa yb =+,则//l α.(2)转化为证明直线和平面内的某一直线平行.(3)转化为证明直线的方向向量与平面的法向量垂直(此方法最常用).例8.50 如图8-176所示,在直四棱柱1111ABCD A B C D -中,已知122DC DD AD AB ===,AD DC ⊥,//AB DC ,E 是DC 的中点.求证:1//D E 平面1A BD .解析 因为11D E DE DD =-,11DD AA =,E 是DC 的中点,12DE DC AB ==,所以111D E AB AA A B =-=.又因为1D E ⊄平面1A BD ,11//D E A B ,所以1//D E 平面1A BD .评注 利用空间向量证明线面平行,已知直线的方向向量为a ,只要在平面内找到一条直线的方向向量为b ,问题转化为证明a b λ=即可.变式1 如图8-177所示,已知P 是正方形ABCD 所在平面外一点,M 、N 分别是PA 、 BD 上的点,且::5:8PM MA BN ND ==.求证:直线//MN 平面PBC .五、证明平面与平面平行的方法(1)证明两平面内有两条相交直线分别平行.(2)转化为证两平面的法向量平行(常用此方法).例8.51 如图8-178所示,在正方体1111ABCD A B C D -中,,,M N P 分别是11111,,C C B C C D 的中点.求证:平面//MNP 平面1A BD .解析 解法一:以1D 为坐标原点,11D A 为x 轴,11D C 为y 轴,1D D 为z 轴,建立空间直角坐标系1D xyz -,如图8-179所示.设正方体的棱长为a ,则()1,0,0A a ,()0,0,D a ,()10,,0C a ,()0,,C a a ,()1,,0B a a ,0,,2a M a ⎛⎫ ⎪⎝⎭,0,,02a P ⎛⎫ ⎪⎝⎭,,,02a N a ⎛⎫⎪⎝⎭,()1,0,A D a a =-,11,0,222aa MN A D ⎛⎫=-=- ⎪⎝⎭,所以1//MN A D ,即1//MN A D ,(),,0BD a a =--,1,,0222a a PN BD ⎛⎫==- ⎪⎝⎭,所以//PN BD ,即//PN BD .因为MNPN N =,1A DBD D =,所以平面//MNP 平面1A BD .解法二:设平面MNP 的法向量为()1111,,n x y z =,由1MN n ⊥,1PN n ⊥,得1111022022a a x z a a x y ⎧-=⎪⎪⎨⎪+=⎪⎩,令11z =,得111111x y z =⎧⎪=-⎨⎪=⎩, 所以()11,1,1n =-.设平面1A BD 的法向量为()2222,,n x y z =,由12A D n ⊥,2BD n ⊥,得222200ax az ax ay -+=⎧⎨--=⎩,令21z =,得222111x y z =⎧⎪=-⎨⎪=⎩, 所以()21,1,1n =-.因为12//n n ,所以平面//MNP 平面1A BD .变式1 如图8-180所示,在平行六面体1111ABCD A B C D -中,,,E F G 分别是11111,,A D D D D C 的中点. 求证:平面//EFG 平面1AB C .六、证明直线与直线垂直的方法设直线12,l l 的方向向量为,a b ,则a b ⊥0a b ⇔⋅=.这里要特别指出的是,用向量法证明两直线尤其是两异面直线垂直是非常有效的方法.例8.52 如图8-181所示,四棱锥A BCDE -中,底面BCDE 为矩形,侧面ABC ⊥底面BCDE ,2BC =,2CD =,AB AC =.求证:AD CE ⊥.分析 平面ABC ⊥平面BCDE ,在平面ABC 内作AO BC ⊥AO ⇒⊥平面BCDE ,以点O 为坐标原点建立空间直角坐标系.解析 作AO BC ⊥,垂足为O ,则AO ⊥平面BCDE ,且O 为BC 的中点,以O 为坐标原点,OC 为x 轴,建立如图8-182所示的直角坐标系O xyz -.设()0,0,A a ,由已知条件知()1,0,0C ,()1,2,0D ,()1,2,0E -,()2,2,0CE =-,()1,2,AD a =-.因为0CE AD=⋅,所以CE AD ⊥。

高考平面向量题型归纳总结

高考平面向量题型归纳总结

高考平面向量题型归纳总结在高考数学考试中,平面向量是一个常见的考点,也是学生普遍认为较为困难的部分之一。

平面向量题型包括向量的加减、数量积、向量方向等。

本文将对高考平面向量题型进行归纳总结,帮助学生更好地掌握此类题型。

一、向量的加减1. 向量的加法向量的加法满足交换律和结合律,即a + b = b + a,(a + b) + c = a + (b + c)。

在解题过程中,可以利用向量的平移性质,将向量平移至同一起点,再连接终点得到新的向量。

2. 向量的减法向量的减法可以转化为加法进行处理,即a - b = a + (-b)。

其中,-b表示b的反向量,即方向相反的向量,模长相等。

二、数量积数量积又称为内积或点积,记作a·b。

1. 定义对于两个向量a(x₁, y₁)和b(x₂, y₂),它们的数量积a·b = x₁x₂ +y₁y₂。

另外,数量积还可以表示为向量模长和夹角的乘积,即a·b =|a| · |b| · cosθ,其中θ为a与b的夹角。

2. 性质(1) 交换律:a·b = b·a(2) 分配律:a·(b + c) = a·b + a·c(3) 结合律:k(a·b) = (ka)·b = a·(kb),其中k为实数(4) 若a·b = 0,则a与b垂直或其中一个为零向量(5) 若a·b > 0,则夹角θ为锐角;若a·b < 0,则夹角θ为钝角。

三、向量方向向量的方向可以用两种方式来表示:1. 向量的方向角:向量a(x, y)的方向角为与x轴正方向之间的夹角α,其中-π < α ≤ π。

2. 方向余弦:向量a(x, y)的方向余弦为与x轴的夹角的余弦值cosα,与y轴的夹角的余弦值cosβ。

在解决平面向量题型时,可以利用这两种方式来确定向量的方向。

6.1 平面向量的概念 (精讲)(原卷版)

6.1 平面向量的概念 (精讲)(原卷版)

6.1平面向量的概念 (精讲)6.1.1向量的实际背景与概念6.1.2向量的几何表示6.1.3相等向量与共线向量目录一、必备知识分层透析二、重点题型分类研究题型1:向量的有关概念题型2:向量的几何表示角度1:向量的模角度2:零向量与单位向量题型3:相等向量与共线向量角度1:相等向量角度2:平行向量(共线向量)一、必备知识分层透析知识点1:向量的概念(1)向量在数学中,我们把既有大小又有方向的量叫做向量.①我们所学的向量是自由向量,即只有大小和方向,而无特定的位置,这样的向量可以作任意平移.②向量与向量之间不能比较大小.(2)数量只有大小没有方向的量称为数量,如年龄、身高、长度、面积体积、质量等(3)向量与数量的区别①向量与数量的区别:向量有方向,而数量没有方向;数量与数量之间可以比较大小,而向量与向量之间不能比较大小②向量与矢量:数学中的向量是从物理中的矢量(如位移、力、加速度、速度等)中抽象出来的,但在这里我们仅考虑它的大小及方向;而物理中的这些量,既同时具备大小和方向这两个属性,还具有其他属性(如“力”就是由大小方向、作用点所决定的).知识点2:向量的几何表示(1)有向线段具有方向的线段叫做有向线段①有向线段:具有方向的线段叫做有向线段,其方向是由起点指向终点.以A为起点、B为终AB. 表点的有向线段记作AB(如图所示),线段AB的长度也叫做有向线段的长度,记作||示有向线段时,起点一定要写在终点的前面,上面标上箭头.②有向线段的三个要素:起点、方向、长度.知道了有向线段的起点、方向、长度,它的终点就唯一确定了.(2)向量的表示①几何表示:向量可以用有向线段表示,有向线段的长度表示向量的大小,有向线段的方向表示向量的方向.②字母表示:向量可以用字母a,b,c,…表示(3)向量的模AB.向量AB的大小称为向量AB的长度(或称模),记作||(4)两种特殊的向量零向量:长度为0的向量叫做零向量,记作0.单位向量:长度等于1个单位长度的向量,叫做单位向量①若用有向线段表示零向量,则其终点与起点重合.与0的区别与联系,0是一个向量|0|;书写时0表示零向量方向相同或相反的非零向量叫做平行向量.向量a 与b 平行,记作a b .规定:零向量与任意即对于任意向量a ,都有0a .长度相等且方向相同的向量叫做相等向量.向量a 与b 相等,记作a b =.两个向量相等必须具备的条件是长度相等,方向相同因为向量完全由它的方向和模确定,故任意两个相等的非零向量与有向线段的起点无关.)共线向量任一组平行向量都可以平移到同一条直线上共线向量所在直线平行或重合,如果两个向量所在的直线平行或重合·高一课时练习)下列四个命题正确的是( ).若a 与b 不共线,则a 与b 都是非零向量.两个相等的向量起点、方向、长度必须都.(2022·全国·高一专题练习)下列命题中,正确的是||||a b =,则a b =.若a b =,则||||a b = ||||a b >,则a b > ||0a =,则0a = .(2022·全国·高一假期作业)有下列命题:①两个相等向量,若它们的起点相同,则终点也相同;②若||a b |=|,则a b =; ③若AB DC =,则四边形ABCD 是平行四边形;m n =,n k =,则m k =;⑤若//a b ,//b c ,则//a c ; ⑥有向线段就是向.(2022·高一课时练习)下列说法正确的是(.向量AB与向量BA的长度相等例题2.(BD=________.例题3.(·全国·高一专题练习)若在一个边长为的正三角形所对应的有向线段为AD(其中则向量AD的模的最小值为高一专题练习)如果一架飞机向东飞行200 km,再向南飞行机飞行的路程为s,位移为a,那么(a aa a不能比大小2022·高一课时练习)已知在边长为ABCD中,∠,则BD=2022·高一课时练习)已知圆O的周长是,AB是圆O的直径,是圆周上一点,π=⊥CD=___________.,CD角度2:零向量与单位向量典型例题.向量就是有向线段>,则a b||||a b>.(2022秋·新疆巴音郭楞·高一校考阶段练习)下列说法正确的是(e=.单位向量均相等.单位向量1.零向量与任意向量平行.若向量a,b满足||||a b=,则a b=±.(2022秋·广东东莞·高一校联考期中)下列说法错误的是(.若0a =,则0a =.零向量是没有方向的 .(多选)(2022春·广东佛山向量的说法正确的是( ).单位向量:模为1的向量例题1.(2022春·广东揭阳·中,AB DC =,则下列向量相等的是(.AD 与CB.OC 与OA .AC 与DB D .DO OB =例题2.(2022·全国·高三专题练习)“a b =”是“||||a b =”的( .充分非必要条件B .必要非充分条件 .充分必要条件 D .既非充分又非必要条件例题3.(多选)(2022·高一课时练习)下列说法中错误的是( )||||a b =,则a b = B .若a b ≠,则||||a b ≠||||a b =,则a 与b 可能共线||||a b ≠,则a 一定不与b 共线(1)分别写出与AO 、BO 相等的向量;写出与AO 共线的向量;写出与AO 的模相等的向量;写出与AO 的夹角为90︒的向量;向量AO 与CO 是否相等?(多选)(2022秋·浙江嘉兴若非零向量a ,b ,下列命题正确的是.若a b =,则a b =.若a b =,则a b = .若//a b ,则a b = .若a b =,则//a b.(多选)(2022秋·山东菏泽高一统考期中)设点O 是平行四边形ABCD 点,则下列结论正确的是( ).AO OC = B .AO BO = .AO BO = D .AB 与CD 共线 .(2022·高一课时练习)如图所示,在平行四边形ABCD 中,E ,F 分别是CD ,AB 中点.(1)写出与向量FC 共线的向量;(2)求证:BE FD =.4.(2022·全国·高三专题练习)在平行四边形ABCD 中,E ,F 分别为边AD 、BC 的中点,如图.(1)写出与向量FC 共线的向量;(2)求证:BE FD =.角度2:平行向量(共线向量)典型例题例题1.(2022春·河南·高三校联考阶段练习)已知,,,A B C D 为平面上四点,则“向量AB CD ∥”是“直线AB CD ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件例题2.(2022秋·上海杨浦·高一复旦附中校考期中)①加速度是向量;②若//a b 且//b c ,则//a c ;③若AB CD =,则直线AB 与直线CD 平行.上面说法中正确的有( )个.A .0B .1C .2D .3同类题型演练1.(2022秋·湖北·高一校联考期中)“//b a ”是“a b =”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.(2022秋·上海浦东新·高一校考期末)命题:若//,//a b b c ,则//a c ,则命题为_______(填写:真命题或假命题)3.(2022·高一课时练习)已知命题“若//a b ,//b c ,则//a c ”是假命题,则b =__________.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题--平面向量1.向向量的相关概念、、2.向量的线性运算二.向量的表示方法:1.几何表示法:用带箭头的有向线段表示,如AB ,注意起点在前,终点在后; 2.符号表示法:用一个小写的英文字母来表示,如,,等;3.坐标表示法:在平面内建立直角坐标系,以与x 轴、y 轴方向相同的两个单位向量,为基底,则平面内的任一向量可表示为(),a xi y j x y =+=,称(),x y 为向量的坐标,=(),x y 叫做向量的坐标表示。

如果向量的起点在原点,那么向量的坐标与向量的终点坐标相同。

三.平面向量的基本定理:如果e 1和e 2是同一平面内的两个不共线向量,那么对该平面内的任一向量a ,有且只有一对实数1λ、2λ,使a =1λe 1+2λe 2。

如(1)若(1,1),a b ==(1,1),(1,2)c -=-,则c =______ (答:1322a b -);(2)下列向量组中,能作为平面内所有向量基底的是 A. 12(0,0),(1,2)e e ==- B. 12(1,2),(5,7)e e =-=C. 12(3,5),(6,10)e e ==D. 1213(2,3),(,)24e e =-=- (答:B );(3)已知,AD BE 分别是ABC ∆的边,BC AC 上的中线,且,AD a BE b ==,则BC 可用向量,a b 表示为_____ (答:2433a b +);(4)已知ABC ∆中,点D 在BC 边上,且−→−−→−=DB CD 2,−→−−→−−→−+=AC s AB r CD ,则s r +的值是 (答:0)四.实数与向量的积:实数λ与向量的积是一个向量,记作λ,它的长度和方向规定如下:()()1,2aa λλ=当λ>0时,λ的方向与的方向相同,当λ<0时,λ的方向与的方向相反,当λ=0时,0a λ=,注意:λa ≠0。

五.平面向量的数量积:1.两个向量的夹角:对于非零向量,,作,OA a OB b ==,AOB θ∠=()0θπ≤≤称为向量a ,b 的夹角,当θ=0时,a ,b 同向,当θ=π时,a ,b 反向,当θ=2π时,a ,垂直。

2.平面向量的数量积:如果两个非零向量a ,b ,它们的夹角为θ,我们把数量||||cos a b θ叫做a 与b 的数量积(或内积或点积),记作:•,即•=cos a b θ。

规定:零向量与任一向量的数量积是0,注意数量积是一个实数,不再是一个向量。

如(1)△ABC 中,3||=−→−AB ,4||=−→−AC ,5||=−→−BC ,则=⋅_________ (答:-9); (2)已知11(1,),(0,),,22a b c a kb d a b ==-=+=-,c 与d 的夹角为4π,则k 等于___(答:1); (3)已知2,5,3a b a b ===-,则a b +等于____ 23;(4)已知,a b 是两个非零向量,且a b a b ==-,则与a a b +的夹角为____(答:30)3.在上的投影为||cos b θ,它是一个实数,但不一定大于0。

如已知3||=→a ,5||=→b ,且12=⋅→→b a ,则向量→a 在向量→b 上的投影为______ (答:512) 4.a •b 的几何意义:数量积a •b 等于a 的模||a 与b 在a 上的投影的积。

5.向量数量积的性质:设两个非零向量a ,b ,其夹角为θ,则: ①0a b a b ⊥⇔•=;②当a ,b 同向时,a •b =a b ,特别地,222,a a a a a a =•==;当a 与b 反向时,a •b =-a b ;当θ为锐角时,•>0,且 a b 、不同向,0a b ⋅>是θ为锐角的必要非充分条件;当θ为钝角时,•<0,且 a b 、不反向,0a b ⋅<是θ为钝角的必要非充分条件; ③非零向量,夹角θ的计算公式:cos a b a bθ•=;④||||||a b a b •≤。

如(1)已知)2,(λλ=→a ,)2,3(λ=→b ,如果→a 与→b 的夹角为锐角,则λ的取值范围是______(答:43λ<-或0λ>且13λ≠);(2)已知OFQ ∆的面积为S ,且1=⋅−→−−→−FQ OF ,若2321<<S ,则−→−−→−FQ OF ,夹角θ的取值范围是_________(答:(,)43ππ); 六.向量的运算: 1.几何运算:①向量加法:利用“平行四边形法则”进行,但“平行四边形法则”只适用于不共线的向量,如此之外,向量加法还可利用“三角形法则”:设,AB a BC b ==,那么向量AC 叫做a 与b 的和,即a b AB BC AC +=+=;②向量的减法:用“三角形法则”:设,,AB a AC b a b AB AC CA ==-=-=那么,由减向量的终点指向被减向量的终点。

注意:此处减向量与被减向量的起点相同。

如(1)化简:①AB BC CD ++=___;②AB AD DC --=____;③()()AB CD AC BD ---=_____ (答:①AD ;②CB ;③0);(2)若正方形ABCD 的边长为1,,,AB a BC b AC c ===,则||a b c ++=_____(答:);(3)若O 是ABC 所在平面内一点,且满足2OB OC OB OC OA -=+-,则ABC 的形状为____(答:直角三角形);(4)若D 为ABC ∆的边BC 的中点,ABC ∆所在平面内有一点P ,满足0PA BP CP ++=,设||||AP PD λ=,则λ的值为___ (答:2);(5)若点O 是ABC △的外心,且0OA OB CO ++=,则ABC △的内角C 为____(答:120); 2.坐标运算:设1122(,),(,)a x y b x y ==,则: ①向量的加减法运算:12(a b x x ±=±,12)y y ±。

如已知作用在点(1,1)A 的三个力123(3,4),(2,5),(3,1)F F F ==-=,则合力123F F F F =++的终点坐标是 (答:(9,1))②实数与向量的积:()()1111,,a x y x y λλλλ==。

③若1122(,),(,)A x y B x y ,则()2121,AB x x y y =--,即一个向量的坐标等于表示这个向量的有向线段的终点坐标减去起点坐标。

如 设(2,3),(1,5)A B -,且13AC AB =,3AD AB =,则C 、D 的坐标分别是_____(答:11(1,),(7,9)3-); ④平面向量数量积:1212a b x x y y •=+。

⑤向量的模:222222||,||a x y a a x y =+==+。

如已知,a b 均为单位向量,它们的夹角为60,那么|3|a b +=_____ ; ⑥两点间的距离:若()()1122,,,A x y B x y ,则||AB =。

七.向量的运算律:1.交换律:a b b a +=+,()()a a λμλμ=,a b b a •=•; 2.结合律:()(),a b c a b c a b c a b c ++=++--=-+,()()()a b a b a b λλλ•=•=•; 3.分配律:()(),a a a a b a b λμλμλλλ+=++=+,()a b c a c b c +•=•+•。

如下列命题中:① →→→→→→→⋅-⋅=-⋅c a b a c b a )(;② →→→→→→⋅⋅=⋅⋅c b a c b a )()(;③ 2()a b →→-2||a →=22||||||a b b →→→-⋅+;④ 若0=⋅→→b a ,则0=→a 或0=→b ;⑤若,a bc b ⋅=⋅则a c =;⑥22a a =;⑦2a b b aa⋅=;⑧222()a b a b ⋅=⋅;⑨222()2a b a a b b -=-⋅+。

其中正确的是_____(答:①⑥⑨)提醒:(1)向量运算和实数运算有类似的地方也有区别:对于一个向量等式,可以移项,两边平方、两边同乘以一个实数,两边同时取模,两边同乘以一个向量,但不能两边同除以一个向量,即两边不能约去一个向量,切记两向量不能相除(相约);(2)向量的“乘法”不满足结合律,即)()(•≠•,为什么? 八.向量平行(共线)的充要条件://a b a b λ⇔=22()(||||)a b a b ⇔⋅=1212x y y x ⇔-=0。

如 (1)若向量(,1),(4,)a x b x ==,当x =_____时a 与b 共线且方向相同 (答:2);(2)已知(1,1),(4,)a b x ==,2u a b =+,2v a b =+,且//u v ,则x =______ (答:4);(3)设(,12),(4,5),(10,)PA k PB PC k ===,则k =_____时,A,B,C 共线 (答:-2或11)九.向量垂直的充要条件:0||||a b a b a b a b ⊥⇔⋅=⇔+=- 12120x x y y ⇔+=.特别地()()AB AC AB AC ABACABAC+⊥-。

如(1)已知(1,2),(3,)OA OB m =-=,若OA OB ⊥,则m = (答:32);(2)以原点O 和A(4,2)为两个顶点作等腰直角三角形OAB ,90B ∠=︒,则点B 的坐标是________ (答:(1,3)或(3,-1)); (3)已知(,),n a b =向量n m ⊥,且n m =,则m 的坐标是________ (答:(,)(,)b a b a --或) 十.线段的定比分点:1.定比分点的概念:设点P 是直线P 1P 2上异于P 1、P 2的任意一点,若存在一个实数λ ,使12PP PP λ=,则λ叫做点P 分有向线段12PP 所成的比,P 点叫做有向线段12PP 的以定比为λ的定比分点;2.λ的符号与分点P 的位置之间的关系:当P 点在线段 P 1P 2上时⇔λ>0;当P 点在线段 P 1P 2的延长线上时⇔λ<-1;当P 点在线段P 2P 1的延长线上时10λ⇔-<<;若点P 分有向线段12PP 所成的比为λ,则点P 分有向线段21P P 所成的比为1λ。

如 若点P 分AB 所成的比为34,则A 分BP 所成的比为_______(答:73-)3.线段的定比分点公式:设111(,)P x y 、222(,)P x y ,(,)P x y 分有向线段12PP 所成的比为λ,则121211x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩,λ=x x x x --21=yy y y --21 线段P 1P 2的中点公式121222x x x y y y +⎧=⎪⎪⎨+⎪=⎪⎩。

相关文档
最新文档