第4章 微生物的生理(续)
环境微生物学4-微生物的生理3代谢与合成

4
发光细菌监测毒性实验
2017/12/28
发光细菌监测毒性实验
学生正在做发光细菌实验
发光细菌发光检测仪读取六组数据
第四节 微生物的合成代谢
一、产甲烷菌的合成代谢
产甲烷菌利用1C和2C有机物产生CH4,利用其中间代谢产物 和能量物质ATP合成蛋白质、多糖、脂肪和核酸等物质,用以 构成自身的细胞。
如:产甲烷菌同化CO2(逆三羧酸循环途径,见下图)。
系列步骤的总称。 好氧呼吸总反应式: C6H12O6 + 6O2 + 38ADP + 38Pi → 6CO2 + 6H2O + 38ATP
1.三羧酸循环
淀 粉 、 蛋 白 质 和 脂 肪 水 解 与 三 羧 酸 循 环 和 乙 醛 酸 循 环 的 关 系
2.电子传递体系(呼吸链)
好氧呼吸以O2为最终电子受体,底物被全部氧化成CO2和H2O, 并产生ATP。底物氧化释放的电子首先转移给NAD+,使之成为 NADH + H+,然后再转移给电子传递体系(呼吸链),最终到达 分子氧O2。 呼 吸 链 : 有 氧 呼 吸 中 传 递 电 子 的 一 系 列 偶 联 反 应 , 由 NAD 或 NADP、FAD或FMN、辅酶Q、细胞色素等组成。其功能是传递电 子和产生ATP。
1. ATP的化学组成、功能
ATP(腺苷三磷酸)的分子结构式
细胞的能量循环
2.生成ATP的方式
()基质(底物)水平磷酸化:微生物在基质氧化过程中,产 生一种含高自由能的中间体,如常1,3-二磷酸甘油酸。这一 中间体将能量→ADP,使ADP磷酸化而生成ATP。此过程中底 物的氧化与磷酸化反应相偶联并生成ATP,称为底物水平磷酸 化。
光合作用(photosynthesis)是地球上进行得最大的有机合 成反应。将太阳能转化为化学能的过程经常用“CO2固定” 这一术语来表示。
微生物生产及其生理功能的研究进展

微生物生产及其生理功能的研究进展一、微生物生产及其生理功能概述随着科学技术的不断发展,微生物在农业生产和工业生产中的作用越来越受到重视。
微生物包括细菌、真菌、病毒和原生动物等,它们具有体积小、繁殖速度快、适应性强等特点,能够在各种环境中生存和繁殖。
微生物在生态系统中扮演着重要的角色,对维持生态平衡、促进物质循环和提高生物多样性具有重要意义。
微生物生产是指利用微生物通过代谢途径产生有用物质的过程,主要包括发酵生产和酶解生产。
发酵生产是利用微生物在特定条件下将原料转化为产品的过程,如酿酒、面包、乳制品、抗生素等的生产。
酶解生产是利用微生物产生的酶催化有机物分解为小分子化合物的过程,如脂肪酶、蛋白酶等的生产。
这些微生物产品在食品、医药、化工等领域具有广泛的应用价值。
微生物生理功能是指微生物在生长发育过程中所表现出的各种生物学特性,包括代谢功能、生长调控、免疫功能等。
代谢功能是指微生物能够利用营养物质进行能量代谢和物质合成的能力,这是微生物的基本生理功能之一。
生长调控是指微生物在生长发育过程中对环境因素的响应和调节机制,包括生长因子、信号转导等。
免疫功能是指微生物能够识别和清除有害微生物的能力,对于维护宿主健康具有重要作用。
近年来随着基因工程技术的发展,微生物生产技术得到了很大的改进。
通过基因工程技术改造微生物菌株,可以提高微生物的代谢活性、产酶能力等生理功能,从而提高微生物产品的产量和品质。
此外通过对微生物生长调控机制的研究,可以优化生产工艺条件,降低生产成本,实现可持续生产。
微生物生产及其生理功能的研究进展为人类提供了丰富的资源和巨大的潜力。
在未来的研究中,需要继续深入探讨微生物的生产过程和生理功能机制,以期为微生物产业的发展提供理论支持和技术保障。
同时还需要加强微生物资源的开发和利用,促进微生物产业的可持续发展。
A. 微生物的概念和分类细菌(Bacteria):细菌是一类没有成形细胞核的单细胞微生物,它们的大小一般在微米之间。
第4章微生物生长

稀释平板计数法—固体培养法
第一步:菌样巧妙稀释
1mL 混合
1mL
混合
无菌水
1 9mL 10mL : 10-1 10-1 :
菌样被 无菌水 不同稀 释倍率 -2 10 后平板 培养图 得到不同 稀释度 (10-x) 菌液
10-2
10-3
10-4
10-5
第二步:接种平板
10-2 10
-3
10-4
10 -5
2、对数期(指数期)log phase 细菌生长速度达到最大,数量以几何级数增加。 特点: (1)细菌迅速分裂,菌数按几何级数增加;
(2)世代时间最短,而且恒定; (3)生长速度最高而且恒定; (4)代谢活力强无死亡; (5)菌体整齐,体积恢复到原来大小; (6)对环境敏感,生理性状及菌体成分较一致
度提高1倍;
(2)营养;营养越丰富,代时越短
(3)氧气。好氧菌若能供给充足的氧,可能使对数 期延长。
对数期的实践意义 ① 是代谢、生理研究的良好材料
② 是增殖噬菌体的最适宿主菌龄
③ 是发酵生产中用作“种子”的最佳种龄 ④ G+染色鉴定时采用此期微生物
3、稳定期(stationary phase) 由于营养消耗,供应不足及代谢产物的积累,这 时一部分菌死亡,细菌进入稳定期。
(6)对环境变化敏感
影响因素: (1)接种量。接种 量大,停滞期可缩短 (2)菌龄。菌种年 轻,对数生长期接种 ,停滞期可能很短甚 至不明显 (3)营养。如果种子培养基与新接种的培养基成分 相同,则对菌生长有利。从丰富培养基转入贫营养 基,停滞时间拉长,反之减少; (4)菌种特性。大肠杆菌停滞期长,分枝杆菌长
膜过滤培养法
当样品中菌数很低时,可以将一定体积的湖水、海水或饮用水等样 品通过膜过滤器,然后将将膜转到相应的培养基上进行培养,对形 成的菌落进行统计。
微生物学复习资料

微生物学中的一些问题第2章纯培养1.冷冻真空干燥保藏、液氮保藏法是目前使用最普遍、最重要的微生物保藏方法,大多数专业的菌种保藏机构均采用这两种方法作为主要的微生物保存手段。
( T )2.如果要从环境中分离得到能利用对氨基苯乙酸/以2,4-D作为唯一碳源和能源的微生物纯培养物,你该如何设计实验?从对氨基苯乙酸/2,4-D含量较高的环境中采集土样或水样;配制仅以对氨基苯乙酸//2,4-D作为唯一碳源培养基,进行增殖培养;配制培养基,制备平板,一种仅以对氨基苯乙酸/2,4-D作为唯一碳源(A),另一种不含任何碳源作为对照(B) ;将样品适当稀释(十倍稀释法),涂布A平板;将平板置于适当温度条件下培养,观察是否有菌落产生;将A平板上的菌落编号并分别转接至B平板,置于相同温度条件下培养(在B平板上生长的菌落是可利用空气中CO2的自养型微生物) ;挑取在A平板上生长而不在B平板上生长的菌落,在一个新的A平板上划线、培养,获得单菌落,初步确定为可利用对氨基苯乙酸/2,4-D作为碳源和能源的微生物纯培养物。
第3章结构1.革兰氏阳性细菌细胞壁的肽聚糖单体由(1)双糖单位(2)四肽尾(3)肽间桥三部分组成。
2.大肠杆菌与金黄色葡萄球菌在细胞壁的组成与结构上的差别.组成上的差别:大肠杆菌(革兰氏阴性菌):肽聚糖含量低;无磷壁酸;类脂质含量高;蛋白质含量高。
金黄色葡萄球菌(革兰氏阳性菌):肽聚糖含量很高;磷壁酸含量很高;无类脂质;无蛋白质。
结构差别:大肠杆菌:肽聚糖:四肽尾是“L丙氨酸—D谷氨酸—L赖氨酸—D丙氨酸”);甘氨酸五肽桥;厚度大;交联度大。
金黄色葡萄球菌:四肽尾是“L丙氨酸—D谷氨酸—mDPA—D丙氨酸”;无特殊肽桥;厚度小;交联度小。
3.肽聚糖种类的多样性主要反映在_A_结构的多样性上。
A肽桥B粘肽C双糖单位D四肽尾4. 革兰氏染色法的分子机制是什么,基本操作步骤,哪一步是关键步骤;G+ 菌:细胞壁厚,肽聚糖含量高,交联度大,当乙醇脱色时,肽聚糖因脱水而孔径缩小,故结晶紫-碘复合物被阻留在细胞内,细胞不能被酒精脱色,仍呈紫色。
最新《微生物学教程(周德庆)》各章复习重点

第一章原核生物的形态、构造和功能学习要点1.1. 细菌Bacteria一、细菌的形态和大小1. 基本形态(1)球菌(Coccus):球形或近球形,根据空间排列方式不同又分为单、双、链、四联、八叠、葡萄球菌。
不同的排列方式是由于细胞分裂方向及分裂后情况不同造成的。
(2)杆菌(Bacillus):杆状或圆柱形,径长比不同,短粗或细长。
是细菌中种类最多的。
(3)螺旋菌(Spirillum):是细胞呈弯曲杆状细菌的统称,一般分散存在。
根据其长度、螺旋数目和螺距等差别,分为弧菌Vibrio(菌体只有一个弯曲,形似C字)和螺旋菌(螺旋状,超过1圈)。
细菌的形态不是一成不变的,受环境条件影响(如温度、培养基浓度及组成、菌龄等)。
一般在幼龄和生长条件适宜时,形状正常、整齐。
而在老龄和不正常生长条件下会表现出畸形、衰颓形等异常形态。
畸形是由于理化因素刺激,阻碍细胞发育引起;衰颓形是由于培养时间长,细胞衰老,营养缺乏,或排泄物积累过多引起的。
2. 细菌大小细菌是单细胞的,大小在1μm左右,在显微镜下才能看到其形状。
可用显微测微尺测量细菌大小,不同细菌大小不同,一般球菌直径0.5-1μm;杆菌直径0.5-1μm ,长为直径1-几倍;螺旋菌直径0.3-1μm,长1-50μm。
细菌大小也不是一成不变的。
二、细菌细胞结构细菌是单细胞的微生物,其细胞结构分为基本结构和特殊结构。
基本结构是细胞不变部分或一般结构,如细胞壁、细胞膜、细胞核、核糖体等为全部细菌细胞所共有。
特殊结构是细胞可变部分或特殊结构,如鞭毛、纤毛、荚膜、芽孢、气泡等,只在部分细菌中发现。
(一)细菌细胞的基本结构1. 细胞壁(cell wall):位于细胞表面,较坚硬,略具弹性的结构。
(1)细胞壁的功能①保护细胞免受机械损伤和渗透压的破坏,维持细胞形状;②鞭毛运动支点;③正常细胞分裂必需;④一定的屏障作用;⑤噬菌体受体位点所在。
另外与细菌的抗原性、致病性有关。
(2)革兰氏染色Cristein Gram于1884年发明的一种细菌染色方法。
第四章微生物的生长

第四章微⽣物的⽣长章名:03|微⽣物的⽣长01|单项选择题(每⼩题1分)难度:1|易1.下列物质可⽤作⽣长因⼦的是()A.葡萄糖B.纤维素C.NaClD.叶酸答:D2.要对⼟壤中放线菌孢⼦进⾏计数最好使⽤()A.浇注平板法B.划线平板法C.涂布平板法D.弹平板法答:C3.在典型⽣长曲线中,细胞形态最⼤的⽣长期是()A.延滞期B.指数期C.稳定期D.衰亡期答:A4.在典型⽣长曲线中,代时最短的时期是()A.延滞期B.指数期C.稳定期D.衰亡期答:B5.在曲型⽣长曲线中,细胞产量最⾼的时期是()A.延滞期B.指数期C.稳定期D.衰亡期答:C6.在曲型⽣长曲线中,细胞形态最不规则的时期是()A.延滞期B.指数期C.稳定期D.衰亡期答:D7.作接种⽤的“种⼦”,最好取⾃典型⽣长曲线上()的培养液。
A.延滞期B.指数期C.稳定期D.衰亡期答:B8.凡是厌氧菌,其细胞中都缺乏()A.超氧化物歧化酶(SOD)B.过氧化氢酶C.过氧化物酶D.葡萄糖氧化酶答:A9.利⽤酒精作表⾯消毒剂时,其最适浓度是()A.70%-75%B.75%-80%C.80%-85%D.85%-95%答:A10.链霉素的作⽤机制是()A.抑制细胞壁合成B.⼲扰细胞膜功能C.抑制蛋⽩质合成D.抑制DNA复制答:C11.四环素的抗菌机制是()A.抑制细胞壁合成B.抑制蛋⽩质合成C.抑制DNA合成D.抑制RNA合成答:B12.最适⽣长温度低于20℃的微⽣物被称为()A.耐冷菌B.嗜温菌C.耐热菌D.嗜冷菌答:D13.常⽤的⾼压灭菌的温度是()A.121℃B.200℃C.63℃D.100℃答:A14.巴斯德消毒法可⽤于()的消毒。
A.啤酒B.葡萄酒C.⽜奶D.以上所有答:D15. ()能通过抑制叶酸合成⽽抑制细菌⽣长。
A.青菌素B.磺胺类药物C.四环素D.以上所有答:B16.对活的微⽣物进⾏计数的最准确的⽅法是()A.⽐浊法B.显微镜直接计数法C.⼲细胞重量测定D.平板菌落计数答:D17.某细菌2h中繁殖了5 代,该菌的代时是()A.15minB.24minC.30minD.45min答:B18.代时是指()A.培养物从接种到开始⽣长所需要的时间B.从对数期结束到稳定期开始的间隔时间C.培养物⽣长的时间D.细胞分裂繁殖⼀代所需要的时间答:D19. 发酵⼯业上为了提⾼设备利⽤率,经常在()放罐以提取菌体或代谢产物。
华东理工大学微生物学考研复习资料 微生物学名词解释

第一章原核生物的形态、构造和功能细菌:狭义上指一类细胞细短、结构简单、胞壁坚韧、多以二分裂方式繁殖且水生性较强的原核生物;广义上指所有原核生物。
原生质体:指在人为条件下,用溶菌酶除尽原有细胞壁或用青霉素抑制新生细胞壁的合成后,得到的仅有一层细胞膜包裹的圆球形渗透敏感细胞。
球状体:又称原生质球,指还残留了部分细胞壁的圆球形原生质体。
(中)间体:是一种由细胞膜内褶而形成的囊状构造,内部充满着层状和管状的泡囊。
糖被:包被于某些细菌细胞壁外的一层厚度不定的透明胶状物质。
“栓菌”试验:设法将单毛菌鞭毛的游离段用相应抗体牢固的拴在载玻片上,在光镜下观察该细胞的行为,发现该菌只能在载玻片上不停打转而未作伸缩性“挥动”,肯定了“旋转论”的正确性。
芽孢:某些细菌在其生长发育后期,会在细胞内形成一个圆形或椭圆形、壁厚、含水量低、抗逆性强的休眠构造,称为芽孢。
伴孢晶体:少数芽孢杆菌,如苏云金芽孢杆菌,在形成芽孢的同时,会在芽孢旁形成一颗菱形、正方形或不规则形状的碱溶性蛋白质晶体。
菌落:在固体培养基上,以母细胞为中心的一群肉眼可见、有一定形状和结构特征的子细胞集团。
基内菌丝:长在培养基内的放线菌菌丝,菌丝无分隔,可产生多种水溶性、脂肪性色素,是培养基着色,具有吸收营养和排泄代谢废物的功能。
异形胞:是存在于丝状生长种类中的形大、壁厚,专司固氮功能的细胞,数量少且不定,位于细胞链的中间或末端。
静息孢子:是一种长在细胞链中间或末端,形大、色深、壁厚的休眠细胞,含有丰富的贮藏物,能抵御外界不良环境。
支原体:是一类无细胞壁,介于独立生活和细胞内寄生生活的最小型原核生物。
立克次氏体:是一类专性寄生于真核细胞内的G-原核生物。
第二章真核微生物的形态、构造和功能真核生物:是一大类细胞核具有核膜、能进行有丝分裂、细胞质中含有线粒体、内质网等细胞器的生物。
真菌、显微藻类、原生动物都是属于真核生物类的微生物,故称真核微生物。
酵母菌:泛指能发酵糖类的各种单细胞真菌。
第四版环境工程微生物学课后习题答案(周群英)

环境工程微生物学课后习题答案(周群英第四版)目录环境工程微生物学................................................................................... 错误!未定义书签。
绪论 (2)1、何谓原核微生物?它包括哪些微生物? (2)2、何谓真核微生物?它包括哪些微生物? (2)3、微生物是如何分类的? (2)6、写出大肠埃希氏杆菌和桔草芽孢杆菌的拉丁文全称。
(2)7、微生物有哪些特点? (2)第一章病毒 (2)第二章原核微生物 (7)1、细菌有哪几种形态?各举一种细菌为代表。
(7)2、细菌有哪些一般结构和特殊结构?它们各有哪些生理功能? (7)3、荚膜、粘液层、菌胶团和衣鞘 (7)第三章真核微生物 (12)第四章微生物的生理 (15)第五章微生物的生长繁殖与生存因子 (20)第六章微生物的遗传与变异 (28)第七章微生物的生态 (35)第八章微生物在环境物质循环中的作用 (40)第九章水环境污染控制与治理的生态工程及微生物学原理 (44)第十章有机固体废物与废弃的微生物处理及微生物群落 (48)第十一章有机固体废物与废气的微生物处理及其微生物群落 (54)1,何谓堆肥法,堆肥化和堆肥? (54)2,叙述好氧堆肥的机理。
参与堆肥发酵的微生物有哪些? (54)3,好氧堆肥的运行条件有哪些? (55)4,好氧堆肥法有几种工艺?简述各个工艺的过程。
(55)第十二章微生物学新技术在环境工程中的应用 (60)1. 酶制剂剂型有几种? (60)2. 何谓固定化酶和固定化微生物? (60)3. 酶和酶菌体固定化方法有哪几种?各用什么载体? (60)4. 固定化酶和固定化微生物有什么优点?存在什么问题? (60)5. 生物膜是固定化微生物吗?为什么? (60)6. 何谓表面活性剂?生物表面活性剂有哪几类? (60)7. 絮凝剂有几类?微生物絮凝剂在污水生物处理中起什么作用? (60)8. 叙述污水处理中微生物絮凝剂的作用原理? (60)9. 微生物制剂有哪些用途? (60)10. 有几种产氢微生物?它们是如何产氢的? (61)11. 请叙述微生物产氢电池的工作原理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
仍然以葡萄糖为例子,讲解好氧呼吸过程
葡萄糖的好氧呼吸分为两个阶段:
1、糖酵解阶段,形成丙酮酸,即EMP途径酵
解阶段
2、丙酮酸有氧分解阶段,即三羧酸循环 (TCA循环)阶段
丙酮酸氧化脱羧反应是连接糖酵解和三 羧酸循环的中间环节。
丙酮酸脱氢酶系 O + CH3CCOOH + HS-C oA + NAD CH3C SCoA+ CO2 + NADH 丙酮酸 辅酶A 乙酰辅酶A O
混合酸发酵——用于细菌分类鉴定
V.P反应:反应过程中产生红色 化合物 葡萄糖→ 3-羟基丁酮→二乙酰 红色化合物 丁二醇发酵中的中间产物3-羟基 丁酮是V.P实验的基础。3-羟基 丁酮在碱性条件下被空气中的氧 气氧化成二乙酰,它能与精氨酸 的胍基反应生成红色物质。产气 肠杆菌产生大量3-羟基丁酮,结 果为阳性,大肠杆菌很少或不产 生3-羟基丁酮,结果为阴性。
AH2 + B → A + BH2
供氢体 受氢体
AH2→A + 2H+ + 2e- 失去电子伴随脱氢
B + 2H+ + 2e-→BH2 得到电子伴随加氢或脱氧
1、发酵
定义:无外源电子受体的条件下,底物脱氢后所产生 的还原力[H]未经呼吸链传递而直接交给某一内 源性中间代谢物接受,以实现底物水平磷酸化产能 的一类生物氧化反应。
(2)硫酸盐呼吸
异养型硫酸盐还原菌(严格厌氧菌)在无氧条件下 获取能量的方式; 特点:底物脱氢后,经呼吸链递氢,最终由末 端氢受体硫酸盐受氢,在递氢过程中与氧化磷 酸化作用相偶联而获得ATP。硫酸盐呼吸最终 还原产物是H2S。 生物处理中,该呼吸产生的H2S可以和某些重金 属离子结合形成硫化物沉淀,而除去水中重金 属污染。
1) 电子供体在特异性酶的作用下被氧化脱下电子,电子沿电 子传递链按电势由低到高传递,最后交给电子受体; 2) 在电子传递过程中,偶联H+由细菌胞质向胞外运输,形成跨 膜的H+浓度电势梯度,把化学能转化为电势能; 3) H+顺着浓度电势梯度,通过菌体膜上的F0 F1ATP酶分子上 的特殊通道流回细菌胞质,这个过程释放出的自由能偶联ATP 的合成。
(1)氧化磷酸化
微生物在好氧呼吸和无氧呼吸时,通过电子传递 体系产生ATP的过程。 递氢(电子)和受氢过程与磷酸化反应相偶联产 生ATP。
ATP生成的反应式
ADP+H3PO4 AMP+2H3PO4
ATP
ATP
(2)底物水平磷酸化
厌氧微生物和兼性厌氧微生物在底物氧化 过程中,产生一种含高自由能的中间体, 这一中间体将高能键交给ADP,使ADP磷 酸化而生成ATP。
(2)最终的受氢体:乙醛
磷酸烯醇式丙酮酸
巴斯德效应
C6H12O6+2ADP+2Pi
2CH3CH2OH+2CO2+2ATP
酵母菌的二型发酵
3%的亚硫酸氢钠(pH7) CO2
丙酮酸 乙醛 (磺化羟基乙醛) NADH 磷酸二羟丙酮 NAD+ 磷酸甘油
NADH
NAD+
乙醇
甘油
酵母菌的三型发酵
在碱性条件下,两分子乙醛之间发生岐化反应 ,即相互进行 氧化还原反应,一分子乙醛被氧化成乙酸,另一分子乙醛被 还原为乙醇。
呼吸链
NADH
50 2 e– NAD+
(1)NADH(烟 酰胺腺嘌呤二核苷 酸 )氧化呼吸链
FADH2
2 e– FAD FAD Fe•S Q Cyt b Fe•S Cyt c1 Cyt c Cyt a Cyt a3 IV
40
FMN Fe•S
(2)FADH2(黄 素腺嘌伶二核苷 酸 )氧化呼吸链
有少量能量释放,多数能量仍保留在产物中。
发酵的种类有很多,可发酵的底物有糖类、有机酸、 氨基酸等,其中以微生物发酵葡萄糖最为重要。
乙醇发酵途径
两大步骤,三小步骤 一、糖酵解:(1)预备反应,不发生氧化还原反 应,消耗ATP,产物是3-磷酸甘油醛。(2)氧 化还原反应,产生ATP,产物为丙酮酸
电子传递体系的功能:
接受电子
合成ATP,把电子传递过程释放的能量贮存
有氧呼吸中传递电子的一系列偶联反应,由NAD 或NADP、FAD或FMN、辅酶Q、细胞色素等组成。其 功能是传递电子和产生ATP。 在好氧呼吸中,由EMP和TCA产生的[H]( NADH+H+和FADH2 ),通过电子传递体系(呼吸链 ),最终到达分子氧,形成水。在这一传递过程中, 产生ATP(称为氧化磷酸化)。
30
20
10
2 e–
0
O2
H2O
产生能量
H+ H+ H+ H+ Cyt c
Q
V ATP 合成 酶 2 H+ + 1/2O2 FAD ADP + Pi ATP H+ 2 H2O
FADH2 NADH NAD+
NADH
1
3ATP
FADH2
2ATP
氧化磷酸化
糖酵解反应式:
C6H12O6 + 2NAD + 2Pi + 2ADP → 2CH3COCOOH + 2NADH + 2H+ + 2ATP
三羧酸循环(TCA)
(Krebs 循环、克雷伯斯循环、柠檬酸循环)
丙酮酸氧化脱羧产物乙酰CoA与草酰乙 酸结合生成柠檬酸进入循环。
在循环过程中,乙酰CoA被氧化成 H2O 和CO2,并释放出大量能量。
呼吸链-电子传递链: 电子从电子亲和力低
(氧化能力弱)的电子传递体传向电子亲和力强 (氧化能力强)的传递体。 电子传递体系在细胞中的部位 原核微生物--细胞质膜 真核微生物--线粒体
二、氧化还原反应,丙酮酸进一步发酵可产生乙 醇和CO2
葡萄糖的酵解
葡萄糖被分解为丙酮酸的过程称为糖酵解,
主要分为四种途径:EMP、HMP、ED、磷 酸解酮酶途径 。
糖 酵 解
生 成 乙 醇
糖酵解反应式:
C6H12O6 + 2NAD + 2Pi + 2ADP→2CH3COCOOH + 2NADH + 2H+ + 2ATP
无氧呼吸的典型类型
(1)硝酸盐呼吸--NO3-作为最终电子受体 NO3-被还原成NO2-、N2O和N2,供氢体可以是葡 萄糖、乙酸、甲醇等有机物,也可以是H2和NH3 该过程叫脱氮作用,也叫反硝化作用或硝酸盐还 原作用。 能进行硝酸盐呼吸的都是兼性厌氧微生物--反 硝化细菌。 生物处理中,可除去含氮化合物中的氮。
ADP+H3PO4 AMP+2H3PO4
ATP ATP
二、各种营养类型微生物的产能代谢
(一)化能异氧型微生物的产能代谢
(二)化能自氧型微生物的产能代谢 (三)光能自氧型微生物的产能代谢 (四)光能异氧型微生物的产能代谢
(一)化能异养型微生物的产能代谢
根据最终电子受体(受氢体)可将微生物呼 吸分为、乙酸、乙醇、CO2 乳酸、乙酸、乙醇、甲酸、CO2、H2 丁二醇、乳酸、乙酸、乙醇、CO2、 H2 丁酸、乙酸、CO2、H2 丁醇、丙醇、乙醇 丙酸
微生物
酵母菌属(Saccharomyces) 乳酸细菌属(Lactobacillus) 明串球菌属(Leuconostoc) 大肠埃希氏菌(Escherichia coli) 肠道杆菌(Aerobacter) 丁酸梭菌(Clostridium) 丙醇丁醇梭菌属(Clostridium) 丙酸杆菌属 (Propionibacterium)
甲基红反应:产气肠杆菌产生的丁二醇是 中性,而大肠杆菌的产物中有多种有机酸 ,发酵液pH很低,甲基红实验结果为大肠 杆菌阳性,产气肠杆菌为阴性。
2、好氧呼吸
好氧呼吸是一种最普遍和最重要的生物 氧化方式,其特点是在有氧条件下,底 物按常规方式脱氢后,经完整的呼吸链 递氢,最终由分子氧接受氢并产生水和 释放能量。
C6H12O6 + 4NO3- == 2N2 + 6CO2 + 6H2O + 1756KJ 5CH3COOH + 10 NO3- == 10CO2 + 6H2O + 4N2 + OH-
CH3OH + NO3- == 0.5N2 + 2H2O +CO2 6H2 + 4NO3- == N2 + 6H2O 2NH3 + 4NO3- == 1.5N2 + 3H2O 反硝化菌:地衣芽孢菌属、铜绿假单胞菌、脱氮球 菌、脱氮硫杆菌等,都是一些兼性厌氧微生物。
有机物 最 初 能 源
化能异养菌 化能自养菌 光能营养菌
还原态无机物 日光
ATP
通 用 能 源
ATP含有高能磷酸键(31.4KJ),但仅是能量的暂时贮存 物质,若要长期储存能量,ATP将转化成储能物,如聚β -羟基丁酸,淀粉等。
ATP的化学组成和功能
7.3千卡/摩尔
ATP(腺苷三磷酸)
3、ATP的生成方式
丙酮酸还原为乙醇反应式:
CH3COCOOH + NADH + H+ → CH3CH2OH + CO2
乙醇发酵总反应式:
C6H12O6 + 2Pi + 2ADP →2CH3CH2OH + 2CO2 + 2ATP 238.3KJ
能量利用率: