六年级代数法解题
六年级奥数 代数法解题

第13讲 代数法解题一、知识要点有一些数量关系比较复杂的分数应用题, 用算术方法解答比较繁、难, 甚至无法列式算式, 这时我们可根据题中的等量关系列方程解答.二、精讲精练【例题1】某车间生产甲、乙两种零件, 生产的甲种零件比乙种零件多12个, 乙种零件全部合格, 甲种零件只有54合格, 两种零件合格的共有42个, 两种零件个生产了多少个? 练习1:1、某校参加数学竞赛的女生比男生多28人, 男生全部得优, 女生的43得优, 男、女生得优的一共有42人, 男、女生参赛的各有多少人?2、有两盒球, 第一盒比第二盒多15个, 第二盒中全部是红球, 第一盒中的52是红球, 已知红球一共有69个, 两盒球共有多少个?3、六年级甲班比乙班少4人, 甲班有31的人、乙班有41的人参加课外数学组, 两个班参加课外数学组的共有29人, 甲、乙两班共有多少人?【例题2】阅览室看书的学生中, 男生比女生多10人, 后来男生减少41, 女生减少61, 剩下的男、女生人数相等, 原来一共有多少名学生在阅览室看书?练习2:1、某小学去年参加无线电小组的同学比参加航模小组的同学多5人. 今年参加无线电小组的同学减少51, 参加航模小组的人数减少101, 这样, 两个组的同学一样多. 去年两个小组各有多少人?2、原来甲、乙两个书架上共有图书900本, 将甲书架上的书增加85, 乙书架上的书增加103, 这样, 两个书架上的书就一样多. 原来甲、乙两个书架各有图书多少本?【例题3】甲、乙两校共有22人参加竞赛, 甲校参加人数的51比乙校参加人数的41少1人, 甲、乙两校各有多少人参加?练习3:1、学校图书馆买来文艺书和连环画共126本, 文艺书的比连环画的少7本, 图书馆买来的文艺书和连环画各是多少本?2、某小有学生465人, 其中女生的比男生的少20人, 男、女生各有多少人?【例题4】甲书架上的书是乙书架上的65, 两个书架上各借出154本后, 甲书架上的书是乙书架上的74, 甲、乙两书架上原有书各多少本? 练习4:1、儿子今年的年龄是父亲的61, 4年后儿子的年龄是父亲的41, 父亲今年多少岁?2、某校六年级男生是女生人数的32, 后来转进2名男生, 转走3名女生, 这时男生人数是女生的43. 原来男、女生各有多少人?【例题5】一个班女同学比男同学的32多4人, 如果男生减少3人, 女生增加4人, 男、女生人数正好相等. 这个班男、女生各有多少人?练习5:1、某学校的男教师比女教师的83多8人. 如果女教师减少4人, 男教师增加8人, 男、女教师人数正好相等. 这个学校男、女教师各有多少人?2、某无线电厂有两个仓库. 第一仓库储存的电视机是第二仓库的3倍. 如果从第一仓库取出30台, 存入第二仓库, 则第二仓库就是第一仓库的94. 两个仓库原来各有电视机多少台?三、课后作业1、某车间昨天生产的甲种零件比乙种零件多700个. 今天生产的甲种零件比昨天少101, 生产的乙种零件比昨天增加203, 两种零件共生产了2065个. 昨天两种零件共生产了多少个?2、王师傅和李师傅共加工零件62个, 王师傅加工零件个数的比李师傅的少2个, 两人各加工了多少个?3、第一车间人数的53等于第二车间人数的109, 第一车间比第二车间多50人. 两个车间各有多少人?4、某工厂第一车间的人数比第二车间的人数的54少30人. 如果从第二车间调10人到第一车间, 则第一车间的人数就是第二车间的43. 求原来每个车间的人数.面积计算一、知识要点计算平面图形的面积时, 有些问题乍一看, 在已知条件与所求问题之间找不到任何联系, 会使你感到无从下手. 这时, 如果我们能认真观察图形, 分析、研究已知条件, 并加以深化, 再运用我们已有的基本几何知识, 适当添加辅助线, 搭一座连通已知条件与所求问题的小“桥”, 就会使你顺利达到目的. 有些平面图形的面积计算必须借助于图形本身的特征, 添加一些辅助线, 运用平移旋转、剪拼组合等方法, 对图形进行恰当合理的变形, 再经过分析推导, 方能寻求出解题的途径.二、精讲精练【例题1】已知如图, 三角形ABC的面积为8平方厘米, AE=ED, BD=2/3BC, 求阴影部分的面积.练习1:1、如图, AE=ED, BC=3BD, S△ABC=30平方厘米. 求阴影部分的面积.2、如图所示, AE=ED, DC=1/3BD, S△ABC=21平方厘米. 求阴影部分的面积.3、如图所示, DE=1/2AE, BD=2DC, S△EBD=5平方厘米.求三角形ABC的面积.【例题2】两条对角线把梯形ABCD分割成四个三角形, 如图所示, 已知两个三角形的面积, 求另两个三角形的面积各是多少?练习2:1、两条对角线把梯形ABCD分割成四个三角形, (如图所示), 已知两个三角形的面积, 求另两个三角形的面积是多少?2、已知AO=1/3OC, 求梯形ABCD的面积(如图所示).【例题3】四边形ABCD的对角线BD被E、F两点三等分, 且四边形AECF的面积为15平方厘米. 求四边形ABCD的面积(如图所示).练习3:1、四边形ABCD的对角线BD被E、F、G三点四等分, 且四边形AECG的面积为15平方厘米. 求四边形ABCD的面积(如图).2、如图所示, 求阴影部分的面积(ABCD为正方形).【例题4】如图所示, BO=2DO, 阴影部分的面积是4平方厘米. 那么, 梯形ABCD的面积是多少平方厘米?练习4:1、如图所示, 阴影部分面积是4平方厘米, OC=2AO. 求梯形面积.2、已知OC=2AO, S△BOC=14平方厘米. 求梯形的面积(如图所示).3、已知S△AOB=6平方厘米. OC=3AO, 求梯形的面积(如图所示).【例题5】如图所示, 长方形ADEF的面积是16, 三角形ADB的面积是3, 三角形ACF的面积是4, 求三角形ABC的面积.练习5:1、如图所示, 长方形ABCD的面积是20平方厘米, 三角形ADF的面积为5平方厘米, 三角形ABE的面积为7平方厘米, 求三角形AEF的面积.2、如图所示, 长方形ABCD的面积为20平方厘米, S△ABE=4平方厘米, S△AFD=6平方厘米, 求三角形AEF的面积.三、课后练习1、已知三角形AOB的面积为15平方厘米, 线段OB的长度为OD的3倍. 求梯形ABCD的面积. (如图所示).2、已知四边形ABCD的对角线被E、F、G三点四等分, 且阴影部分面积为15平方厘米. 求四边形ABCD的面积(如图所示).3、如图所示, 长方形ABCD的面积为24平方厘米, 三角形ABE、AFD的面积均为4平方厘米, 求三角形AEF的面积.。
六年级13、代数法解题

如图, 是 中点,cbd是等边三角形.早上8点,小明和小红分别从 、 两 点同时出发,相向而行.小明比小红早2分钟到达 处,随后小明沿 的路线 继续行进.而小红到达 点后,径直往 点走去.当小明走到 点时,小红还 要走1分钟才能到达 .那么小明到达 点的时间是几点几分?
D
A
C
B
Thank You!
【例题3】甲、乙两校共有22人参加竞赛,甲校参加 人数的1/5比乙校参加人数的1/4少1人,甲、乙两校 各有多少人参加?
【例题3】甲、乙两校共有224少1人,甲、乙两校 各有多少人参加? 【思路导航】 这题中的等量关系是:甲×1/5=乙×1/4-1 解:设甲校有x人参加,则乙校有(22-x)人参加。 1/5x=(22-x)×1/4-1 x=10 22-10=12(人)
【例题5】一个班女同学比男同学的2/3多4人,如果 男生减少3人,女生增加4人,男、女生人数正好相等。 这个班男、女生各有多少人?
【例题5】一个班女同学比男同学的2/3多4人,如果 男生减少3人,女生增加4人,男、女生人数正好相等。 这个班男、女生各有多少人? 【思路导航】 抓住“如果男生减少3人,女生增加4人,男、女生人 数正好相等”这个等量关系列方程。 解:设男生有x人,则女生有(2/3x+4)人。 x-3=2/3x+4+4 x=33 2/3×33+4=26(人)
【练习4】 1.儿子今年的年龄是父亲的1/6,4年后儿子的年龄是 父亲的1/4,父亲今年多少岁?
2.某校六年级男生是女生人数的2/3,后来转进2名男 生,转走3名女生,这时男生人数是女生的3/4。原来 男、女生各有多少人? 3.第一车间人数的3/5等于第二车间人数的9/10,第 一车间比第二车间多50人。两个车间各有多少人?
六年级数学奥数举一反三小升初数学代数法解题13

小学数学六年级奥数举一反三
【练习1】
1.某校参加数学竞赛的女生比男生多28人,男生全部得优,女生的3/4 得优,男、女生得优的一共有42人,男、女生参赛的各有多少人?
2.有两盒球,第一盒比第二盒多15个,第二盒中全部是红球,第一盒中 的2/5 是红球,已知红球一共有69个,两盒球共有多少个?
3.六年级甲班比乙班少4人,甲班有1/3的人、乙班有1/4的人参加课外 数学组,两个班参加课外数学组的共有29人,甲、乙两班共有多少人?
小学数学六年级奥数举一反三
【练习5】
1.某学校的男教师比女教师的3/8多8人。如果女教师减少4人,男教师 增加8人,男、女教师人数正好相等。这个学校男、女教师各有多少人? 2.某无线电厂有两个仓库。第一仓库储存的电视机是第二仓库的3倍。 如果从第一仓库取出30台,存入第二仓库,则第二仓库就是第一仓库的 4/9。两个仓库原来各有电视机多少台? 3.某工厂第一车间的人数比第二车间的人数的4/5少30人。如果从第二 车间调10人到第一车间,则第一车间的人数就是第二车间的3/4。求原来 每个车间的人数。
小学数学六年级奥数举一反三
【练习2】
1.某小学去年参加无线电小组的同学比参加航模小组的同学多5人。今 年参加无线电小组的同学减少1/5,参加航模小组的人数减少1/10,这样, 两个组的同学一样多。去年两个小组各有多少人?
2.原来甲、乙两个书架上共有图书900本,将甲书架上的书增加5/8,乙 书架上的书增加3/10,这样,两个书架上的书就一样多。原来甲、乙两 个书架各有图书多少本?
【思路导航】 这题中的等量关系是:甲×1/5=乙×1/4-1 解:设甲校有x人参加,则乙校有(22-x)人参加。 1/5x=(22-x)×1/4-1 x=10 22-10=12(人)
六年级数学数与代数试题答案及解析

六年级数学数与代数试题答案及解析1.解方程.5x﹣20%x="19.2"2.5:x=﹣2x=.【答案】4;4;.【解析】(1)先化简方程,再根据等式的性质,方程两边同时除以4.8求解;(2)根据比例的基本性质,原式化成5x=2.5×8,再根据等式的性质,方程两边同时除以5求解;(3)根据等式的性质,方程两边同时加上2x,再两边同时减去,然后再两边同时除以2求解.解:(1)5x﹣20%x=19.24.8x=19.24.8x÷4.8=19.2÷4.8x=4;(2)2.5:x=5x=2.5×85x÷5=20÷5x=4;(3)﹣2x=﹣2x+2x=+2x=+2x﹣=+2x﹣=2x÷2=2x÷2x=.【点评】本题主要考查解方程和解比例,根据比例的基本性质和等式的性质进行解答即可.2.脱式计算。
(能简便计算的要简便计算)0.25×32×12.5% 36×75%+63×+0.75[120%—(65%-0.35 )]÷ 79 ÷ 150 -29 ×【答案】1;75;12;36×75%+63×+0.75=36×0.75+63×0.75+0.75×1=(36+63+1)×0.75=100×0.75=75[120%—(65%-0.35 )]÷=[1.2—0.3] ÷=0.9÷=1279 ÷ 150 -29 ×= 79×-29 ×=(79-29)×=50×=【解析】观察算式特点,没有简便方法,直接脱式计算即可。
先算小括号里的减法,再算中括号里的减法,最后算括号外的除法。
先仔细观察数字特点,题目中有0.25,12.5%,32,其中12.5%=0.125,与8相乘是1,0.25与4相乘是1,可以把32写成4×8,然后用乘法结合律,让4与0.25相乘,8与0.125相乘,再进行下一步计算。
六年级下册奥数讲义-奥数方法:代数法

在解题时,我们常常用字母(或符号)来表示数量,并根据题中的等量关系列出方程,然后通过解方程来求出问题的解,这种方法叫做代数法。
在用代数法解题的过程中,通过用字母来代替未知数,使其与已知数同等地参与列式、运算,这样有利于由已知向未知的转化,克服了平时必须避开未知数来列式的不足,使某些较复杂的、隐蔽的数量关系变得简单、明显,降低了思维难度。
用代数法解题的一般步骤:(1)审题,用字母表示所求的数量或有关的未知数;(2)找出题中数量问的相等关系,列出方程;(3)解方程;(4)检验并写出答案。
[例1】有一项工程,甲单独做需36天完成,乙单独做需30天完成,丙单独做需48天完成。
现在由甲、乙、丙三人同时做,在工作期间,丙休息了整数天,而甲和乙一直工作至完成,最后完成这项工程也用了整数天。
那么,丙休息了[例2] 六年级甲、乙两班学生共有109人,已知甲班男生占甲班人数的乙班女生占乙班人数的则两班共有男生多少人?思路剖析依题意,甲班学生数应是11的倍数,设为11x;乙班的学生数应是9 的倍数,设为9y,,从而有11x+9y=109,求出这个不定方程的整数解,问题就可得到解决。
解答设甲班的学生数为llx,乙班的学生数为9y,依题意有llx+9y=109这个方程可以变为9y=109-llx因为左边是自然数,所以x最大等于9。
当x取1、2、3、4、6、7、8、9 时,右边都不是9的倍数;只有当x=5时,右边等于54,是9的倍数,此时y=6,所以x=5,y=6是这个方程惟一的一组解。
甲班有学生11 x 5=55(人),乙班有学生9×6=54(人)两班共有男生答:两班共有男生60人。
[例3】一个人将弹子放进两种盒子里,每个大盒子装12个,每个小盒子装5个,恰好装完。
如果弹子数为99,问两种盒子各有多少个?思路剖析把大、小盒子的个数都设出来,结合大、小盒子装的数量及弹子的总数就可列出一个不定方程。
解这个不定方程,就可求出两种盒子各有多少个。
数学解题窍门小学六年级代数与方程计算方法总结

《山行》《枫桥夜泊》故事教案一、教学目标1. 知识与技能:(1)能够正确地朗读和背诵《山行》和《枫桥夜泊》两首诗歌;(2)理解两首诗歌的意境和主题,体会作者的思想感情;(3)学会欣赏和分析古典诗歌的基本技巧。
2. 过程与方法:(1)通过自主学习、合作探讨的方式,深入理解诗歌内容;(2)学会通过诗歌描绘画面,提高想象力和表达能力;(3)学会对比分析,提高鉴赏能力。
3. 情感态度与价值观:(1)培养学生热爱祖国语言文字的情感,增强民族自豪感;(2)培养学生对古典诗歌的兴趣,提高审美情趣;(3)培养学生学会关爱自然,珍惜美好生活。
二、教学重点与难点重点:(1)正确朗读和背诵《山行》和《枫桥夜泊》;(2)理解两首诗歌的意境和主题;(3)学会欣赏和分析古典诗歌的基本技巧。
难点:(1)诗歌中一些生僻字词的理解;(2)诗歌意境的深入体会;(3)古典诗歌鉴赏技巧的掌握。
三、教学方法1. 情境教学法:通过图片、音乐、动画等手段,营造有利于学生学习的情境;2. 互动教学法:引导学生积极参与课堂讨论,提高表达能力和合作精神;3. 对比分析法:引导学生对比分析两首诗歌的异同,提高鉴赏能力。
四、教学准备1. 课件:制作与教学内容相关的课件,包括图片、音乐、动画等;2. 诗歌原文:准备《山行》和《枫桥夜泊》的原文,方便学生朗读和背诵;3. 参考资料:收集有关《山行》和《枫桥夜泊》的背景资料,帮助学生更好地理解诗歌。
五、教学过程1. 导入新课(1)播放课件,展示《山行》和《枫桥夜泊》的图片,引导学生欣赏;(2)简介两首诗歌的背景,激发学生的学习兴趣。
2. 自主学习(1)学生自主朗读《山行》和《枫桥夜泊》,理解诗歌大意;(2)学生通过查阅资料,了解诗歌中的生僻字词的含义。
3. 课堂讲解(1)讲解《山行》和《枫桥夜泊》的意境和主题;(2)分析两首诗歌的异同,引导学生学会对比分析。
4. 互动交流(1)学生分享自己对《山行》和《枫桥夜泊》的理解和感受;(2)教师引导学生进行课堂讨论,提高表达能力和合作精神。
小学数学六年级上册教案:解方程的方法与技巧

小学数学六年级上册教案:解方程的方法与技巧解方程的方法与技巧解方程是小学六年级数学学习的重点之一,既涉及到基本的代数知识,又需要灵活运用数学思维和方法,因此很多同学在这方面会遇到一些困难。
本篇文章将详细介绍六年上册解方程的方法与技巧,供同学们参考。
一、解一元一次方程1.1 原理一元一次方程的一般形式为:ax+b=c,其中a、b、c都是已知数,x是未知数。
解方程的过程就是求出未知数x的值使得等式成立。
要解一元一次方程,可以运用两种主要的方法:以图形法和代数法。
1.2 图形法图形法是一种基本的解方程方法,它通过几何图形的方式来解决方程。
解一元一次方程时,把等式两边看成两调线段,转化成求相等长度,然后利用几何图形,选取合适的图形来解决问题。
通常利用平行四边形、三角形等图形求解。
1.3 代数法代数法是一种通用的解方程方法,它可以应用到各种类型的一元一次方程。
代数法是通过移项、相乘、去分、对等牵连等基本代数运算方法,将方程变成x=常数式、常数式x=常数式、常数式÷x=常数式等,从而得出解法。
还可以利用分配律、合并同类项、因式分解等代数方法进一步简化式子,尽可能让x的系数为1,使求解变得更加简单易懂。
1.4 解题技巧在解题时,需要注意以下几点:(1)方程两边进行的任何变形,都必须同步进行,确保等式两边都变化了。
(2)方程两边变化的符号必须相反。
(3)解出的结果必须带入原方程,验证等式是否成立。
(4)注意避免分母为0的情况。
(5)方程式中系数为整数时,方式好记,一般只需按基本代数运算法则逐步对变量x进行移动和运算即可。
上述技巧将大大方便同学们在解方程时的思维和操作。
二、解一元一次方程组2.1 原理一元一次方程组是由多个一元一次方程组成的,是一个比较高级的解方程形式。
解一元一次方程组的方法有代数解法和消元法两种。
2.2 代数解法代数解法就是通过我们刚才学过的代数知识,将方程组转换为一元一次方程求解,然后将解代入另一个方程中,不断验证得到结果。
六年级数学下册知识讲义-8 求代数式的值-人教版(五四学制)

初中数学求代数式的值学习目标一、考点突破会求代数式的值,通过代数式的值,体会代数式实际上是由计算关系反映的一种数量间的关系。
感受抽象的字母和具体的数之间的关系,进一步理解字母表示数的意义,进一步增强符号感。
二、重难点提示重点:会求代数式的值。
难点:利用代数式求值推断代数式所反映的规律。
考点精讲求代数式的值的步骤:(1)代入,即用数值代替代数式里的字母。
(2)计算,即按照代数式指明的运算顺序,计算出结果。
注意:(1)书写格式,在把字母所取的数值代入代数式时,必须写上“当……时”,表示这个代数式的值是在这种情况下求得的。
(2)数换字母,省略的乘号添上,值是负数代入应加括号,分数乘方时,分数应加括号。
示例:当a=-1,b=时,求ab3的值。
解:当=-1,b=时,ab3=(-1)×()3=-。
例题1若x是2的相反数,|y|=3,则x-y的值是()A. -5B. 1C. -1或5D. 1或-5思路分析:根据相反数和绝对值的意义,可求x和y的值,再代入计算。
答案:根据题意,得x=-2,y=±3。
当x=-2,y=3 时,x-y=-2-3=-5;当x =-2,y=-3 时,x-y=-2-(-3)=1,故选D。
技巧点拨:此题考查求代数式的值,关键在根据相反数和绝对值的意义求x和y的值。
例题22014年8月3日16时30分,云南省昭通市鲁甸县发生6.5级地震,为支援受灾地区抢险救灾,甲车满载救灾物资以10米/秒的速度驶向受灾地区,因路面湿滑,刹车距离s0=v+0.08v2(v为车辆行驶速度)。
已知驾驶员从发现紧急情况到开始刹车时需要1秒的反应时间,在行驶过程中,当甲车发现前方有一辆以8米/秒的速度行驶的汽车开始紧急刹车时,甲车也立即紧急刹车,问甲车至少应距前方车辆多少米才能避免追尾?思路分析:解决本题的关键是求出两车的刹车距离,及反应时间内走的距离,就是它们的车距。
答案:解:S0(甲)=10+0.08×102=18(米),V=8时,S0=8+0.08×82=13.12(米),距前方车辆的距离=18+10-13.12=14.88(米)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十三周代数法解题
专题简析:
有一些数量关系比较复杂的分数应用题,用算术方法解答比较繁、难,甚至无法列式算式,这时我们可根据题中的等量关系列方程解答。
例题1。
某车间生产甲、乙两种零件,生产的甲种零件比乙种零件多12个,乙种零件全部合格, 4
甲种零件只有5合格,两种零件合格的共有42个,两种零件个生产了多少个?
【思路导航】本体用算术方法解有一定难度,可以根据两种零件合格的一共有42个,列方程求解。
解:设生产乙种零件x个,则生产甲种零件(x+12)个。
4
(x+12 )X 5 +x = 42
4 3
5 x+95 +x = 42
9 3
9x=42- %
x = 18
18+12 = 30 (个)
答:甲种零件生产了30个,乙种零件生产了18个。
练习1
3
1、某校参加数学竞赛的女生比男生多28人,男生全部得优,女生的寸得优,男、女生得优
的一共有42人,男、女生参赛的各有多少人?
2
2、有两盒球,第一盒比第二盒多15个,第二盒中全部是红球,第一盒中的2是红球,
5 已知红球一共有69个,两盒球共有多少个?
1 1
3、六年级甲班比乙班少4人,甲班有3的人、乙班有4的人参加课外数学组,两个班参
加课外数学组的共有29人,甲、乙两班共有多少人?
例题2。
1 1
阅览室看书的学生中,男生比女生多10人,后来男生减少■",女生减少1,剩下的男、
4 6
女生人数相等,原来一共有多少名学生在阅览室看书?
【思路导航】根据剩下的男、女人数相等的题意来列方程求解。
解:设女生有x人,则男生有(x+10 )人
1 1
(1-6)x =( x+10 )X( 1 --)
X = 90
90+90+10=190人
4
7
答:原来一共有190名学生在阅览室看书。
练习2
1、某小学去年参加无线电小组的同学比参加航模小组的同学多5人。
今年参加无线电小组
1 1
的同学减少5,参加航模小组的人数减少io,这样,两个组的同学一样多。
去年两个小组各有多少人?
5 3 2、原来甲、乙两个书架上共有图书900本,将甲书架上的书增加8,乙书架上的书增加10,这样,
两个书架上的书就一样多。
原来甲、乙两个书架各有图书多少本?
1
3、某车间昨天生产的甲种零件比乙种零件多700个。
今天生产的甲种零件比昨天少五,
3
生产的乙种零件比昨天增加20,两种零件共生产了2065个。
昨天两种零件共生产了多少个?
例题3。
1 1
甲、乙两校共有22人参加竞赛,甲校参加人数的比乙校参加人数的;少1人,甲、
5 4
乙两校各有多少人参加?
1 1
【思路导航】这题中的等量关系是:甲X 1 "X 1 - 1
5 4
解:设甲校有x人参加,则乙校有(22 - x)人参加。
1 / 、1
x =(22- x)X ; —1
5 4
x = 10
22 —10= 12 (人)
答:甲校有10人参加,乙校有12人参加。
练习3
一一 1 2
1、学校图书馆买来文艺书和连环画共126本,文艺书的;比连环画的;少7本,图书馆
6 9
买来的文艺书和连环画各是多少本?
2 4
2、某小有学生465人,其中女生的2比男生的-少20人,男、女生各有多少人?
1 1
3、王师傅和李师傅共加工零件62个,王师傅加工零件个数的-比李师傅的4少2个,
两人各加工了多少个?例题4。
6,两个书架上各借出154本后,甲书架上的书是乙书架上甲书架上的书是乙书架上的
4
的7,甲、乙两书架上原有书各多少本?
【思路导航】这道题的等量关系是;甲书架上剩下的书等于乙书架上剩下的
4 7
解:设乙书架上原有 x 本,则甲书架上原有5 x 本。
4 5
(x — 154) X 7 = 6 x — 154
x = 252
5 亠 252 X
6 = 210 (本)
答:甲书架上原有 210本,乙书架上原有 252本。
练习4
1 1
1、 儿子今年的年龄是父亲的 6,4年后儿子的年龄是父亲的 4,父亲今年多少岁?
2、 某校六年级男生是女生人数的 |,后来转进2名男生,转走3名女生,这时男生人数
3
是女生的4。
原来男、女生各有多少人?
3 9
3、 第一车间人数的5等于第二车间人数的 %,第一车间比第二车间多
50人。
两个车间
各有多少人? 例题5。
2
一个班女同学比男同学的 3多4人,如果男生减少 3人,女生增加4人,男、女生人
数正好相等。
这个班男、女生各有多少人?
【思路导航】 抓住“如果男生减少 3人,女生增加4人,男、女生人数正好相等”这个等量 关系
列方程。
2
解:设男生有x 人,则女生有(3 x+4 )人。
X — 3 = 3 x+4+4
X = 33
2 ,
3 X 33+
4 = 26 (人)
答:这个班男生有 33人,女生有26人。
练习5
3
1、 某学校的男教师比女教师的 8多8人。
如果女教师减少 4人,男教师增加8人,男、 女教师
人数正好相等。
这个学校男、女教师各有多少人?
2、 某无线电厂有两个仓库。
第一仓库储存的电视机是第二仓库的
3倍。
如果从第一仓库 4
取出30台,存入第二仓库,则第二仓库就是第一仓库的 -。
两个仓库原来各有电视
机多少台?
4
3、某工厂第一车间的人数比第二车间的人数的4少30人。
如果从第二车间调10人到第
5
3
车间,则第一车间的人数就是第二车间的
-。
求原来每个车间的人数。
设男生有x 人,则女生有(x+28 )人
X = 12
12+28 = 40 人
设第二盒中有x 个球,则第一盒中有(x+5)个。
2
(x+15) X - +x =69
5
X = 45 45+15=60 个
设乙班共有x 人,则甲班共有(x — 4)人。
1 1
(x — 4)X - +4 x = 29
X = 52 52 — 4 = 48 人
设航模组有x 人,则无线电小组有(x+5)人。
(x+5 )X ( 1— g )= x
X ( 1 —秸)
X = 40 40+5= 45
设甲书架上原有 x 本,则乙书架上原有(900 — x )本
5 3
X X ( 1+8 ) = ( 900 — x )X ( 1+石) X = 400
=700
700+700+700=2100
设买文艺书x 本,则连环画有(126— x )本。
-x =( 126 — x )X 9 — 7 x = 54
126— 54 = 72 本
设男生有x 人,则女生有(465 — x )人
答案: 练1 1、
2、
3、
练2 1、
2、
3、
练3 1、
2、
42
=
3
一
4
X+ (x+28)
900 — 400 = 500
设昨天生产乙种零件 x 个,则甲种零件生产了(
1
' 10丿
X x( 1+20 ) + (x+700)
x+700)个。
=2065
4 2
5 x —20=( 465—x) X 3
x = 225
465—225 =240 人
3、设王师傅加工零件x个,则李师傅加工了(
1 1
x=( 62 —x)X :—2
5 4
x= 30
62 —30= 32 个
练4
1
1、设父亲今年x岁,则儿子6 x岁
/ 、 1 1
(x+4 )X ; =7 x+4
4 6
x = 36
2、设原有女生x人,则男生有| x人。
2 3
x+2 =( x —3)X-
3 4
x = 51
2 t
3 X 51 = 3
4 人
3、设第二车间有x人,则第一车间有(x+50)
3 9
(x+50) X 5 = 10 x
x = 100
100+50 = 150
练5
1、设女教师有x人,则男教师有(8 x+8)人。
3
X —4 = 8 x+8+8
x= 32
3 ,
8 X 32+8= 20 人
2、设第二仓库原有电视机x台,则第一仓库有
4
(3x—30 )X 9 = x+30
x = 130
130 X 3 = 390
4
3、设第二车间原有x人,则第一车间有(5 x-
4 3
x—30+10=( x—10)X ;
5 4
x= 250
4
7 X 250 - 30 = 170
562 —x )个
人。
3x台。
30)人。