轮式装载机液压系统设计
液压系统设计步骤

装载机旳构造原理-工作液压系统目前我国轮式装载机旳工作液压系统已发展到采用小阀操纵大阀旳先导工作液压系统。
但目前用得最多旳仍是机械式旳轮轴操纵工作液压系统。
图9所示为柳工ZL50C型装载旳轮轴操纵工作液压系统。
该系统由转斗缸1、动臂缸2、分派阀3、操纵杆7、工作泵8、软轴10等重要零部件构成。
该系统分派阀内带有控制系统最高压力旳主安全阀,此外在分派阀旳下面通转斗缸大小腔分别带有一种双作用安全阀(图中未画出)。
其作用是在工作装置运动过程中,转斗缸发生干涉时间起卸压力及补压作用。
两根操纵杆7通过两根软轴10直接操纵分派阀旳转斗阀及动臂阀,使定量齿轮工作泵8旳压力油进入转斗缸或动臂缸,使工作装置完毕作业运动。
图10a为该系统旳工作原理图。
2.1 设计环节液压系统旳设计环节并无严格旳次序,各环节间往往要互相穿插进行。
一般来说,在明确设计规定之后,大体按如下环节进行。
1)确定液压执行元件旳形式;2)进行工况分析,确定系统旳重要参数;3)制定基本方案,确定液压系统原理图;4)选择液压元件5)液压系统旳性能验算;6)绘制工作图,编制技术文献。
2.2 明确设计规定设计规定是进行每项工程设计旳根据。
在制定基本方案并深入着手液压系统各部分设计之前,必须把设计规定以及与该设计内容有关旳其他方面理解清晰。
1)主机旳概况:用途、性能、工艺流程、作业环境、总体布局等;2)液压系统要完毕哪些动作,动作次序及彼此联锁关系怎样;3)液压驱动机构旳运动形式,运动速度;4)各动作机构旳载荷大小及其性质;5)对调速范围、运动平稳性、转换精度等性能方面旳规定;6)自动化程序、操作控制方式旳规定;7)对防尘、防爆、防寒、噪声、安全可靠性旳规定;8)对效率、成本等方面旳规定。
设计计算环节1. 初选系统工作压力由机械设计手册表23.4-3 多种机械常用旳系统工作压力(小型工程机械工作压力为10-18MPa2. 液压缸尺寸旳选定采用差动连接时,按速比规定确定d/D,由表23.4-6得 d =0.71D由表23.4-7 常用内径D (mm )选用D=63 d=45 活塞杆受压时2211A p A p mFw F -==η Fw-为实际受力,由载荷计算旳三个液压缸共受力109288.3N ;m η-液压缸旳效率,由机械设计手册查旳等于0.95241D A π=-无杆腔活塞有效作用面积; ()2242d D A -=π-有杆腔活塞有效作用面积; P1-液压缸工作腔压力(Pa );P2-液压缸回油腔压力(Pa ),初算时可参照表23.4-4取值为1MPa ;D-活塞直径;d-活塞杆直径。
轮式装载机液压系统原理介绍

装载机液压系统液压传动的工作原理1.基本概念传动——在工程机械上,传动是指能量或动力由发动机向工作装置的传递,通过各种不同的传递方式使发动机的转动转变为工作装置各种不同形式的运动。
如:车架的转动、推土机铲刀的升降、装载机动臂的升降、铲斗的收放等等。
传动的分类(按工作介质):机械传动液体传动:以液体为工作介质气体传动电力传动液体传动分为:液力传动:利用液体动能。
如:由泵轮——涡轮组成的变矩器液压传动:利用密闭液体压力能。
如:千斤顶2.液压传动的定义:液压传动——用封闭在回路里的有压液体作为介质,把液压能转化为机械能,或反之,或其组合的技术。
或:以液体为传动介质,靠处于密闭容器内的液体静压力来传递动力,按容积变化相等的原则来传递速度的传动方式3.液压传动的原理:液压传动应用了液体的两个重要特性:(1)假定液体不可压缩;(2)液体中压力向各个方向作同样的传播(帕斯卡原理)。
帕斯卡原理:在密闭容器内,处于平衡状态的液体对施加于它表面的压力,能以等值在液体内向各个方向传递。
例1:P=P0+γhγ=0.8~0.9kg/cm3,管路布置很少超过10m,而P0往往很大,所以P≈P1≈P2≈P3≈P4≈P0例2:千斤顶原理(液压杠杆)作用力=压力×作用面积:F=P×SF/S1=W/S2,即W=S2/S1×F4.液压传动参数两个主要参数:P与Q压力与负载的关系:负载决定压力流量与速度的关系;流量决定速度V=Q/S(压力损失与流量损失)●液压传动系统的基本组成1.基本组成:动力元件——液压泵:将机械能转变为液压能。
控制元件——阀装置:控制系统中油液的压力、流量及流动方向等。
执行元件——油缸、油马达:将机械能转变为液压能。
其它辅助元件:邮箱、油管、滤油器、冷却器、蓄能器……2.元件符号:泵与马达:溢流阀与减压阀:●液压传动系统的分类●装载机工作液压系统1.系统组成及原理1)直接操纵液压系统(ZL50C、ZL40B、ZL30E、ZL30G)工作泵、分配阀(手动)、动臂油缸、转斗油缸、油箱(滤油器)…以下为ZL50C工作液压系统及转向液压系统原理图:特点:手动式或先导式、串并联优先转斗、动臂滑阀为四位六通2)先导操纵液压系统(ZL50G、ZL40G、ZL80G、ZL100C等)工作泵、分配阀(先导)、动臂油缸、转斗油缸、先导阀、组合阀、油箱(滤油器)以下为ZL50G工作液压系统及转向液压系统原理图:特点:先导式、串并联优先转斗、动臂滑阀为三位六通装载机转向液压系统系统组成及原理1.流量放大全液压转向系统独立型:转向泵、减压阀(或组合阀)、转向器(BZZ3-125)、流量放大阀、转向油缸合流型:转向泵、组合阀、转向器(BZZ3-125)、优先流量放大阀、转向油缸2.普通全液压转向系统转向泵、单稳分流阀、转向器(排量较大)、转向油缸以下为ZL30E与ZL30G型全液压转向系统原理图:BZZ1-800全液压转向器液压元件介绍1.液压泵1)齿轮泵主要特点:耐污染、成本低、中低压结构与组成:主动齿轮、从动齿轮、前泵盖、后泵盖、泵体、侧板、密封环原理:进油腔与排油腔齿轮副的张开或啮合,造成容积的增大或减小参数:排量q(毫升/转)压力P(Mpa):额定压力与最高压力转速n(转/分):额定转速与最高转速流量Q(升/分):Q=q×n×η型号:CBG、CBZb、CBGj、CBGq…齿轮泵的困油现象:同时啮合的两对齿轮构成了一个封闭的容积,该容积大小随时在发生变化。
轮式装载机工作装置液压系统分析与改进设计

该 油 箱结 构 已在 我公 司 自行研 制 的多 台液压 试验 台上 成功 应用 。实践 证 明 , 油 箱 在 结 构 上 所 进行 的 该
创新设 计 , 得其 结构 紧凑 、 洗方 便 、 使 清 防污 可靠 、 安装 集成度 高 , 使用 维 护 方 便 易 行 。该 结 构 是 对 开 式 油箱
工 作装 置是 轮 式装 载机 的重 要 组 成 部 分 , 式 装 轮
载 机 的铲装 、 升 、 提 翻斗及 卸 料等 都是 通过 工作 装 置 的 有关 运 动来 实现 的 。 目前 轮 式装 载机 的工 作装 置 一般 都 采用 液压 系统 , 文 通 过 对 装 载 机 常见 的工 作 装 置 本
[ ] 成 大 先. 械 设 计 手 册 [ . E : 学 工 业 出 版 2 机 M] j 京 化
社 ,0 2 20.
号件 ) ,下端 管 口距箱 底 10mm, 面铣 成 4 。 口 , 0 端 5斜
[ ] G / 8 . — 3 液压气 动图形符号 [ ] 3 B T7 6 1 9 , s.
21 0 0年第 8期
液压 与 气动
6 7
统 分 析 与 改 进 设 计
严 桃 平
An l ss a d i r v d d sg fwh e o d r wo k ay i n mp o e e i n o e ll a e r i sal n y r u i y t m n t lme th d a lc s se
型 的 液 压 回路 改 进 设 计 提 供 一 定 依 据 。
关键 词 : 式装 载机 ; 轮 工作 装 置 ; 液压 系统 ; 改进 设 计 中图分 类号 : H17 文献标 识 码 : 文章 编 号 :0 04 5 ( 0 0 0 -0 70 T 3 B 10 -8 8 2 1 ) 80 6 -2
轮式装载机液压系统设计说明书

开题报告摘要装载机主要用来装卸散状物料,也能进行轻度的铲掘工作,并且具有良好的机动性能,是工程机械中保有量较大的品种之一。
装载机液压系统设计是装载机设计的一个重要环节,它对装载机的使用性能和装载机在市场上的竞争力有着很大的影响。
装载机性能的优劣和作业效率的发挥,离不开液压系统的设计,而且在很大程度上取决于液压系统的工作效率。
装载机的工作装置和转向机构都采取液压传动,本文通过对工作装置及转向机构工作要求和载荷分析对液压系统进行设计。
主要包括对执行元件,控制元件辅助元件的选择、设计。
本文的设计,能够使读者对液压系统设计进一步加深了解,同时从中可以体会到一些设计理念,为以后从事此类工作得到一些帮助。
关键词:装载机液压传动液压系统设计ABSTRACTThe loader is mainly used for loading and unloading bulk materials, but also for light excavation work, and has good maneuverability, is the construction machinery to maintain a larger variety of one.The hydraulic system design of the loader is an important part of the loader design. It has a decisive influence on the performance of the loader and the competitiveness of the loader in the market. The performance of the loader and the operational efficiency of the play, can not be separated from the hydraulic system design, and to a large extent depends on the hydraulic system efficiency.The working device of the loader and the steering mechanism are taken hydraulic drive, this paper through the work device and steering mechanism requirements and load analysis of the hydraulic system design. Mainly include the implementation of components, control components of the selection of components, design.The design of this paper can make the reader to further deepen the understanding of the hydraulic system design, at the same time from which you can experience some of the design concept for the future to engage in such work to get some help.Key words: loader hydraulic transmission hydraulic pressure system目录摘要 (1)ABSTRACT (6)目录 (7)前言 (1)第1章装载机液压系统总体介绍 (2)1.1液压系统的工作原理 (2)1.2液压系统的组成部分 (2)1.3液压传动的优缺点 (2)1.3.1液压传动的优点 (2)1.3.2液压传动的缺点 (3)1.4国内外的发展状况 (3)1.4.1应用现状 (3)1.4.2发展动向 (4)1.5本章小结 (5)第2章装载机液压系统设计 (6)2.1装载机液压系统的设计要求 (6)2.1.1概述 (6)2.1.2轮式装载机液压系统基本要求 (6)2.2轮式装载机液压系统设计已知参数 (6)2.3制订液压系统方案 (7)2.3.1油路循环方式的分析与选择 (7)2.3.2确定液压执行元件的形式 (7)2.3.3各机构液压回路的确定 (7)2.3.4绘制液压系统原理图 (10)2.4确定液压系统的主要参数 (11)2.4.1液压缸载荷组成 (12)2.4.2初选系统工作压力 (13)2.4.3计算液压缸的主要结构尺寸 (13)2.4.4计算液压缸所需流量 (15)2.4.5计算液压执行元件的实际工作压力 (16)2.5液压元件 (16)2.5.1液压泵的选择 (16)2.5.2液压阀的选择 (17)2.5.3辅元件的选择 (17)2.6液压系统的性能验算 (19)2.6.1液压系统压力损失 (19)2.6.2液压系统的发热温升计算 (20)2.6.3计算液压系统的散热功率 (21)2.6.4根据散热要求计算油箱容量 (22)2.7液压系统冲击压力 (22)2.7.1压力冲击的原因 (23)2.7.2消除或减少压力冲击的措施 (23)2.8本章小结 (23)第3章动臂液压缸的设计 (24)3.1液压缸的结构参数计算 (24)3.1.1缸筒壁厚计算 (24)3.1.2缸筒外径 (25)3.1.3缸底厚度的计算 (25)3.2液压缸的连接计算 (25)3.2.1缸盖连接计算 (25)3.2.2销轴与耳环连接计算 (26)3.3活塞杆活塞杆强度及稳定性验算 (27)3.3.1活塞杆强度验算 (27)3.3.2活塞杆稳定性验算 (27)3.4本章小结 (28)参考文献 (29)致谢语 (30)前言装载机是一种常用的铲土运输机械,广泛应用于公路、铁路、建筑、水电、港口、矿山及国防工程中。
轮式装载机工作液压系统的设计

目录绪论 (1)1装载机的发展状况及发展前景 (1)1.1目前我国轮式装载机的概况 (1)1.2国外装载机的发展动态 (2)1.3装载机的发展历史及前景 (3)2轮式装载机装载液压机构的技术任务书 (4)2.1概述工况 (4)2.2技术要求 (4)3液压系统的设计和计算 (6)3.1初选系统的工作压力 (6)3.2液压系统原理图 (7)3.3液压缸的设计和计算 (7)3.3.1转斗油缸作用力的确定 (7)3.3.2活塞 (9)3.3.3活塞杆 (10)3.3.4缸筒 (11)3.3.5活塞杆的校核 (16)3.3.6卡环连接的计算 (17)3.3.7活塞杆的导向套 (18)3.3.8油口 (18)3.3.9密封件、防尘圈 (19)3.3.10转斗油缸与机架铰接处销轴的校核 (19)3.4动臂举升油缸的设计和计算 (19)3.4.1动臂举升油缸作用力的确定 (19)3.4.2活塞 (20)13.4.3活塞杆校核 (21)3.4.4缸筒 (22)3.4.5活塞杆的校核 (25)3.4.6卡环连接的计算 (26)3.4.7焊接缸筒的计算 (27)3.4.8活塞杆的导向套 (27)3.4.9密封件、防尘圈 (28)3.4.10举升油缸与机架铰接处销轴的校核 (28)3.5泵的选用 (28)3.6油箱的设计 (29)3.6.1油箱容量的计算 (29)3.7液位计的选用 (29)3.8过滤器的选用 (30)3.9管道及管接头的选择 (32)3.10联轴器的选用计算 (33)3.11液压油的选用 (34)4标准化审核报告 (34)4.1产品图样的审查 (34)4.2产品技术文件的审查 (35)4.3标准件的使用情况 (35)4.4审查结论 (35)总结 (36)参考文献 (37)致谢 (38)设计说明书中文摘要2毕业设计说明书英文摘要345装载机工作液压机构设计绪论装载机是一种常用的铲土运输机械,广泛应用于公路、铁路、建筑、水电、港口、矿山及国防工程中。
轮式装载机设计计算教学

轮式装载机设计计算教学引言轮式装载机是一种广泛应用于工程建筑和物料搬运领域的重型机械设备。
它能够高效地完成物料的装卸和搬运任务,并提高工作效率。
本文将介绍轮式装载机的设计计算教学,帮助读者了解轮式装载机的设计原理和计算方法。
一、轮式装载机的基本构造轮式装载机主要由发动机、转向系统、液压系统、传动系统、工作装置和驾驶室等组成。
发动机提供动力,转向系统控制驾驶方向,液压系统实现各种操作功能,传动系统将发动机的动力传递给各个部件,工作装置用于进行装卸和搬运任务,驾驶室提供操作环境给驾驶员。
二、轮式装载机的设计原理1. 轮式装载机的承载力计算轮式装载机的承载力是指其能够承受的最大荷载重量。
承载力的计算需要考虑轮胎的静态荷载、动态荷载和转向力等因素。
根据轮胎的额定荷载和标称荷载,可以计算出轮式装载机的承载力。
2. 轮式装载机的稳定性计算轮式装载机在工作时需要保持稳定性,以防止倾覆和事故发生。
稳定性的计算主要考虑重心高度、工作装置的位置和负载重心的位置等因素。
通过计算这些因素,可以评估轮式装载机的稳定性并进行相应的改进设计。
3. 轮式装载机的动力学计算轮式装载机的动力学计算是指确定轮式装载机的加速度、爬坡能力和制动距离等参数。
这些参数需要考虑发动机的功率、传动系统的效率、轮胎的摩擦系数以及车辆的重量和负载等因素。
通过动力学计算,可以评估轮式装载机在不同工况下的性能表现。
4. 轮式装载机的液压系统计算轮式装载机的液压系统是实现各种操作功能的关键。
液压系统的计算需要考虑液压泵的流量和压力、液压缸的工作压力和作用力、液压油管的尺寸和流速等因素。
通过液压系统的计算,可以确定合适的液压元件并设计出高效的液压系统。
三、轮式装载机设计计算实例为了更好地理解轮式装载机的设计计算,我们以一个实例进行说明。
假设我们需要设计一台载重能力为10吨的轮式装载机。
根据以上所述的设计原理,我们可以进行以下计算:1. 承载力计算:根据轮胎的额定荷载和标称荷载,计算出轮式装载机的承载力为10吨。
轮式装载机总体设计及制动系统设计

轮式装载机总体设计及制动系统设计
轮式装载机是一种用于装载、卸载和运输土、石料等物料的工程机械设备。
它含有一个前置式铲斗,驾驶员座椅和驾驶室,以及四个轮子用于移动。
下面是轮式装载机总体设计和制动系统设计的一些基本知识。
轮式装载机总体设计主要包括以下几个方面:
1. 整体结构设计:包括铲斗、车身、底盘、驾驶室等组成部分的设计,要保证重心低平稳,同时各部件之间的耦合良好,使结构刚性和稳定性达到最佳水平。
2. 动力系统设计:通过合理选择发动机和传动系统来实现最佳的动力性能和燃油经济性。
3. 液压系统设计:液压系统是轮式装载机的主要动力系统,通过设计合理的泵和阀来实现最佳的液压效率和性能。
4. 电气系统设计:电气系统包括所有电子元件和电线组件,通过设计合理的控制模块实现各种功能控制。
制动系统设计是重要的安全问题,必须严格按照相关要求进行设计,主要包括以下几个方面:
1. 制动器类型的选择:根据轮式装载机的使用场合和工作性质来选择最合适的制动器类型,目前轮式装载机普遍采用湿式多片制动器。
2. 制动器的设定:根据轮式装载机的质量和制动性能来计算制动器的承受能力和设置合适的制动器数量,保证制动效果可靠。
3. 制动管道和制动油:提供运转一段时间的制动和驱动控制,制动管道和制动油应该是适当的大小和容量。
4. 制动控制系统的设计:配备高质量的制动控制组件和设备来监控制动作用,保证制动系统在必要时能够快速反应并发生作用,确保安全性。
装载机液压系统设计.ppt

工作装置的尺寸参数确定
动臂与车架铰接点位置的确定
动臂长度的确定
根据最大卸载高度Hmax和最大卸载高度时的 卸载距离S可以按图初步计算动臂的长度
动臂油缸的铰接位置
确定动臂油缸与动臂及车架的铰接点H,m的位置,通常参考同类 样机,同时考虑动臂油缸的提升力臂与行程的大小选定。H点一 般选在约为动臂长度的1/3处,且在动臂两铰接点的连线之上,以 便留出铰座位置。动臂油缸与车架的连接方式采用油缸下端与车 架铰接。
综上分析:需要在分配阀转斗前腔的管路和油箱间加上一个双作用
安全阀,它可由差动型安全阀和单向阀组成,可以通过安全阀过载溢 流及油箱来油顶开单向阀补油来保证系统的正常工作。当铲斗快卸时 ,油箱油液在大气压力下打开单
液压辅件的设计计算与选择
管道计算及类型选择
(1)油管内径计算
d 4Q v
(2)油管的壁厚的计算
摇臂的尺寸及铰接点位置的确定
(1)摇臂和连杆要传递较大的转斗油缸作用力,所以设计时要同时 从运动与受力两方面考虑。通常那是参考同类样机按比例选取,然后 从运动与受力两方面进行校核并修改,使之满足工作装置的作业要求。
摇臂的形状(夹角)、长短臂的比例(DE/DC)及饺接点D的位置定, 主要是考虑连扦机构的空间布置,避免相互之间的干涉,同时连杆长 度与转斗油缸行程也不要过大。
通常摇臂做成弯曲形状,其夹角大小主要考虑到空间位置不受干涉 而定,一般取30度左右,长、短臀之比为1.5左右,摇管与动臂的饺 接点G选在动臂中点偏下、两铰接点连线AB上方。
参照同类样机,下摇臂DE=850mm,根据长短杆的比例,上摇臂 DC=520mm,所成的锐角为35度。 (2) 连杆与铲斗铰接点D的选取,主要考虑使铲斗处于地面铲掘体置 时能够产生较大的铲起力、连杆的长度内连杆机构满足铲斗在任何位 置都能卸净物料这一条件确定,一般可按动臂在最大举升高度时能卸 净物料来校核,同时力臂不能太小。除此之外,连杆的细长比要适当。 (3)在完成上述构件的选取后,可用下述的几何作图法来确定转斗油 缸与车架饺接点B的位置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
开题报告摘要装载机主要用来装卸散状物料,也能进行轻度的铲掘工作,并且具有良好的机动性能,是工程机械中保有量较大的品种之一。
装载机液压系统设计是装载机设计的一个重要环节,它对装载机的使用性能和装载机在市场上的竞争力有着很大的影响。
装载机性能的优劣和作业效率的发挥,离不开液压系统的设计,而且在很大程度上取决于液压系统的工作效率。
装载机的工作装置和转向机构都采取液压传动,本文通过对工作装置及转向机构工作要求和载荷分析对液压系统进行设计。
主要包括对执行元件,控制元件辅助元件的选择、设计。
本文的设计,能够使读者对液压系统设计进一步加深了解,同时从中可以体会到一些设计理念,为以后从事此类工作得到一些帮助。
关键词:装载机液压传动液压系统设计ABSTRACTThe loader is mainly used for loading and unloading bulk materials, but also for light excavation work, and has good maneuverability, is the construction machinery to maintain a larger variety of one.The hydraulic system design of the loader is an important part of the loader design. It has a decisive influence on the performance of the loader and the competitiveness of the loader in the market. The performance of the loader and the operational efficiency of the play, can not be separated from the hydraulic system design, and to a large extent depends on the hydraulic system efficiency.The working device of the loader and the steering mechanism are taken hydraulic drive, this paper through the work device and steering mechanism requirements and load analysis of the hydraulic system design. Mainly include the implementation of components, control components of the selection of components, design.The design of this paper can make the reader to further deepen the understanding of the hydraulic system design, at the same time from which you can experience some of the design concept for the future to engage in such work to get some help.Key words: loader hydraulic transmission hydraulic pressure system目录摘要 (1)ABSTRACT (6)目录 (7)前言 (1)第1章装载机液压系统总体介绍 (2)1.1液压系统的工作原理 (2)1.2液压系统的组成部分 (2)1.3液压传动的优缺点 (2)1.3.1液压传动的优点 (2)1.3.2液压传动的缺点 (3)1.4国内外的发展状况 (3)1.4.1应用现状 (3)1.4.2发展动向 (4)1.5本章小结 (5)第2章装载机液压系统设计 (6)2.1装载机液压系统的设计要求 (6)2.1.1概述 (6)2.1.2轮式装载机液压系统基本要求 (6)2.2轮式装载机液压系统设计已知参数 (6)2.3制订液压系统方案 (7)2.3.1油路循环方式的分析与选择 (7)2.3.2确定液压执行元件的形式 (7)2.3.3各机构液压回路的确定 (7)2.3.4绘制液压系统原理图 (10)2.4确定液压系统的主要参数 (11)2.4.1液压缸载荷组成 (12)2.4.2初选系统工作压力 (13)2.4.3计算液压缸的主要结构尺寸 (13)2.4.4计算液压缸所需流量 (15)2.4.5计算液压执行元件的实际工作压力 (16)2.5液压元件 (16)2.5.1液压泵的选择 (16)2.5.2液压阀的选择 (17)2.5.3辅元件的选择 (17)2.6液压系统的性能验算 (19)2.6.1液压系统压力损失 (19)2.6.2液压系统的发热温升计算 (20)2.6.3计算液压系统的散热功率 (21)2.6.4根据散热要求计算油箱容量 (22)2.7液压系统冲击压力 (22)2.7.1压力冲击的原因 (23)2.7.2消除或减少压力冲击的措施 (23)2.8本章小结 (23)第3章动臂液压缸的设计 (24)3.1液压缸的结构参数计算 (24)3.1.1缸筒壁厚计算 (24)3.1.2缸筒外径 (25)3.1.3缸底厚度的计算 (25)3.2液压缸的连接计算 (25)3.2.1缸盖连接计算 (25)3.2.2销轴与耳环连接计算 (26)3.3活塞杆活塞杆强度及稳定性验算 (27)3.3.1活塞杆强度验算 (27)3.3.2活塞杆稳定性验算 (27)3.4本章小结 (28)参考文献 (29)致谢语 (30)前言装载机是一种常用的铲土运输机械,广泛应用于公路、铁路、建筑、水电、港口、矿山及国防工程中。
其对加快工程建设速度,减轻劳动强度,提高工程质量,降低工程成本等都发挥着重要的作用。
因此,近年来,装载机在国内外均得到了迅猛的发展,已成为工程机械的主导产品之一。
装载机是一种常用的铲土运输机械,广泛应用于公路、铁路、建筑、水电、港口、矿山及国防工程中。
其对加快工程建设速度,减轻劳动强度,提高工程质量,降低工程成本等都发挥着重要的作用。
因此,近年来,装载机在国内外均得到了迅猛的发展,已成为工程机械的主导产品之一。
如国外工程机械产品在集成电路、微处理器、微型计算机及电子监控技术等方面都有广泛的应用,一些节能新技术得到了推广,可靠性、安全性、舒适性、环保性能得到了高度重视,并向大型化和微型化方向发展。
借鉴国外工程机械产品的发展趋势,我国工程机械产品的发展走势应是:大力发展机电一体化产品,实现装载机工作状态的自动监测和控制,实现平地机的激光导平自动控制,实现在有毒、有危险环境下工程机械作业的遥控,大力提高产品的质量、可靠性和技术水平,大力发展工程机械品种,加强新技术的应用,改善驾驶员的工作条件。
装载机:应开发性能优良的装载机,如斗容量大、发动机功率大、掘起力大、倾翻负荷大、牵引力大、废气排放少的装载机,应开发机电一体化技术、电子计算机技术、监测技术水平高的装载机,应开发作业可靠性好、安全性高、舒适性好的产品,应开发可装载、可抓物、可侧卸、可起重的经济性好的一机多用型产品。
有前途的产品是:轮式装载机、大型装载机、中小型多用途轮式装载机、微小型装载机、机电一体化轮式装载机。
小型多功能装载机可迅速有效的克服人力无法完成的工作。
其灵活的工作空间、便捷的运输方式,更可取代中国市政部门现有的不太适合市政施工的大型机械,如装载机、履带式挖掘机等。
另外,机场、港口、码头、矿山、军用设施、石油与煤气管道铺设等行业领域的建设和维护也是挖掘装载机用武之地。
它可以实现了集装载、推土、刮平、装夹多种作业形式于一体,可以做到一机多用,经济实用,拥有很好的市场开发前景。
第1章装载机液压系统总体介绍1.1液压系统的工作原理液压系统是由各种液压元件(包括液压泵、液压阀、执行元件及辅助元件等)按一定需要合理组合而成。
他的工作原理是:液压泵由电动机带动旋转后,从油箱中吸油。
油液经滤油器进入液压泵,当它从泵中输出进入压力管后,通过开停阀、节流阀、换向阀进入液压缸一腔,推动活塞和上作台运动。
这时,液压缸一腔的油经换向阀和回油管排回油箱。
由此可知:1)液压传动是液体作为传递能量的介质;2)液压传动液压能量传递动力,是使用液压传动液体动能不一样的;3)液压介质在控制介质中受控,调节状态为上述,因此液压传动和液压控制往往难以完全分离。
1.2液压系统的组成部分液压传动主要山以下四部分组成:1)能源设备:将机械能转化为油压能量装置,最常见的形式是压力泵向液压系统提供压力油;2)设备的实施:油的液压能量可以转化为机械能装置,可以是液压缸的直线运动,可用于旋转运动液压马达;3)调节装置的控制:系统的油压,流量或方向来控制或调整装置,如安全阀,节流阀,阀门,开阀。
这些组件的不同组合形成了液压系统的不同功能;4)辅助装置:除上述三个部分以外的装置,如油箱,油过滤器,油管等,它们在确保系统正常方面起着重要作用。
1.3液压传动的优缺点1.3.1液压传动的优点液压系统具有如下优点:1)在相同的体积下,液压装置可以产生比电气装置更大的功率,因为液压系统中的压力可以大于电枢磁场中的磁力的30至40倍。
在相同功率的情况下,液压装置尺寸小,重量轻,结构紧凑。
液压马达的尺寸和重量只有等效功率马达的12%左右。
2)液压装置相对稳定。
液压装置由于重量轻,惯性小,响应快,易于实现快速启动,制动和频繁换向。
在往复式旋转运动中,液压装置的换向频率可高达每分钟500次,每分钟达到1000次。
3)液压装置可实现无级调速范围广(速度范围高达1:2000),也可在液压装置中进行速度控制。
4)液压传动容易实现自动化,因为它是液压,流量和流向的控制或调节,操作非常方便。
结合液压控制和电气控制或气动控制,可以实现复杂的顺序和远程控制。
5)液压装置容易实现过载保护。
液压元件可自动润滑,使用寿命更长。
6)由于液压元件已经标准化,系列化和多功能化,液压系统的设计,制造和使用更加方便。
液压元件的布置也具有很大的流动性。
7)采用液压传动实现自动运动,比机械传动简单。
1.3.2液压传动的缺点液压系统具有如下缺点:1)液压传动不能保证严格的传动比,这是液压油压缩性和泄漏等因素造成的。
2)液压传动过程中往往会有更多的能量损失(摩擦损失,泄漏损失等),管路长也会泄露。