满堂支架计算
满堂支架计算

满堂支架计算1、荷载计算根据支架布置方案,采用满堂支架,对其刚度、强度、稳定性必须进行检算。
钢管的内径Ф41mm 外径Ф48mm 、壁厚3.5mm 。
截面积转动惯量回转半径 截面模量钢材弹性系数钢材容许应力,按照《钢管满堂支架预压技术规程》中关于旧钢管抗压强度设计值的规定需要乘以折减系数0.85,故验算时按照170MPa 的容许应力进行核算。
1、支架结构验算荷载计算与荷载的组合:A 、钢筋混凝土自重:W 砼= 0.4×26=10.4KN/m2(钢筋混凝土梁重量按26kN/m 3计算)B 、支架模板重① 模板重量:(竹胶板重量按24.99kN/m 3计算)②主次楞重量:主楞方木:(方木重量按8.33KN/m3计算)次楞钢管:C 、人员与机器重W =1KN/ m 2 (《JGJ166-2008 建筑施工碗扣式脚手架安全技术规X 》)D 、振捣砼时产生的荷载2/4.0015.099.24m kN h W p =⨯==模板模板ρ2/47.033.81.01.025.011.01.06.01m kN h W p =⨯⨯⨯+⨯⨯==)(方木方木ρ22222893.44)1.48.4(14.34/)(cm d D A =÷-⨯=-=π344078.5)8.432()]1.48.4(14.3[cm =⨯÷-⨯=D d D W 32/)(44-=πcmA J i 58.1)/(2/1==44444187.1264)1.48.4(14.364/)(cm d D J =÷-⨯=-=πMPa E 51005.2⨯=MPa f 205][=2/12.0105.33.01m kN kg W =⨯⨯=钢管W =2KN/ m 2 ( 《JGJ166-2008 建筑施工碗扣式脚手架安全技术规X 》) E 、倾倒混凝土时冲击产生的荷载W =3KN/ m 2 (采用汽车泵取值3.0KN/m 2)F 、风荷载按照《建筑施工碗扣式脚手架安全技术规X 》,风荷载W k =0.7u z u s W o其中u z 为风压高度变化系数,按照《建筑结构荷载规X 》取值为1;u s 为风荷载体型系数,按照《建筑结构荷载规X 》取值为0.8;W o 为基本风压,按照XX 市市郊离地高度5m 处50年一遇值为0.3 KN/m 2。
满堂支撑架计算规范

满堂支撑架计算规范根据JGJ 130-2011135.4 满堂支撑架计算5.4.1满堂支撑架顶部施工层荷载应通过可调托撑传递给立杆。
5.4.2满堂支撑架根据剪刀撑的设置不同分为普通型构造与加强型构造,其构造设置应符合本规范第6.9.3条规定,两种类型满堂支撑架立杆的计算长度应符合本规范第 5.4.6条规定。
5.4.3立杆的稳定性应按本规范式(5.2.6-1)、式(5.2.6-2)计算。
不组合风荷载时: N/φA≦f (5.2.6-1)组合风荷载时: N/φA+Mw/W≦f (5.2.6-2)式中:N——计算立杆的轴向力设计值(N),不组合风荷载时N=1.2(NG1k +NG2k)+1.4ΣNQk(5.2.7-1)组合风荷载时N=1.2(NG1k +NG2k)+0.85×1.4ΣNQk(5.2.7-2)式中:NG1k——脚手架结构自重产生的轴向力标准值;NG2k——构配件自重产生的轴向力标准值;ΣNQk——施工荷载产生的轴向力标准值总和,内、外立杆各按一纵距内施工荷载总和的1/2取值。
φ——轴心受压构件的稳定系数,应根据长细比λ由本规范附录A表A.0.6取值;表A.0.6 轴心受压构件的稳定系数φ(Q23511钢)注:当λ>250时,φ=7320/λ2λ——长细比, λ=l 0/i ;l 0——计算长度(mm ),应按本规范式第5.4.6条的规定计算;i ——截面回转半径,可按本规范附录B 表B.0.1采用; 表 B.0.1 钢管截面几何特性外径Φ,d 壁厚t 截面积 A (cm 2) 惯性矩 I (cm 4) 截面模量 W (cm 3) 回转半径i (cm) 每米长质量(kg/m)mm 48.3 3.6 5.06 12.71 5.26 1.59 3.97A ——立杆截面面积(mm 2),可按本规范附录B 表B.0.1采用;M w ——计算立杆段由风荷载设计值产生的弯矩(N ·mm ),可按下式计算:M w =0.9×1.4M wk =0.9×1.4ωk l a h 2/10 (5.2.9)式中:M wk ——风荷载产生的弯矩标准值(N ·mm );w w ——风荷载标准值(kN/m 2),应按本规范式(4.2.5)式计算;l a ——立杆纵距(m )。
桥梁满堂支架计算

满堂支架计算碗扣式钢管支架门架式钢管支架扣件式满堂支架(后图为斜腿钢构)1立杆及底托1.1立杆强度及稳定性(通过模板下传荷载)由上例可知,腹板下单根立杆(横向步距300mm,纵向步距600mm)在最不利荷载作用下最大轴力P=31.15KN,在模板计算荷载时已考虑了恒载和活载的组合效应(未计入风压,风压力较小可不予考虑)。
可采用此值直接计算立杆的强度和稳定性。
立杆选用Ф48*3.5小钢管,由于目前的钢管壁厚均小于 3.5mm 并且厚度不均匀,可按Ф48*3.2或Ф48*3.0进行稳定计算。
以下按Ф48*3.0进行计算,截面A=424mm2。
横杆步距900mm,顶端(底部)自由长度450mm,则立杆计算长度900+450=1350mm。
立杆长细比:1350/15.95=84.64按 GB 50017--2003 第132页注1 计算得绕X轴受压稳定系数φx=φy=0.656875。
强度验算:31150/424=73.47N/mm2=73.47MPa,满足。
稳定验算:31150/(0.656875*424)=111.82MPa,满足。
1.2立杆强度及稳定性(依照《建筑施工扣件式钢管脚手架安全技术规范》)支架高度16m,腹板下面横向步距0.3m,纵向(沿桥向)步距0.6m,横杆步距0.9m。
立杆延米重3.3Kg=33N,每平方米剪刀撑的长度系数0.325。
立杆荷载计算:单根立杆自重:(16+(16/0.9)*(0.3+0.6)+0.325*16*0.9)*33=1210N=1.21KN。
单根立杆承担混凝土荷载:26*4.5*0.3*0.6=21.06KN。
单根立杆承担模板荷载:0.5*0.3*0.6=0.09KN。
单根立杆承担施工人员、机具荷载:1.5*0.3*0.6=0.27KN。
单根立杆承担倾倒、振捣混凝土荷载:(2.0+4.0)*0.3*0.6=1.08KN。
风荷载:W K=0.7u z*u s*w0风压高度变化系数u z查《建筑结构荷载规范》表7.2.1可取1.25(支架高度20m内,丘陵地区);风荷载脚手架体型系数u s 查《建筑施工扣件式钢管脚手架安全技术规范》表 4.2.4可取1.3ψ(敞开框架型,ψ为挡风系数,可查《建筑施工扣件式钢管脚手架安全技术规范》表A-3,表中无参照数据时可按下式计算);挡风系数ψ=1.2*An/Aw。
品茗盘扣式满堂支架计算

品茗盘扣式满堂支架计算
【实用版】
目录
1.品茗盘扣式满堂支架计算的背景和意义
2.计算的具体步骤和方法
3.计算中需要注意的问题和细节
4.结论和展望
正文
【1.品茗盘扣式满堂支架计算的背景和意义】
品茗盘扣式满堂支架计算是一种在中国茶文化中广泛应用的计算方式,主要用于计算茶盘的尺寸和支架的数量。
这种计算方式的背后,蕴含着中国古代数学的智慧和茶文化的深邃。
【2.计算的具体步骤和方法】
品茗盘扣式满堂支架计算的具体步骤如下:
首先,需要确定茶盘的尺寸。
茶盘的尺寸应该与茶桌的尺寸相匹配,以确保茶盘可以稳定地放在茶桌上。
其次,需要确定支架的数量。
支架的数量应该与茶盘的尺寸和形状相匹配,以确保茶盘可以稳定地放在支架上。
【3.计算中需要注意的问题和细节】
在计算中,需要注意以下几个问题和细节:
首先,需要确保茶盘的尺寸和形状与支架的尺寸和形状相匹配。
如果茶盘的尺寸和形状与支架的尺寸和形状不匹配,可能会导致茶盘不稳定,从而影响使用体验。
其次,需要考虑茶盘的重量和支架的承重能力。
如果茶盘的重量超过
支架的承重能力,可能会导致茶盘变形或破裂,从而影响使用体验。
【4.结论和展望】
总的来说,品茗盘扣式满堂支架计算是一种非常有用的计算方式,可以帮助我们计算茶盘的尺寸和支架的数量,从而确保茶盘可以稳定地放在茶桌上。
在计算中,我们需要注意茶盘的尺寸和形状与支架的尺寸和形状相匹配,以及考虑茶盘的重量和支架的承重能力。
满堂支架受力计算

支架高度以7米计算: 则支架自重:P=7×0.0384+6×0.6×0.0384=0.41KN 支架最大荷载为N=21.54+0.41=21.95KN 立杆长细比,查表得=0.676 [N]=>N 查表得外径48mm壁厚3.5mm钢管在步距120mm时,容许荷载 [N]=33.1KN>N。 故在此应力下,立杆是安全的 5)地基承载力计算 支架底托下辅设30*30*7cmC30砼块。其单根立杆有效承压面积为 30cm×30cm=0.09㎡ 地基承载力: 3.腹板处受力计算(60cm×60cm间距处) 其荷载与横梁处相同。 因横梁处支架是满足施工要求的,故腹板处也是满足要求的。
最大弯矩为:
弯曲强度: 最大挠度: <600/400=1.5 4) 支架受力 模板自重:0.43KN/㎡ 支架顶承受重力为:23.0KN/㎡+0.43KN/㎡=23.43KN/㎡ N1=0.9×0.6×23.43=12.65KN 支架高度以7米计算: 则支架自重:P=7×0.0384+6×0.9×0.0384=0.48KN 支架最大荷载为N=12.65+0.48=13.13 立杆长细比,查表得=0.676 [N]=>N 查表得外径48mm壁厚3.5mm钢管在步距120mm时,容许荷载 [N]=33.1KN>N。 故在此应力下,立杆是安全的。 5)地基承载力计算 支架底托下辅设30*30*7cmC30砼块。其单根立杆有效承压面积为 30cm×30cm=0.09㎡ 地基承载力:<15 2、横梁处受力计算(60cm×60cm间距处)
一、横杆和钢管架受力计算
1、标准截面处受力计算(90cm×60cm间距处) 1)荷载 箱梁自重:q=ρgh=2.6×10×0.5=13.0KN/㎡ (钢筋砼密度按ρ=2.6*10kg/m,g=10N/KG,h为砼厚度) 施工荷载和风载:10KN/㎡ 总荷载:Q=13.0+10=23.0KN/㎡ 2)顺向条木受力计算(10cm×10cm) 大横杆间距为90cm,顺向条木间距为30cm,故单根单跨顺向条木
桥梁满堂支架工程量计算公式

桥梁满堂支架工程量计算公式桥梁满堂支架是在桥梁施工中经常用到的一种支撑结构,要准确计算它的工程量,那可得有点小技巧和公式。
咱先来说说满堂支架的组成部分,一般包括立杆、横杆、纵杆、剪刀撑还有各种连接件啥的。
那计算工程量的时候,就得把这些部分都考虑进去。
立杆的工程量计算,咱就以长度乘以根数来算。
比如说,一根立杆长度是 3 米,一共用了 100 根,那立杆的总长度就是 3×100 = 300 米。
横杆呢,也是同样的道理,根据横杆的布置间距和长度,还有数量来计算。
假设横杆间距是 1.5 米,每根长度 2 米,一共用了 200 根,那横杆的总长度就是 2×200 = 400 米。
纵杆的计算方法和横杆类似,按照实际的布置情况来算就行。
还有剪刀撑,这个稍微有点复杂。
得根据剪刀撑的布置形式和长度来算。
比如说,剪刀撑每隔 5 米设置一道,每道长度 6 米,一共设置了 50 道,那剪刀撑的总长度就是 6×50 = 300 米。
连接件的数量,就得根据立杆、横杆、纵杆之间的连接点来数啦。
我之前在一个桥梁施工现场,就碰到过计算满堂支架工程量的事儿。
那时候,天气特别热,工人们都在辛苦地干活。
我拿着图纸,在现场一点点地核对数据。
汗水不停地流,眼镜都快滑下来了。
我特别仔细地数着立杆、横杆的数量,还时不时地用尺子量量长度,就怕算错了。
回到办公室,我又根据现场的数据,认真地用公式计算,反复核对,确保工程量的准确性。
因为这工程量算错了,那可不仅仅是数字的问题,会影响到材料的采购、施工的进度,甚至整个工程的成本和质量。
总之,计算桥梁满堂支架的工程量,虽然有点繁琐,但只要咱认真仔细,按照公式一步步来,就不会出错。
这可是保证桥梁施工顺利进行的重要一步哦!。
满堂支架设计计算

满堂支架计算书一、设计依据1.《小乌高速公路改2 + 122.6互通桥工程施工图》2.《公路钢筋砼及预应力砼桥涵设计规范》JTJ023-853.《公路桥涵施工技术规范》JTJ041-20044.《扣件式钢管脚手架安全技术规范》JGJ130-20015.《公路桥涵钢结构及木结构设计规范》JTJ025-866.《简明施工计算手册》二、地基容许承载力本桥实际施工已新建土模为基础,在原地面清表后采用砾类土分层填筑,分层填筑层厚不大于30cm。
要求碾压后压实度不小于95%,经检测合格后再进行下一层的填筑,填筑至砾类土顶面,然后填筑厚30cm的砾石土,以提高地基承载力。
为了增加土模表面的强度,保证地基承载力不小于12t/*浇注一层10cm 厚C30垫层。
钢管支架和模板铺设好后,按120%设计荷载进行预压,避免不均匀沉降。
三、箱梁砼自重荷载分布根据BK2 + 122.6互通立交桥设计图纸,上部结构为25+35x2+25m 一联现浇预应力连续箱梁。
箱梁采用碗扣式支架现场浇筑施工,箱梁下部宽8.50 m , 顶宽13.00 m,梁高2.0m。
箱梁采用C50混凝土现浇,箱梁混凝土数量为1186.6m3。
25m 边跨梁单重为704.67t( 247.21x2.6+61.92 ); 35m 中跨梁单重为986.52t( 346.09x2.6+86.68 )。
墩顶实心段砼由设于墩顶的底模直接传递给墩身,此部分不予检算。
对于空心段箱梁,箱梁顶板厚0.25m,底板厚0.22m,翼缘板前端厚0.20m,根部0.45m,翼板宽2.0m,腹板厚0.5m,根据荷载集度分部情况的分析,腹板处荷载集度最大为最不利位置,故取腹板下杆件进行检算。
四、模板、支架、枕木等自重及施工荷载本桥箱梁底模、外模均采用6=12mm厚竹胶板,芯模采用6=10mm竹胶板。
底模通过纵横向带木支撑在钢管支架顶托上,支架采用①48mmx3.5mm钢管,通过顶托调整高度。
满堂支架设计与计算

普通满堂均布钢管支架1、普通钢管采用外经48mm,壁厚3.5mm组成,底板下采用0.6米×0.6米布设,在墩柱附近底板增设0.3米×0.3米,纵桥向三排,横杆间距均为1.2米.2、横向搁木和纵向搁木的布设为0.4米×0.4米,材料采用15cm×7.5cm松木,横向摆放采用15cm(高)×7.5cm,纵向摆放采用7.5cm(高) ×15cm,横向搁木摆放在横杆上。
3、横向斜撑在底板每9排形成一个剪刀斜撑,翼板每7排形成一个剪刀斜撑,剪刀斜撑与剪刀斜撑纵向间距为5×0.6=3米,即在平面布置图中按6~16布置,纵向斜撑在底板中间搭设一道,在底板边搭设一道,即(1)(2)(5)搭设布置,翼板边各搭设一道,斜撑减半,即(3)(4)搭设布置。
4、因钢管长度不够,用2个固定卡子卡住以调整标高和拆落支架,每个卡子能承受1.3T,两个卡子为2.6T能满足施工要求。
一、地基处理1、泥浆池、沉淀池的处理将泥浆池、沉淀池内泥浆挖干净,分层每20cm夯实后,用C25砼硬化20cm厚。
2、绿岛采用C25砼硬化,厚度为20cm,布设∮8钢筋网,间距为20cm×20cm。
3、23#~30#墩、36#~39#墩原地面硬化为:先将建筑垃圾清理干净,然后用压路机充分压实,铺30cm厚石碴后,用C25砼进行硬化,硬化厚度为20cm。
支架设计计算一、扣件式满堂均布钢管支架的计算(以19#~20#为例)1、荷载分布及计算为计算简便,统一简化为均布荷载,根据设计图纸的尺寸及混凝土方量,每跨梁(24#) (23#) (19#)(20#)150 200 400 980 980 500 100 125 3440(注:本图以厘米计)N1=50934kg/m N2=29750kg/m N3=25606kg/m N4=21400kg/mN5=19643kg/m N6=21124kg/m N7=26850kg/m N8=50920kg/m(20#) (21#)(21#) (22#)(22#) (23#) 125 100 500 995×2 500 100 125(注:本图以厘米计)N1=N8=50920kg/m N2=N7=26850kg/mN3=N6=21124kg/m N4=N5=19641kg/m根据纵向支架分布图和横向支架分布图,以(2)为例进行检算,荷载分布如下图:=20702×1.25+19641×5.75=138813kgP119641kg/m(2)(3)7.0mP2=19641×7=137487kgP= P1× P2=138813+137487=276300kgP=276300/2=138150kg设计为7根ф60cm钢管桩,壁厚为0.5CM,高度为6m,每根钢管桩受力为:P3=138150/7=19736kg/根考虑到模板、工字钢重量及施工荷载影响,取1.2系数则:P4=19736×1.2=23683kg/根2、应力检算:σ压 = P4/A=23683/(302-29.522)π=254kg/cm2〈[σ]=1700kg/ cm23、失稳检算钢管桩底部与混凝土调整块用螺栓连接,因此可看成为一端固定,另一端自由受压杆件,取长度系数μ=2,惯性距I=π(D4-d4)/64=π(604-594)/64=41342cm4圆转半径r=I/A=41342/π(302-29.52)=21.04cm柔度λ=μL/=2×600/21.04=57查相关资料A3钢λP=100 λ0=61.4 λ<λ0,因此钢管桩属于短粗或小柔度杆,只需按强度问题进行检算即P0=A*σS=π(302-29.52)×1700=158806kg实际每根钢管桩的工作力为P4=23683kg<P0=158806kg。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
办公楼满堂支架施工方案
一、满堂支架方案
2.1、支架设计的要求
2.1.1、支架结构必须有足够的强度、刚度、稳定性。
2.1.2、支架在承重后期弹性和塑性变形应控制在15mm以内。
2.1.3、支架部分地基的沉降量控制在5mm以内,地基承载(压)力达200kPa。
2.1.4、支架顶面与梁底的高差应控制在理想值范围内,且应与预留应变通盘考虑。
2.2、支架基础
按通过后满堂支架的设计方案,要求地基承载力大于200MPa,因此必须对地基作特殊处理。
2.2.1、将原地面腐植地表层上耕植土清除15cm,然后用挖掘机挖松50cm,用强夯分两层压实,底层压实度>80%,顶层压实度>85%。
2.2.2、按2%横向排水坡(主体结构边缘四周排水)填筑宕渣30cm,填筑分两层进行,每层压实厚度为15cm,用强夯压实,底层压实度>90%,顶层压实度>95%。
2.2.3、为了防止浇筑混凝土时,流水软化支架的地基,浇筑厚5cm的C10细石混凝土封闭层。
2.3、满堂支架
在混凝土硬化好的基础顶面放置40*40*7cm C30砼预制块作为支架立杆底座,在已放置好的底座上搭设碗扣式多功能钢支架,支架布置为:底板立杆按0.9m×1.2m进行布置,即立杆纵向间距1.2m,横向间距0.9m,内排距主体0.3m,横向7排,纵向56排,步距1.2m;
支架外围四周设剪刀撑,内部沿主体结构纵向每4排立杆搭设一排横向剪刀撑,横向剪刀撑间距不大于5m,支架高度通过可调托座和可调底座调节。
满堂支架平面布置示意图
满堂支架纵立面布置示意图
满堂支架横立面布置示意图
2.4、模板结构及支撑体系
模板结构是否合适将直接影响该悬挑结构造型的外观,底模面板均采用厚为18mm 的竹胶板,面板尺寸1.2m ×2.8m ,以适应立杆布置间距,面板直接钉在横向方木上,横向方木采用100×100mm 方木,间距25cm ;横向方木置于纵向100×160mm 方木上,纵向方木间距应与立杆横向间距一致。
在钉面板时,每块面板应从一端赶向另一端,以保证面板表面平整。
二、支架结构检算
3.1、拟采用的材料截面特性
根据上图的布置方案,采用碗扣式多功能钢支架,对其刚度、强度、稳定性必须进行检算。
拟采用钢管外径D=48mm ,壁厚3.5mm ,即内径d=44.5mm 。
断面积2222254.24)45.48.4(14.34/)(cm d D A =÷-⨯=-=π
转动惯量4444481.664)45.48.4(14.364/)(cm d D J =÷-⨯=-=π
回转半径cm d D i 64.14)45.48.4(4/)(2/1222/122=÷+=+=
截面模量)32/()(44D d D W -=π
34484.2)8.432()]45.48.4(14.3[cm =⨯÷-⨯=
钢材弹性系数MPa E 5101.2⨯=
钢材容许应力MPa f 170][=
3.2、荷载计算及荷载的组合
计算单元荷载(按受荷较大的梁处计算)
A 、钢筋混凝土梁重:2/6.15266.0m kN h W p =⨯==钢筋砼砼ρ(钢筋混凝土梁重量按
26kN/m 3计算)
B 、支架模板重
① 模板重量:
2/4498.099.24018.0m kN h W p =⨯==模板模板ρ(竹胶板重量按24.99kN/m 3计算)
② 方木重量:
2/40.01.2
0.98.33)21.20.160.1+30.90.1(0.1m kN h W p =⨯⨯⨯⨯⨯⨯⨯⨯==方木方木ρ(方木重量按8.33KN/m3计算)
③ 支架重量:
根据现场情况以21米高支架,步距1.2m 进行检算
2/68.201.0*84.3*18*2*1.2
0.9)9.0(1.2m kN W W W =⨯+=+=横杆立杆支架(48*3.5杆重量3.84kg/m)
C 、人员及机器重
2/2.1m kN W =人员机器
D 、振捣砼时产生的荷载
2/2m kN W =人员机器
E 、倾倒混凝土时冲击产生的水平荷载
2/3m kN W =人员机器
荷载组合:
2
/32.250.30.22.168.24.04498.06.15m kN W =++++++=总
计算单元中单根立杆受力:kN
N 35.272.19.032.25=⨯⨯= 3.3、立杆强度及稳定性验算
3.3.1、立杆强度验算
[]f A N ≤1 []MPa f MPa mm
kN A N 17010725435.2721=≤== []3.158.11071701>===N f A k 式中:安全系数3.1≥k ;支架钢管设计抗压强度MPa f 170][=;钢管有效截面积21254mm A =;计算单元对立杆的压力kN N 35.27=。
3.3.2、立杆稳定验算
[]f A N 11ϕ=
[]633
.017025435.2712111≥⨯⨯=≤=ϕϕϕMPa
mm f A kN N 长细比15017.7364
.1120≤===i h λ,由《钢结构设计手册》查得633.0824.0>=ϕ
结论:立杆满足强度及稳定性要求。
3.4、横向方木强度和刚度验算
支架中采用100×100mm 横向方木,验算时按单跨梁(跨度l=0.9m )计算。
横杆间距为120/2=60cm ,故单根单跨横向方木受力q=25.32×0.6=15.2KN/m 按最不利因素计算,即横向方木(100×100mm )以简支计算
最大弯矩为:
m KN ql M ⋅===54.18/9.0*9.0*2.158
12max 弯曲强度:
Mpa Mpa bh M W M 1124.91
.01.054.16max 622max <=⨯⨯===σ(落叶松木容许弯应力) 最大挠度:
mm EI ql f 73.11
.0)12/1(1090003849.0102.155384546434max =⨯⨯⨯⨯⨯⨯⨯==<900/400=2.2mm 3.5、纵向方木强度和刚度验算
支架中采用100×160mm 纵向方木,验算时按三跨连续梁(跨度l=1.2m )计算。
跨中和支座处受横向方木集中荷载P=25.32×0.6×0.9=13.67KN ,
最大弯矩为:
m KN Pl M ⋅=⨯=87.2175.0max 系数查《建筑结构静力计算手册》(第二版) 弯曲强度:
Mpa Mpa W M 1172.616.01.087.262
max <=⨯⨯==σ(落叶松木容许弯应力)满足要求 最大挠度:
mm EI Pl f 44.01
.016.0)6/1(1090001002.11067.13146.1100146.136333max =⨯⨯⨯⨯⨯⨯⨯⨯=⨯=<1200/400=3.0mm 系数查《建筑结构静力计算手册》(第二版)
3.6、横杆稳定验算
横杆两端铰接,正常工作状态下水平推力为零,只在施工时承担部分施工荷载及自身重力,此处以1.2米横向杆进行验算。
N q q q 14610*2.1*84.3100=+=+=自重人
按横杆正中受集中荷载这一最不利情况进行验算
m kN m N L q M ∙=∙⨯=∙=087.02
2.11462max 横杆的容许弯矩[][]W f M c ∙=
[][]m kN W f M c ∙=⨯=∙=482.084.2170
[]M M ≤max
结论:横杆满足稳定性要求。
3.7、地基承载力计算
支架底托下辅设40*40*7cmC30砼块。
其单根立杆有效承压面积为40cm ×40cm=0.16㎡地基承载力:KPa S N P 17016
.035.27===<200KPa 梁底模板支架结构设计满足施工规范要求,板底模板所受荷载均比梁底小,故板底模板支架结构也能通过。
三、其他
该挑梁的模板工程、钢筋工程及混凝土工程详见相关施工验收规范或同主体工程施工方案。
结论:以上模板、支架及支架基础处理能满足顶层挑梁的施工要求。