概率统计A 期末样卷(2)答案

合集下载

【概率论与数理统计经典计算题题2】期末复习题含答案

【概率论与数理统计经典计算题题2】期末复习题含答案

【概率论与数理统计经典计算题题2】期末复习题含答案work Information Technology Company.2020YEAR概率论与数理统计计算题(含答案)计算题1.一个盒子中装有6只晶体管,其中2只是不合格品。

现作不放回抽样,接连取2次,每次随机地取1只,试求下列事件的概率:(1)2只都是合格品;(2)1只是合格品,1只是不合格品;(3)至少有1只是合格品。

1-2,9-2.设甲,乙,丙三个工厂生产同一种产品,三个厂的产量分别占总产量的20%,30%,50%,而每个工厂的成品中的次品率分别为5%,4%,2%,如果从全部成品中抽取一件,(1)求抽取的产品是次品的概率;(2)已知得到的是次品,求它依次是甲,乙,丙工厂生产的概率。

3.设随机变量X 的分布函数为1(1), 0() 0, 0x x e x F x x -⎧-+>=⎨≤⎩,试求:(1)密度函数()f x ;(2)(1)P X ≥,(2)P X < 。

4.二维随机变量(,)X Y 只能取下列数组中的值:1(0,0),(1,1),(1,),(2,0)3--,且取这些组值的概率分别为1115,,,312612。

求这二维随机变量分布律,并写出关于X和关于Y 的边缘分布律。

5. 总经理的五位秘书中有两位精通英语,今偶遇其中的三位秘书,试求下列事件的概率:(1)其中恰好有一位精通英语;(2)其中恰好有两位精通英语;(3)其中有人精通英语。

6.某大型体育运动会有1000名运动员参加,其中有100人服用了违禁药品。

在使用者中,假定有90人的药检呈阳性,而在未使用者中也有5人检查为阳性。

如果一个运动员的药检是阳性,则这名运动员确实使用违禁药品的概率是多少?7.设随机变量X 的密度函数为||(),x f x Ae x R -=∈,试求:(1)常数A ;(2)(01)P X << 。

8. 设二维随机变量(X ,Y)的分布律为求:(1)(X ,Y)关于X 的边缘分布律;(2)X+Y 的分布律.9. 已知A B ⊂,()0.36P A =,()0.79P B =,求()P A ,()P A B -,()P B A -。

学应用概率统计大学数学2试卷(A卷)附答案

学应用概率统计大学数学2试卷(A卷)附答案

2011-2012学年第 2 学期 考试科目: 大学数学Ⅱ一、填空题(本大题共6小题,每小题3分,共18分)1. 设A 、B 为两个随机事件,已知()0.3,()0.4,()0.5P A P B P A B ===U ,则()P A B =U ______________.2. 设随机变量X 服从参数为3的泊松分布,则(1)P X ≥= ______________.3. 设二维离散型随机变量),(Y X 的联合分布律为:),(Y X 的联合分布函数为),(y x F ,则(1,3)F =______________.4. 设随机变量X 表示100次独立重复射击命中目标的次数,每次命中目标的概率为0.2, 则2X 的数学期望是______________.5. 设X 、Y相互独立,且都服从标准正态分布,则~Z =______________. (要求写出分布及其参数).6. 设由来自总体~(,0.81)X N μ,容量为9的样本得到样本均值5=X ,则未知参数μ的置信度为95%的置信区间为___________________.( 0.025 1.96u =) 二、单项选择题(本大题共6小题,每小题3分,共18分)1. 某人花钱买了C B A 、、三种不同的奖券各一张.已知各种奖券中奖是相互独立的, 中奖的概率分别为,02.0)(,01.0)(,03.0)(===C p B P A p 如果只要有一种奖券中奖此人就一定赚钱, 则此人赚钱的概率约为( ). A. 0.05B. 0.06C. 0.07D. 0.082. 设A 、B 为两个随机事件,且B A ⊂,()0>B P ,则下列选项必然正确的是( ). A. ()()B A P A P < B. ()()B A P A P >C. ()()B A P A P ≤D. ()()B A P A P ≥3. 下列各函数中可以作为某个随机变量X 的分布函数的是( ).A. 21,0()11,0x F x x x ⎧≤⎪=+⎨⎪>⎩ B. 0,0() 1.1,011,1x F x x x <⎧⎪=≤≤⎨⎪>⎩14. 设随机变量()2~2,3X N ,随机变量25Y X =-+, 则~Y ( ). A. (1,41)N B. (1,36)N C. (1,18)N - D. (1,13)N -5. 设某地区成年男子的身高()100,173~N X ,现从该地区随机选出20名男子,则这20名男子身高平均值的方差为( ).A. 100B. 10C. 5D. 0.56. 设12,,,n X X X ⋅⋅⋅是取自总体X 的一个样本, X 为样本均值,则不是总体期望μ的无偏估计量的是( ).A. XB. 123X X X +-C. 1230.20.30.5X X X ++D. 1nii X=∑三、计算题(本大题共4小题,共40分)1.(本题8分)已知一批产品中90%是合格品,检查时,一个合格品被误认为是次品的概率为0.05,一个次品被误认为是合格品的概率为0.02,求: (1)一个产品经检查后被认为是合格品的概率;(2)一个经检查后被认为是合格品的产品确是合格品的概率.2.(本题8分)设离散型随机变量X 只取1,2,3三个可能值,取各相应值的概率分别是21,,4a a -,求:(1) 常数a ; (2) 随机变量X 的分布律; (3) 随机变量X 的分布函数()F x .3.(本题10分)设随机变量X 的密度函数为:()1()2x f x e x -=-∞<<+∞.(1) 求{1}P X <; (2) 求2Y X =的密度函数.4.(本题14分)设随机变量X 与Y 相互独立,它们的密度函数分别为1,03()30,X x f x ⎧≤≤⎪=⎨⎪⎩其他, 33,0()0,0y Y e y f y y -⎧>=⎨≤⎩ 试求:(1) (,)X Y 的联合密度函数; (2) ()P Y X <; (3)()D X Y -.四、解答题(本大题共3小题,每小题8分,共24分)1. 从一台车床加工的一批轴料中抽取15件测量其椭圆度,计算得样本方差220.025s =,已知椭圆度服从正态分布,问该批轴料椭圆度的总体方差与规定的方差200.0004σ=有无显著差异(取检验水平0.05α=)?(20.025(14)26.1χ=, 20.975(14) 5.63χ=, 20.025(15)27.5χ=,20.975(15) 6.26χ=)2. 某粮食加工厂用4种不同的方法贮藏粮食,一段时间后,分别抽样化验其含水率,每种方法重复试验次数均为5次,所得粮食含水率的方差分析表的部分数据如下. (0.05(4,19) 5.01F=,0.01(4,16) 4.77F=,0.01(3,16) 5.29F=) (1) 完成下面的方差分析表.(2) 给出分析结果.3. 有人认为企业的利润水平和它的研究费用间存在着近似的线性关系. 下面是某10个企业的利润水平(x )与研究费用(y )的调查资料:102101=∑=i ix,2390101=∑=i i y ,10661012=∑=i ix ,6243001012=∑=i iy ,25040101=∑=i i i y x建立研究费用y 与企业利润水平x 的回归直线方程.2011-2012学年第 2 学期 大学数学Ⅱ 华南农业大学期末考试试卷(A 卷)-参考答案 一、1. 0.8; 2. 31e --; 3.518; 4. 416 ; 5. )1(t ; 6. (4.412,5.588) 二、1. B 2. C 3. A 4. B 5. C 6. D 三、1. 解 设A =“任取一产品,经检验认为是合格品” B =“任取一产品确是合格品” 依题意()0.9,()0.1,()0.95,()0.02P B P B P A B P A B ==== (2分)则(1)()()(|)()(|)P A P B P A B P B P A B =+0.90.950.10.020.857.=⨯+⨯=(5分) (2) ()(|)0.90.95(|)0.9977()0.857P B P A B P B A P A ⨯===. (8分)2. 解 (1) 由2114a a -+=得1231().22舍去或a a ==- (3分) (2) X 的分布律为(5分)(3) X 的分布函数为 0,10,111,12,1244()113,23,234241111,3,3424x x x x F x x x x x <⎧<⎧⎪⎪⎪≤<⎪≤<⎪⎪⎪==⎨⎨+≤<⎪⎪≤<⎪⎪⎪⎪≥++≥⎩⎪⎩ (8分) 3. 解(1)111011{1}{11}12x x P X P X e dx e dx e---<=-<<===-⎰⎰. (3分)(2)当0y ≤时,()()()20F y P Y y P X y =<=<=; (5分) 当0y >时,()()(20xx F y P X y P X dx dx --=<=<<== (8分) 所以2Y X =的密度函数为0,0()()0y f y F y y ≤⎧⎪'==>. (10分) 4. 解 (1)因为随机变量X 与Y 相互独立, ( 1分)所以它们的联合密度函数为:3,03,0(,)()()0,y X Y e x y f x y f x f y -⎧≤≤>==⎨⎩其他 (3分)(2){}(,)y xP Y X f x y dxdy <<=⎰⎰330[]xy e dy dx -=⎰⎰ (6分)330(1)x e dx -=-⎰3390181()333x x e e --=+=+()9183e -=+ (8分) (3)解:由密度函数可知~(0,3),~(3)X U Y E (10分)所以,22(30)311(),(),12439D X D Y -==== (12分) 由X 与Y 相互独立,得3131()()()4936D X Y D X D Y -=+=+=(14分) 四、1. 解 检验假设 20:0.0004H σ=,21:0.0004H σ≠. (1分)依题意,取统计量:2222(1)~(1)n S n χχσ-=-,15n =. (3分)查表得临界值:220.0252(1)(14)26.1n αχχ-==,220.97512(1)(14) 5.63n αχχ--==, (5分)计算统计量的观测值得: 22140.02521.8750.0004χ⨯==. (6分)因2220.9750.025(14)(14)χχχ<<,故接受原假设0H ,即认为总体方差与规定的方差无显著差异.(8分) 2. 解 (1)(2) 解 因为F =5.6681>0.01(3,16) 5.29F =,所以拒绝0H ,即认为不同的贮藏方法对粮食含水率的影响在检验水平0.01α=下有统计意义. (8分)3. 解 2.10=x ,239=y (2分)6.252.10101066221012=⨯-=-=∑=x n x l i i xx (3分)6622392.101025040101=⨯⨯-=-=∑=y x n y x l i i i xy (4分)故1662ˆ25.8625.6xy xx l l β==≈;01ˆˆ23925.8610.224.77y x ββ=-=-⨯=- (6分) 因此所求回归直线方程为 ˆ24.7725.86yx =-+ (8分)。

2020-2021大学《概率论与数理统计》期末课程考试试卷A(含答案)

2020-2021大学《概率论与数理统计》期末课程考试试卷A(含答案)

2020-2021大学《概率论与数理统计》期末课程考试试卷A适用专业: 考试日期:试卷类型:闭卷 考试时间:120分钟 试卷总分:100分一.填空题(每题2分,共10分)1设事件A,B 互不相容,若P (A )=0.3,P (B )=0.7,则P (AB )为_________。

设事件A,B 相互独立,若P (A )=0.3,P (B )=0.7,则P (AB )为______.3.设母体X 服从正态分布N (μ,σ2),X 1,X 2⋯,X n 为取自母体的子样,X̄为子样均值,则X ̄服从的分布为__________.4.设X 1,X 2⋯,X n 相互独立,且都服从正态分布N (0,1),则∑X i 2n i=1服从的分布为_____________.5. 将一枚硬币重复掷N 次,以X 和Y 分别表示正面向上和反面向上的次数,则X 和Y 的相关系数等于__________.二、选择题(每小题2分共10分)1.设A,B 为互不相容事件,且P (A )>0,P (B )>0,则结论正确的有( )(A )P (A |B )>0 (B )P (A |B )>P(A) (C) P (A |B )=0 (D) P (A |B )=P (A )P (B ) 2、设随机变量ξ,η相互独立,且有Dξ=6,Dη=3.则D (2ξ+η)为( ) (A )9 (B )15 (C)21 (D)27 3、设随机变量X 服从正态分布N (μ,σ2),则随着σ的增大,P (|X −μ|<σ)( )(A )单调增大 (B )单调减少 (C )保持不变 (D )增减不定4、任一连续型随机变量的概率密度函数ϕ(x )一定满足( )(A )0≤ϕ(x )≤1;(B )定义域内单调不减;(C )∫ϕ(x )+∞−∞dx =1;(D )lim x→+∞ϕ(x )=1。

5、设随机变量ξ,η满足条件D (ξ+η)=D (ξ−η),则有( )事实上 (A ) Dη=0 (B )ξ,η不相关 (C )ξ,η相互独立 (D )Dξ⋅Dη=0三、综合题(每小题5分共30分)1.某射击小组共有20名射手,其中一级射手4名,二级射手8名,三级射手7名,四级射手1名,一、二、三、四级射手能通过选拔进入决赛的概率分别是0.9,0.7,0.5,0.2,求在小组内任选一名射手,该射手能通过选拔进入决赛的概率。

(理)概率统计试卷和答案2

(理)概率统计试卷和答案2

3
x 1 2 xe , x 0 6. 设总体 X 具有概率密度 f ( x) , 其中 0 为未知参数,X 1 , X 2 , , X n 0, x0
是来自 X 的样本, x1 , x2 , , xn 是相应的样本观察值. (1)求 的最大似然估计量. (2)试判断求得的估计量是否是无偏估计量.
x
n
ˆ X . 为 2
(2)因为 E (
6分
X 1 n 2n ) E( X i ) ,所以最大似然估计量是无偏估计量. 2 2n i 1 2n
10 分
7.解:本题要求在显著性水平 0.05 下检验假设 H 0 : 0 0.005,
H1 : 0 .
3. 一批机器零件共有 100 件,其中有 5 件次品,从中抽取 20 件,每次抽 1 件,设 X 表示其 中包含的次品数, 如果抽取后放回, 则 X 的分布律为 可估计 P{| X | 10 } 5. Z 检验和 t 检验都是关于 当 未知时,用 t 检验. .
4. 设随机变量 X 的数学期望 E ( X ) 及方差 D ( X ) 2 ,由切比雪夫(Chebyshev)不等式 . 的假设检验. 当 已知时,用 Z 检验;
p ,故由全概率公式 2
p p2 p (1 p) ; 2 2 p2 p 3 p p2 p2 P ( AB ) P ( B | A) P ( A) p 2 ,故 P (C ) p . 2 2 p2 p P ( AB ) p2 2p 2 (2) P ( AB ) p 2 , P( B) ,故 P ( A | B) . P( B) ( p p) / 2 p 1 2 p 注:(1)中也可用 P ( A B ) P ( A) P ( AB ) p (1 p ) 直接求解. 2

概率统计a期末样卷(2)答案

概率统计a期末样卷(2)答案

当前位置:概率论与数理统计样卷库→概率论与数理统计试卷参考答案概率论与数理统计(I)期末考试样卷2参考答案一、填空题( 每小题3分,共24分)1. 设A,B,C为三件事,且P(A)=P(B)=P(C)=1/4,P(AB)=P(BC)=0,P(AC)=1/8,则A,B,C至少有一个发生的概率= 5/82. 某油漆公司发出17桶油漆,其中白漆10桶,黑漆4桶,红漆3桶,在搬运过程中所有的标签脱落,交货人随意将这些油漆发给顾客。

问一个订货4桶白漆、3桶黑漆和2桶红漆的顾客能按所定颜色如数得到货的概率= 。

3. 已知若和独立,则=1/2 ;4.设随机变量X在区间[2,5]上服从均匀分布,求对X进行的三次独立观测中,至少有两次的观测值大于3的概率为20/27 。

.5.设随机变量X的概率分布为P(X=1)=,P(X=2)=,P(X=3)=,则其分布函数F(x)=。

6.设,且=, 则= 。

7.设,则之值为 6 。

8.设随机变量X和Y的数学期望分别为-2和2,方差分别为1和4,而相关系数为,则根据切比雪夫不等式有1/12 。

二、单项选择题( 每小题2分,共8分)1. 设A,B为两事件且P(AB)=0,则( C )。

A. A与B互斥B.AB是不可能事件C.AB未必是不可能事件D.P(A)=0或P(B)=02.设A,B为两事件,且0<P(A)<1,P(B)>0,P(B|A)=P(B|),则(C )成立。

A. P(A|B)=P(|B)B. P(A|B)≠P(|B)(AB)=P(A)P(B) D. P(AB) ≠P(A)P(B)3.若为连续型随机变量的密度函数,则一定满足(C )(A) (B) 单调递减(C) (D)4.若随机变量满足,且,则必有( B ).(A)独立;(B)不相关;(C);(D)..三、计算题(共48分)1(6分). 据以往资料表明,某一3口之家,患某种传染病的概率有以下规律:P{孩子得病}=,P{母亲得病│孩子得病}=,P{父亲得病│母亲及孩子得病}=.求母亲及孩子得病但父亲未得病的概率。

概率论与数理统计试题-a_(含答案)

概率论与数理统计试题-a_(含答案)

深圳大学期末考试试卷参考解答及评分标准一、选择题3. 已知随机变量X ,Y 相互独立,且都服从标准正态分布,则X 2+Y 2服从 ( ) (A) 自由度为1的χ2分布 (B) 自由度为2的χ2分布 (C) 自由度为1的F 分布 (D) 自由度为2的F 分布答:选B ,因为n 个相互独立的服从标准正态分布的随机变量的平方和服从自由度为n 的χ2分布。

4. 已知随机变量X ,Y 相互独立,X ~N (2,4),Y ~N (-2,1), 则( ) (A) X +Y ~P (4) (B) X +Y ~U (2,4) (C) X +Y ~N (0,5) (D) X +Y ~N (0,3) 答:选C ,因为相互独立的正态变量相加仍然服从正态分布,而E (X +Y )=E (X )+E (Y )=2-2=0, D (X +Y )=D (X )+D (Y )=4+1=5, 所以有X +Y ~N (0,5)。

5. 样本(X 1,X 2,X 3)取自总体X ,E (X )=μ, D (X )=σ2, 则有( ) (A) X 1+X 2+X 3是μ的无偏估计(B)1233X X X ++是μ的无偏估计(C) 22X 是σ2的无偏估计(D) 21233X X X ++⎛⎫ ⎪⎝⎭是σ2的无偏估计答:选B ,因为样本均值是总体期望的无偏估计,其它三项都不成立。

6. 随机变量X 服从在区间(2,5)上的均匀分布,则X 的数学期望E (X )的值为( ) (A) 2 (B) 3 (C) 3.5 (D) 4 答:选C ,因为在(a ,b )区间上的均匀分布的数学期望为(a +b )/2。

二、填空题(共6小题,每小题5分,满分30分。

把答案填在题中横线上) 1. 已知P (A )=0.6, P (B |A )=0.3, 则P (A B )= __________ 答:填0.18, 由乘法公式P (A B )=P (A )P (B |A )=0.6⨯0.3=0.18。

《线性代数、概率统计》期末考试试卷及详细答案 二

《线性代数、概率统计》期末考试试卷及详细答案  二

《线性代数、概率论》期末考试试卷答案一、选择题(每小题后均有代号分别为A, B, C, D的被选项, 其中只有一项是正确的, 将正确一项的代号填在横线上,每小题2分,共40分):1.行列式G的某一行中所有元素都乘以同一个数k得行列式H,则------------C-------------;(A) G=H ;(B) G= 0 ;(C) H=kG ;(D) G=kH 。

2.在行列式G中,A ij是元素a ij的代数余子式,则a1j A1k+ a2j A2k+…+a nj A nk--------D------;(A) ≠G (j=k=1,2,…,n时) ;(B) =G(j, k=1,2,…,n; j≠k时) ;(C) =0 (j=k=1,2,…,n时) ;(D) =0(j, k=1,2,…,n ;j≠k时) 。

3.若G,H都是n⨯ n可逆矩阵,则----------B------------;(A) (G+H)-1=H-1+G-1;(B) (GH)-1=H-1G-1;(C) (G+H)-1=G-1+H-1;(D) (GH)-1=G-1H-1。

4.若A是n⨯ n可逆矩阵,A*是A的伴随矩阵, 则--------A----------;(A) |A*|=|A|n-1;(B) |A*|=|A|n ;(C) |A*|=|A|n+1;(D) |A*|=|A|。

5.设向量组α1, α2,…,αr (r>2)线性相关, 向量β与α1维数相同,则------------C----------- (A) α1, α2,…,αr-1 线性相关;(B) α1, α2,…,αr-1 线性无关;(C) α1, α2,…,αr ,β线性相关;(D) α1, α2,…,αr ,β线性无关。

6.设η1, η2, η3是5元齐次线性方程组AX=0的一组基础解系, 则在下列中错误的是D-------------------(A) η1, η2, η3线性无关;(B) X=η1+η2+ η3是AX=0的解向量;(C) A的秩R(A)=2;(D) η1, η2, η3是正交向量组。

2018~2019(二)概率统计试卷(理工类)A卷答案

2018~2019(二)概率统计试卷(理工类)A卷答案

������ − ������
U=
~������(0,1)
������/√������
������ − ������ W = {u|U > ������ } = u ������ > 1.64
√������
代入样本值
33.85 − 32 1.85
u=
=
= 1.83
√102/√100 √1.02
标准答案
(2)L(x, θ) = ∏
=( )
������ = min(������ , ������ , … , ������ )
(六)(10)设随机变量 X~B(100,0.2)(二项分布),用中心极限定理求 P(X>10)。
解 : P(X > 10) = P 0. .99989
>
= 1−Φ
()
()
= 1 − Φ(−2.5) = Φ(2.5) =
3������ − 6������ + 3, 0 < ������ < 1
������ (������) =
0,
其它
同理:
������ (������) = ������(������, ������)������������ = 6(1 − ������)������������ = 6(1 − ������)������
(2)D(X) = E(X − ������) = ������(������ − + − ������) = ������(������ − ) + 2������ ������ −
− ������ +
������( − ������) = ������(������ − ) + − ������ ������ ������ − + ( − ������)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

当前位置:概率论与数理统计样卷库→概率论与数理统计试卷参考答案
概率论与数理统计(I)期末考试样卷2参考答案
一、填空题( 每小题3分,共24分)
1. 设A,B,C为三件事,且P(A)=P(B)=P(C)=1/4,P(AB)=P(BC)=0,P(AC)=1/8,则A,B,C 至少有一个发生的概率= 5/8
2. 某油漆公司发出17桶油漆,其中白漆10桶,黑漆4桶,红漆3桶,在搬运过程中所有的标签脱落,交货人随意将这些油漆发给顾客。

问一个订货4桶白漆、3桶黑漆和2桶红
漆的顾客能按所定颜色如数得到货的概率= 。

3. 已知若和独立,则= 1/2 ;
4.设随机变量X在区间[2,5]上服从均匀分布,求对X进行的三次独立观测中,至少有
两次的观测值大于3的概率为 20/27 。

.
5.设随机变量X的概率分布为P(X=1)=,P(X=2)=,P(X=3)=,则其分布函数F(x)=。

6.设,且=, 则= 。

7.设,则之值为 6 。

8.设随机变量X和Y的数学期望分别为-2和2,方差分别为1和4,而相关系数为,则根
据切比雪夫不等式有 1/12 。

二、单项选择题( 每小题2分,共8分)
1. 设A,B为两事件且P(AB)=0,则( C )。

A. A与B互斥B.AB是不可能事件
C.AB未必是不可能事件D.P(A)=0或P(B)=0
2.设A,B为两事件,且0<P(A)<1,P(B)>0,P(B|A)=P(B|),则( C )成立。

A. P(A|B)=P(|B)
B. P(A|B)≠P(|B)
(AB)=P(A)P(B) D. P(AB) ≠P(A)P(B)
3.若为连续型随机变量的密度函数,则一定满足( C )
(A) (B) 单调递减(C) (D)
4.若随机变量满足,且,则必有( B ).
(A)独立;(B)不相关;(C);(D)..
三、计算题(共48分)
1(6分). 据以往资料表明,某一3口之家,患某种传染病的概率有以下规律:P{孩子得病}=,P{母亲得病│孩子得病}=,P{父亲得病│母亲及孩子得病}=.求母亲及孩子得病但父亲未得病的概率。

解:设A=“孩子得病”,B=“母亲得病”,C=“父亲得病”,则所求概率为。

已知P(A)=,P(B│A)=,P(C│AB)=,则由乘法定理有
由,,有
2(10分).设考生的报名表来自三个地区,分别有10份,15份,25份,其中女生的分别为3份,7份,5份。

随机地从一地区,先后任取两份报名表,求:
(1)先取的那份报名表是女生的概率;
(2)已知后取到的报名表是男生的,而先取的那份报名表是女生的概率。

解:(1) 设={考生的报名表是第个地区的},=1,2,3,B={先取到的报名表是女生的},由全概率公式知:P(B)= P()P(B|)+
P()P(B|)+P()P(B|)=
(2)设C={先取的那份报名表是女生的},D={后取到的报名表是男生的},则P(CD)= P()P(CD|)+ P()P(CD|)+P()P(CD|)
=
P(D)= P()P( D |)+ P()P( D |)+P()P( D |)=
所以可计算得:===
3(8分)设随机变量X的分布函数为试求
(1)系数A;(2)X落在区间(,)内的概率;(3)X的密度函数。

解:(1)由的连续性,有,由此得(2)
(3)X的密度函数为
4(8分)设随机变量X和Y同分布,X的密度函数为
已知事件和独立,且,求常数。

解:由设且与同分布,与独立,可知当时,
,即
与相矛盾,因而,即
,即
即,即,(不合题意,舍去)。

5(8分)设二维随机变(X,Y)量具有概率密度,
(1)确定常数C; (2) 求概率。

解:(1),由此得。

(2)积分区域为,所以
6(8分)设随机变量(X,Y)具有概率密度
求。

解:
,。

四、应用题(14分)
1. (6分)设顾客在某银行的窗口等待服务的时间X(以分计)服从指数分布,其概
率密度为,某顾客在窗口等待服务,若超过10分钟,他就离开,他一个月要到银行5次,以Y表示一个月内他未等到服务而离开窗口的次数,写出Y的分布律,并求P{Y}。

解:因为Y表示一个月内他未等到服务而离开窗口的次数,所以Y,其中p =P{X}=
Y的分布律为P{Y=k}=,k=0,1,2,3,4,5
P{Y}=1-P{Y}=1-P{Y=0}=1-=
2(8分). 某单位设置一电话总机,共有200架电话分机。

设每个电话分机是否使用外线通话是相互独立的。

设每时刻每个分机有5%的概率要使用外线通话。

问总机需要多少外线才能以不低于90%的概率保证每个分机要使用外线时可供使用()
解设总机需要安装N条外线X=“200架电话分机中使用外线的数目”,则X服从二项
分布。

利用棣莫
佛-拉普拉斯中心极限定理,得
由,查表得,解出,故总机需要安装14条外线才能以不低于90%的概率保证每个分机要使用外线时可供使用。

五、证明题(6分 ) 设{X n}为独立同分布的随机变量序列,其共同的密度函数为
,令,试证:。

证明:因为的分布函数为所以当时,有
对任意的,当时有即。

嘉兴学院教务处。

相关文档
最新文档