(4)高中数学不等式典型例题解析、恒成立、均值不等式的运用

合集下载

均值不等式的应用(习题+答案)

均值不等式的应用(习题+答案)

均值不等式应用一.均值不等式1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”) (3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x +≥ (当且仅当1x =时取“=”);若0x <,则12x x+≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则22-2a b a b a bb a b a b a+≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值例1:求下列函数的值域(1)y =3x 2+12x 2 (2)y =x +1x解:(1)y =3x 2+12x2 ≥23x 2·12x2 = 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x≥2x ·1x=2; 当x <0时, y =x +1x = -(- x -1x )≤-2x ·1x=-2∴值域为(-∞,-2]∪[2,+∞)解题技巧: 技巧一:凑项 例1:已知54x <,求函数14245y x x =-+-的最大值。

均值不等式应用全面总结+题型总结(含详细解析)

均值不等式应用全面总结+题型总结(含详细解析)

均值不等式应用全面总结+题型总结(含详细解析)一.均值不等式1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”) (3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x +≥ (当且仅当1x =时取“=”);若0x <,则12x x+≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则22-2a b a b a bb a b a b a+≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”)注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用.应用一:求最值例1:求下列函数的值域(1)y =3x 2+12x 2 (2)y =x +1x解:(1)y =3x 2+12x2 ≥23x 2·12x2 = 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x≥2x ·1x=2; 当x <0时, y =x +1x = -(- x -1x )≤-2x ·1x=-2 ∴值域为(-∞,-2]∪[2,+∞)解题技巧: 技巧一:凑项 例1:已知54x <,求函数14245y x x =-+-的最大值。

均值不等式的应用(习题+答案)

均值不等式的应用(习题+答案)

均值不等式的应用(习题+答案)均值不等式应用一.均值不等式1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则abba ≥+2(2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”) (3)若*,R b a ∈,则22⎪⎭⎫⎝⎛+≤b a ab (当且仅当b a =时取“=”)3.若0x >,则12x x+≥ (当且仅当1x =时取“=”);若0x <,则12x x+≤- (当且仅当1x =-时取“=”)若0x ≠,则11122-2x x x x x x+≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+abb a (当且仅当b a =时取“=”) 若0ab ≠,则22-2a b a b a bb a b a b a+≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”)注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.(2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域(1)y =3x 2+12x2 (2)y =x +1x解:(1)y =3x 2+12x2 ≥23x 2·12x2 = 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x≥2x ·1x=2;当x <0时, y =x +1x = -(- x -1x)≤-2x ·1x=-2∴值域为(-∞,-2]∪[2,+∞)解题技巧: 技巧一:凑项例1:已知54x <,求函数14245y x x =-+-的最大值。

均值不等式的正确使用及例题

均值不等式的正确使用及例题

均值不等式的正确使用及例题均值不等式的正确使用及例题利用不等式求最值,要注意不等式成立的条件、等号成立的条件以及定值的条件,初学不等式时容易用错,现通过比较来说明均值不等式的正确使用。

(一)均值不等式有许多变形式子,使用哪一个不等式要选准均值不等式是指),(2+∈≥+R b a ab b a ,它的变形式子有2)2(b a ab +≤,222b a ab +≤,≤+2)(b a)(222b a +等。

由此可知,在求ab 的最大值时至少有两个不等式可供选择,那么选择哪一个更好呢?通过比较发现,若已知b a +是定值,求ab 的最大值可使用第一个不等式;若已知22b a +是定值,求ab 的最大值可用第二个不等式,若求b a +的最大值可用第三个不等式。

(二)使用均值不等式求最值,定值是前提例1. 已知正数a 、b 满足3222=+b a ,求12+b a 的最大值。

(三)连续使用不等式(连续放缩)求最值,等号必须同时成立例2. 已知0>>b a ,求)(42b a b a -+的最小值。

二. 均值不等式的应用(一)用于比较大小例1.若b a >1>,b a P lg lg ?=,)lg (lg 21b a Q +?=,2lg b a R +=,则() A .P R <<="" p="">B. Q P <<="" p="">C. P Q <<="" p="">D. R P <="" 例2.若)0(21="">++=a aa p ,≤-=1(arccos t q )1≤t 则下列不等式恒成立的是() A. q p >≥π B. 0≥>q p C. q p ≥>4 D. 0>≥q p(二)用于求取值范围例3. 若正数a 、b 满足3++=b a ab ,则ab 的取值范围是。

第9讲 基本不等式9种常见题型(解析版)高一数学同步教学题型(人教A版2019必修第一册)

第9讲 基本不等式9种常见题型(解析版)高一数学同步教学题型(人教A版2019必修第一册)

第9讲基本不等式9种常见题型【考点分析】考点一:重要不等式若a b ∈,R ,则ab b a 222≥+,当且仅当b a =时取等号;考点二:基本不等式若a b ∈,+R ,则ab ba ≥+2(或ab b a 2≥+),当且仅当b a =时取等号.其中,2ba +叫作b a ,的算术平均数,ab 叫作b a ,的几何平均数.即正数b a ,的算术平均数不小于它们的几何平均数.考点三:几个常见重要的不等式①()2222a b a b ++≥(沟通两和a b +与两平方和22a b +的不等关系式)②222a b ab +≤(沟通两积ab 与两平方和22a b +的不等关系式)③22a b ab +⎛⎫≤ ⎪⎝⎭(沟通两积ab 与两和a b +的不等关系式)④重要不等式串:)2,112a ba b R a b++≤≤≤∈+即调和平均值≤几何平均值≤算数平均值≤平方平均值(注意等号成立的条件).【题型目录】题型一:直接利用基本不等式求最值题型二:“1”的代换,乘1法题型三:常规凑配法题型四:换元法题型五:消参法题型六:双换元题型七:齐次化题型八:和、积、平方和的转化题型九:多选题【典型例题】题型一直接利用基本不等式求最值【例1】(2021·湖南邵阳市)若正实数y x ,满足12=+y x .则xy 的最大值为()A .14B .18C .19D .116【答案】B【解析】1218x y xy +≥≥≤ 当且仅当122x y ==时取等号,即xy 的最大值为18故选:B 【例2】(2021·六安市裕安区新安中学)已知01x <<,则)(33x x -的最大值为()A .12B .14C .23D .34【答案】D【解析】因为01x <<,所以10,0x x ->>,所以()1x x +-≥,当且仅当1x x =-,即12x =时,等号成立,所以1≤,整理得()114x x -≤,即3(33)4x x -≤.所以(33)x x -的最大值为34.故选:D.【题型专练】1.(2022·甘肃酒泉·模拟预测(理))若x ,y 为实数,且26x y +=,则39x y +的最小值为()A .18B .27C .54D .90【答案】C【解析】由题意可得2393322754x y x y +=+≥=⨯=,当且仅当233x y =时,即2x y =等号成立.故选:C .2.(2022·河南河南·三模(理))已知二次函数()22f x ax x c =++(x ∈R )的值域为[)0,∞+,则14c a+的最小值为()A .4-B .4C .8D .8-【答案】B【详解】由于二次函数()22f x ax x c =++(x ∈R )的值域为[)0,∞+,所以0Δ440a ac >⎧⎨=-=⎩,所以1,0ac c =>,所以144c a +≥=,当且仅当14c a=即12,2a c ==时等号成立.故选:B 题型二“1”的代换,乘1法1的代换就是指凑出1,使不等式通过变形出来后达到运用基本不等式的条件,即积为定值,凑的过程中要特别注意等价变形.【例1】(2021·上海市大同中学)设b a ,为正数,且1a b +=,则ba 11+的最小值为_______.【答案】4【解析】因为b a ,为正数,且1a b +=,所以11111111124a b a b a b a b a b b a +=+⨯=+⨯+=+++≥+=()()(),当且仅当a=b=1时取等号即11a b+的最小值为4.故答案为:4【例2】(2021·河北石家庄市)已知0,0x y >>,且350x y xy +-=,则34x y +的最小值是()A .4B .5C .6D .9【答案】B【解析】由350x y xy +-=,得135y x+=,所以1131312134(34)13(135555x y x y x y y x y x ⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪⎝⎭⎝⎭,当且仅当11,2x y ==,取等号.故选:B.【例3】(2021·北京师范大学万宁附属中学)已知0,0a b >>,122a b+=,则a b +的最小值为()A .3222-B .3222+C .3-D .3+【答案】B【解析】因为0a >,0b >,且122a b+=,所以()112121322332222b a a b a b a b a b ⎛+⎛⎫⎛⎫+=+⋅+=++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝,当且仅当b =即212a +=,222b +=时,a b +有最小值3222+.故选:B.【例4】(2021·浙江高一期末)0a >,0b >,且21a b +=,不等式1102m b a b+-≥+恒成立,则m 的范围为_______.【答案】32m ≤【解析】因为21a b +=,所以1111()22a b b b a b b a b ⎛⎫+=+++ ⎪++⎝⎭1122a b b b a b +=++++322a b b b a b+=+++333222≥+=+=当且仅当2a b bb a b+=+,即1)a b =-时,取等号,因为不等式1102m b a b +-≥+恒成立,所以m 小于等于112b a b++最小值,所以32m ≤【例5】(2021·浙江)当104x <<时,不等式11014m x x+-≥-恒成立,则实数m 的最大值为()A .7B .8C .9D .10【答案】C 【解析】不等式11014m x x+-≥-恒成立化为41414m x x ≤+-恒成立,因为104x <<,所以140x ->,所以()4141414414414x x x x x x ⎛⎫+=+-+ ⎪--⎝⎭44(14)5144x x x x -=++-5≥+549=+=,当且仅当44(14)144x x x x -=-,即16x =时,等号成立.所以9m ≤,所以m 的最大值为9.故选:C【例6】若1,0m n >>,3m n +=,则211m n+-的最小值为__________.【答案】232+【解析】因为3=+n m ,所以21=+-n m ,所以1221=+-nm ,所以232232112212111221112112+=+⎪⎭⎫ ⎝⎛-⋅⎪⎭⎫ ⎝⎛-≥+-+-+=⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+-=+-n m m n n m m n n m n m n m 当且仅当⎪⎩⎪⎨⎧=+-=-3211n m n m m n,等号成立.【例7】若b a ,是正实数,且1a b +=,则11a ab+的最小值为.【答案】322+【解析】因为1=+b a ,所以()b a b a b a a b a ab b a a ab a +⎪⎭⎫ ⎝⎛+=+=++=++=+1212111111322322122+=+⎪⎭⎫⎝⎛⋅⎪⎭⎫ ⎝⎛≥+++=b a a b b a a b ,当且仅当⎪⎩⎪⎨⎧=+=12b a b aa b ,等号成立.【例8】设2=+b a ,0>b ,则ba a ||||21+的最小值是.【答案】43【解析】因为2=+b a ,所以14412444421+=+≥++=++=+aa a ab a a b a a b a a b a b a a ,当0>a 时,45141||||21=+≥+b a a ,当当0<a 时,43141||||21=+-≥+b a a 【题型专练】1.(2022·辽宁·模拟预测)已知正实数x ,y 满足211x y+=,则436xy x y --的最小值为()A .2B .4C .8D .12【答案】C 【解析】【分析】依题意可得2xy x y =+,则4362xy x y x y --=+,再由乘“1”法及基本不等式计算可得;【详解】解:由0x >,0y >且211x y+=,可得2xy x y =+,所以43648362xy x y x y x y x y--=+--=+()2142448y x x y x y x y ⎛⎫=++=+++ ⎪⎝⎭,当且仅当4y x x y =,即4x =,2y =时取等号.故选:C2.(2022·安徽·南陵中学模拟预测(理))若实数a ,b 满足123,12a b a b ⎛⎫+=>> ⎪⎝⎭,则2211a ba b +--的最小值为()A .6B .4C .3D .2【答案】A 【解析】【分析】对已知条件和要求最值的代数式恒等变形之后应用均值不等式即可求解【详解】()()232111a b a b +=⇒-+-=因为12a >,1b >,所以210a ->,10b ->又221111112211211211a b a b a b a b a b -+-++=+=++------所以()()1111211211211a b a b a b ⎛⎫+=+-+-⎡⎤ ⎪⎣⎦----⎝⎭21122224121a b b a --=++≥+=+=--当且仅当23211121a b a b b a +=⎧⎪--⎨=⎪--⎩即34a =,32b =时,取等号所以21126211211a b a b a b +=++≥----故选:A3.(2022·四川·石室中学三模(文))已知0a >,0b >且1a b +=,则1811a b ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭的最小值是()A .49B .50C .51D .52【答案】B 【解析】【分析】将1a 中分子1替换为a +b ,将8b中分子8替换为8(a +b ),化简即可利用基本不等式求该式子的最小值.【详解】由已知,得188********a b a b b a a b a b a b ++⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++=++=++ ⎪⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭916262650b a a b =++≥+=,当且仅当916b a a b =,即37a =,47b =时等号成立.因此,1811a b ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭的最小值是50.故选:B .4.(2022·河南·宝丰县第一高级中学模拟预测(文))已知正数a ,b 满足0ab a b --=,则4a b +的最小值为___________.【答案】9【解析】【分析】由0ab a b --=得111a b +=,则()4141a a b b a b ⎛⎫+=+ ⎪⎝⎭+,展开利用基本不等式可求得最值.【详解】由0ab a b --=得111a b +=,所以()11444559b a a b a b a b a b ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当4b a a b=,即32a =,3b =时取等号,故4a b +的最小值为9.故答案为:95.(2022·天津·南开中学模拟预测)设0x >,0y >,1x y +=,则212x xy+的最小值为______.1.【解析】【分析】两次运用“1”进行整体代换,结合基本不等式,即可得结果.【详解】因为1x y +=,所以2211122222222x x x y x x x y x yxy xy y y x y y x+++++==++=++1122222x x y y y x =++++1112x y y x =++≥=当且仅当1,2x y ==212x xy+1,1.6.(2022·重庆·三模)已知0a >,0b >,且2233a b ab a b +=+,则3a b +的最小值为___________.【答案】4【解析】【分析】由题得313a b b a+=+,再利用基本不等式求出2(3)a b +的最小值即得解.【详解】解:由题得331(3)3,3a b ab a b a b a b ab b a++=+∴+==+,所以23133(3)()(3)101016a b a b a b b a b a +=++=++≥+=.(当且仅当1a b ==时取等)因为34a b +≥,所以3a b +的最小值为4.故答案为:4题型三常规凑配法【例1】(2021·云南文山壮族苗族自治州)已知(3,)x ∈+∞,函数43y x x =+-的最小值为()A .4B .7C .2D .8【答案】B【解析】因为3()x ∈+∞,,所以43003x x ->>-,,44(3)33=733y x x x x =+=-++≥+--当且仅当43=3x x --即5x =时取等号,所以43y x x =+-的最小值为7.故选:B 【例2】(2021·安徽省泗县第一中学)函数19()(1)41f x x x x =+>-的最小值为()A .134B .3C .72D .94【答案】A【解析】因为1x >,所以10x ->,所以9191113()(1)4141444x f x x x x =+=-+++=-- ,当且仅当1941x x -=-,即7x =时等号成立,所以()f x 的最小值为134.故选:A .【例3】若对任意0>x ,a x x x≤++132恒成立,则a 的取值范围是__________.【答案】51≥a 【解析】max221313⎪⎭⎫ ⎝⎛++≥⇔++≥x x x a x x x a ,因51131132≤++=++xx x x x ,所以51≥a 【例4】设0abc >>>,则221121025()a ac c ab a a b ++-+-的最小值是(A )2(B )4(C)(D )5【答案】4【解析】原式()()()()()22251212251011c a b a a b a a ab ab c ac a b a a b a a ab ab -+-⋅-+⋅≥+-+-+-++=4022=++=【例5】(2022·全国·高三专题练习(理))若11x -<<,则22222x x y x -+=-有()A .最大值1-B .最小值1-C .最大值1D .最小值1【答案】A 【解析】【分析】将给定函数化简变形,再利用均值不等式求解即得.【详解】因11x -<<,则012x <-<,于是得21(1)1111[(1)]121212x y x x x -+=-⋅=--+≤-⋅---,当且仅当111x x -=-,即0x =时取“=”,所以当0x =时,22222x x y x -+=-有最大值1-.故选:A 【题型专练】1.(2022·全国·高三专题练习)函数131y x x =+-(1)x >的最小值是()A .4B .3C .D .3【答案】D 【解析】由()13131y x x =-++-,利用基本不等式求最小值即可.【详解】因为1x >,所以()131331y x x =-++≥+-3=,当且仅当()1311x x -=-,即13x =+时等号成立.所以函数131y x x =+-(1)x >的最小值是3.故选:D.【点睛】本题考查利用基本不等式求最值,考查学生的计算求解能力,属于基础题.2.(2022·全国·高三专题练习)若0x >,0y >且x y xy +=,则211x y x y +--的最小值为()A .3B .52+C .3D .3+【答案】D 【解析】【分析】利用给定条件确定1,1x y >>,变形211x y x y +--并借助均值不等式求解即得.【详解】因0x >,0y >且x y xy +=,则xy x y y =+>,即有1x >,同理1y >,由x y xy +=得:(1)(1)1x y --=,于是得11222123()33111111x y x y x y x y +=+++=++≥+=------,当且仅当2111x y =--,即112x y =+=+“=”,所以211x y x y +--的最小值为3+故选:D3.(2022·上海·高三专题练习)若1x >,则函数211x x y x -+=-的最小值为___________.【答案】3【解析】【分析】由2111111x x y x x x -+==-++--,及1x >,利用基本不等式可求出最小值.【详解】由题意,()()()()222211111111111111x x x x x x x y x x x x x -++-+-+-+-+====-++----,因为1x >,所以111131y x x =-++≥=-,当且仅当111x x -=-,即2x =时等号成立.所以函数211x x y x -+=-的最小值为3.故答案为:3.题型四换元法【例1】(2021·永丰县永丰中学高一期末)函数21()1x x f x x ++=-(1x >)的最小值为()A .B .3+C .2+D .5【答案】B【解析】因为1x >,设01>-=x t ,所以1+=t x 所以()()332333311122+≥++=++=++++=tt t t t t t t t f ,当且仅当tt 3=,即3=t ,所以1x =+时取等号,所以函数21()1x x f x x ++=-(1x >)的最小值为3+B【例2】(2021·全国高一课时练习)函数2y =___________.【答案】4【解析】令1t =≥,则244y t t==+≥,当且仅当2t =,即x =时,min 4y =.所以函数2y =4.故答案为:4题型五消参法消参法就是对应不等式中的两元问题,用一个参数表示另一个参数,再利用基本不等式进行求解.解题过程中要注意“一正,二定,三相等”这三个条件缺一不可!【例1】已知22451()x y y x y +=∈R ,,则22x y +的最小值是.【答案】54【解析】因22451x y y +=,所以42215y x y-=,所以422222222211142425555555y y y x y y y y y y -+=+=-+=+≥=⨯=当且仅当221455y y =,即212y =时取等号【例2】若实数x ,y 满足133(0)2xy x x +=<<,则313x y +-的最小值为.【答案】8【解析】因33xy x +=,所以33x y =+,所以33y x=+,因此311133668333y y x y y y +=++=-++≥+=---当且仅当133y y -=-时取等号【题型专练】1.(2022·浙江绍兴·模拟预测)若直线30(0,0)ax by a b --=>>过点(1,1)-,的最大值为___________.【答案】【解析】【分析】将点(1,1)-代入直线方程可得3a b +=.【详解】直线30ax by --=过点(1,1)-,则3a b +=又0,0a b >>,设t =,则0t >21262t a b =+++++由()()2121292a b a b +++⎛⎫++≤= ⎪⎝⎭,当且仅当12+=+a b ,即2,1a b ==时等号成立.所以2612t =+≤,即t ≤2,1a b ==时等号成立.故答案为:2.(2022·全国·高三专题练习)设正实数x ,y ,z 满足22340x xy y z -+-=,则当xyz取得最大值时,212x y z+-的最大值为()A .0B .3C .94D .1【答案】D 【解析】【分析】利用22340x xy y z -+-=可得143xy x y z y x=+-,根据基本不等式最值成立的条件可得22,2x y z y ==,代入212x y z++可得关于y 的二次函数,利用单调性求最值即可.【详解】由正实数x ,y ,z 满足22340x xy y z -+-=,2234z x xy y ∴=-+.∴22114343xy xy x y z x xy y y x ==-++-,当且仅当20x y =>时取等号,此时22z y =.∴222122121(1)1122x y z y y y y+-=+-=--+ ,当且仅当1y =时取等号,即212x y z+-的最大值是1.故选:D 【点睛】本题主要考查了基本不等式的性质和二次函数的单调性,考查了最值取得时等号成立的条件,属于中档题.3.(2022·全国·高三专题练习(理))已知正实数a ,b 满足220ab a +-=,则4a b +的最小值是()A .2B.2C.2D .6【答案】B 【解析】【分析】根据220ab a +-=变形得22a b =+,进而转化为a b b b +=++842,用凑配方式得出()b b ++-+8222,再利用基本不等式即可求解.【详解】由220ab a +-=,得22a b =+,所以()a b b b b b +=+=++-=++88422224222 ,当且仅当,a b b b ==+++28222,即a b ==2取等号.故选:B.题型六双换元若题目中含是求两个分式的最值问题,对于这类问题最常用的方法就是双换元,分布运用两个分式的分母为两个参数,转化为这两个参数的不等关系.【例1】若00a b >>,,且11121a b b =+++,则2a b +的最小值为.【答案】1【解析】设21a b x b y +=⎧⎨+=⎩,则121x y a b y --⎧=⎪⎨⎪=-⎩,所以111x y =+,因此21223a b x y y x y =--+-=+-+因()111124x y x y x y x y y x ⎛⎫+=++=+++≥+= ⎪⎝⎭所以2431a b ≥-=+【例2】已知0x y >,,求44x yx y x y+++的最大值.【答案】1【解析】设4x y a x y b +=⎧⎨+=⎩,则343a b x b a y -⎧=⎪⎪⎨-⎪=⎪⎩,因此441453343333333a b b ax y b a b a x y x y a b a b a b --⎛⎫+=+=-+-=-+ ⎪++⎝⎭因2333b a a b +≥=所以421433x x y x y +≥-=++【例3】(2022·浙江省江山中学高三)设0a >,0b >,若221a b +=2ab -的最大值为()A.3B.C.1D.2+【答案】D 【解析】【分析】法一:设c b =-,进而将问题转化为已知221a c +=,求ac 的最大值问题,再根据基本不等式求解即可;法二:由题知221()124a b b -+=进而根据三角换元得5cos ,(062sin a b πθθθθ⎧=⎪<<⎨=⎪⎩,再根据三角函数最值求解即可.【详解】解:法一:(基本不等式)设c b =-2ab -=)a b ac -=,条件222211a b a c +=⇔+=,2212a c ac +=+≥,即2≤ac 故选:D.法二:(三角换元)由条件221()124a b b -+=,故可设cos sin 2a b θθ⎧=⎪⎪⎨⎪=⎪⎩,即cos ,2sin a b θθθ⎧=⎪⎨=⎪⎩,由于0a >,0b >,故cos 02sin 0θθθ⎧+>⎪⎨>⎪⎩,解得506πθ<<所以,5cos ,(0)62sin a b πθθθθ⎧=⎪<<⎨=⎪⎩,22sin 22ab θ-+≤当且仅当4πθ=时取等号.故选:D.【题型专练】1.(2022·天津南开·一模)若0a >,0b >,0c >,2a b c ++=,则4a ba b c+++的最小值为______.【答案】2+【解析】【分析】令2,,(0,0)c m c n m n -==>>,则2m n +=,由此可将4a b a b c+++变形为421m n +-,结合基本不等式,即可求得答案。

均值不等式及其应用--高考数学【解析版】

均值不等式及其应用--高考数学【解析版】

专题05 均值不等式及其应用高考命题对基本不等式的考查比较灵活,重点考查应用基本不等式确定最值(范围)问题、证明不等式、解答函数不等式恒成立等问题.独立考查以选择、填空为主,有时以应用题的形式出现.有时与三角函数、数列、解析几何、平面向量函数等相结合,考查考生应用数学知识的灵活性.【重点知识回眸】1. 基本不等式 ab ≤a +b 2(1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b . 2.几个重要的不等式(1))2,0a b ab a b +≥>:多用在求和式的最小值且涉及求和的项存在乘积为定值的情况(2)22a b ab +⎛⎫≤ ⎪⎝⎭,,a b R ∈:多用在求乘积式的最大值且涉及乘积的项存在和为定值的情况(3)222a b ab +≥,,a b R ∈(4)222()22a b a b ++≤,,a b R ∈ (5)2,,b aa b a b+≥同号且不为零 (6)重要不等式链 若a ≥b >0,则a ≥a 2+b 22≥a +b 2≥ab ≥2aba +b≥b . 上述不等式,当且仅当a =b 时等号成立 3.算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b2,几何平均数为ab ,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数. 4.利用基本不等式求最值问题 已知x >0,y >0,则(1)x +y ≥2xy ,若xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值2p (简记:积定和最小). (2)xy ≤⎝⎛⎭⎫x +y 22,若x +y 是定值q ,那么当且仅当x =y 时,xy 有最大值q 24(简记:和定积最大).提醒:在应用基本不等式求最值时,一定要检验求解的前提条件:“一正、二定、三相等”,其中等号能否取到易被忽视.特别是:① 若求最值的过程中多次使用均值不等式,则均值不等式等号成立的条件必须能够同时成立(彼此不冲突)② 若涉及的变量有初始范围要求,则使用均值不等式后要解出等号成立时变量的值,并验证是否符合初始范围.5、常见求最值的题目类型 (1)构造乘积与和为定值的情况 (2)已知1ax by +=(a 为常数),求m nx y+的最值, 此类问题的特点在于已知条件中变量位于分子(或分母)位置上,所求表达式变量的位置恰好相反,位于分母(或分子)上,则可利用常数“1”将已知与所求进行相乘,从而得到常数项与互为倒数的两项,然后利用均值不等式求解.(3)运用均值不等式将方程转为所求式子的不等式,通过解不等式求解: 例如:已知0,0,24x y x y xy >>++=,求2x y +的最小值解:()22211222228x y x y xy x y ++⎛⎫=⋅⋅≤= ⎪⎝⎭所以()()2224248x y x y xy x y +++=⇒++≥即()()2282320x y x y +++-≥,可解得234x y +≥,即()min 2434x y += 注:此类问题还可以通过消元求解:42241xx y xy y x -++=⇒=+,在代入到所求表达式求出最值即可,但要注意0y >的范围由x 承担,所以()0,2x ∈【典型考题解析】热点一 直接法求最值【典例1】(2021·全国·高考真题(文))下列函数中最小值为4的是( ) A .224y x x =++ B .4sin sin y x x=+ C .222x x y -=+ D .4ln ln y x x=+【答案】C 【解析】【分析】根据二次函数的性质可判断A 选项不符合题意,再根据基本不等式“一正二定三相等”,即可得出,B D 不符合题意,C 符合题意. 【详解】对于A ,()2224133y x x x =++=++≥,当且仅当1x =-时取等号,所以其最小值为3,A 不符合题意; 对于B ,因为0sin 1x <≤,4sin 44sin y x x=+≥=,当且仅当sin 2x =时取等号,等号取不到,所以其最小值不为4,B 不符合题意;对于C ,因为函数定义域为R ,而20x >,242222442x x xx y -=+=+≥=,当且仅当22x =,即1x =时取等号,所以其最小值为4,C 符合题意; 对于D ,4ln ln y x x=+,函数定义域为()()0,11,+∞,而ln x R ∈且ln 0x ≠,如当ln 1x =-,5y =-,D 不符合题意. 故选:C .【典例2】(2021·全国·高考真题)已知1F ,2F 是椭圆C :22194x y +=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为( ) A .13 B .12C .9D .6【答案】C 【解析】 【分析】本题通过利用椭圆定义得到1226MF MF a +==,借助基本不等式212122MF MF MF MF ⎛+⎫⋅≤ ⎪⎝⎭即可得到答案. 【详解】由题,229,4a b ==,则1226MF MF a +==,所以2121292MF MF MF MF ⎛+⎫⋅≤= ⎪⎝⎭(当且仅当123MF MF ==时,等号成立). 故选:C .【典例3】(2023·全国·高三专题练习)若0a >、0b >,且411a b+=,则ab 的最小值为( ).A .16B .4C .116 D .14【答案】A 【解析】 【分析】根据基本不等式计算求解. 【详解】因为0a >、0b >,所以414112+≥⨯=a b a b ab114≥ab 4ab ≥,即16ab ≥,当仅当41a b =,即82a b ==,时,等号成立. 故选:A.【典例4】(2022·全国·高考真题(文))已知910,1011,89m m m a b ==-=-,则( ) A .0a b >> B .0a b >> C .0b a >> D .0b a >>【答案】A 【解析】 【分析】根据指对互化以及对数函数的单调性即可知9log 101m =>,再利用基本不等式,换底公式可得lg11m >,8log 9m >,然后由指数函数的单调性即可解出.【详解】由910m=可得9lg10log 101lg 9m ==>,而()222lg9lg11lg99lg9lg111lg1022+⎛⎫⎛⎫<=<= ⎪ ⎪⎝⎭⎝⎭,所以lg10lg11lg 9lg10>,即lg11m >,所以lg11101110110m a =->-=.又()222lg8lg10lg80lg8lg10lg922+⎛⎫⎛⎫<=< ⎪ ⎪⎝⎭⎝⎭,所以lg9lg10lg8lg9>,即8log 9m >, 所以8log 989890m b =-<-=.综上,0a b >>. 故选:A.热点二 配凑法求最值【典例5】(2023·全国·高三专题练习)已知102x <<,则函数(12)y x x =- 的最大值是( ) A .12B .14C .18D .19【答案】C 【解析】 【分析】将(12)y x x =-化为12(12)2x x ⨯-,利用基本不等式即可求得答案.【详解】 ∵102x <<,120x ∴-> , ∴1(12)2(12)2x x x x -=⨯-22(12)112[]28x x +-=≤⨯, 当且仅当212x x =- 时,即14x =时等号成立, 因此,函数(12)y x x =-,1(0)2x <<的最大值为18,故选:C .【典例6】(2023·全国·高三专题练习)已知a >b ,关于x 的不等式220ax x b ++≥对于一切实数x 恒成立,又存在实数0x ,使得2020ax x b ++=成立,则22a b a b+-最小值为_________.【答案】22【解析】 【分析】由220ax x b ++≥对于一切实数x 恒成立,可得0a >,且0∆≤;再由0x R ∃∈,使20020ax x b ++=成立,可得0∆≥,进而可得ab 的值为1,将22a b a b+-可化为()222a b a b a b a b +=-+--,利用基本不等式可得结果. 【详解】因为220ax x b ++≥对于一切实数x 恒成立, 所以0a >,且440ab ∆=-≤,所以1≥ab ;再由0x R ∃∈,使20020ax x b ++=成立,可得440ab ∆=-≥,所以1ab ≤, 所以1ab =,因为a b >,即0a b ->,所以()()2222222a b ab a b a b a b a b a b-++==-+≥--- 当且仅当2a b a b-=-,即2a b -=所以22a b a b+-的最小值为22故答案为:22【典例7】(2023·全国·高三专题练习)已知 5<4x ,求函数14145y x x =-+- 的最大值. 【答案】2 【解析】 【分析】 将14145y x x =-+-变形为[()1]54454y x x=--++-,利用基本不等式即可求得答案. 【详解】根据题意,函数()114545444554y x x x x ⎡⎤=-++=--++⎢⎥--⎣⎦ , 又由54x <,则540x -> ,则()(115425425454)x x x x-+≥---⋅, 当且仅当15454x x-=-时,即1x =时取等号, 则1[(54)]424254y x x=--++≤-+=-, 故函数14145y x x =-+-的最大值为2. 【总结提升】形如()2ax bx c f x dx e +++=的函数,可化为()11[()]f x x k m x k+++=的形式,再利用基本不等式求解热点三 常数代换法求最值【典例8】(2023·全国·高三专题练习)在ABC 中,E 为AC 上一点,3AC AE =,P 为BE 上任一点,若(0,0)AP mAB nAC m n =+>>,则31m n+的最小值是( ) A .23B .423+ C .6 D .12【答案】D 【解析】 【分析】利用向量共线定理可得31m n +=,再根据3131(3)()m n m n m n+=++结合基本不等式即可得出答案. 【详解】解:3AC AE =,∴3AP mAB nAC mAB nAE =+=+,,,P B E 三点共线,31m n ∴+=, ∴313199(3)()336212n m n m m n m n m n m n m n+=++=+++≥+⋅, 当且仅当9n m m n=,132m n ==时取等号,所以31m n+的最小值是12. 故选:D .【典例9】(2020·天津·高考真题)已知0,0a b >>,且1ab =,则11822a b a b+++的最小值为_________. 【答案】4 【解析】 【分析】根据已知条件,将所求的式子化为82a b a b+++,利用基本不等式即可求解. 【详解】0,0,0a b a b >>∴+>,1ab =,11882222ab ab a b a b a b a b∴++=++++ 882422a b a b a b a b++=+≥⨯=++,当且仅当a b +=4时取等号, 结合1ab =,解得23,23a b ==23,23a b =+=. 故答案为:4【典例10】(2017·山东·高考真题(文))若直线1(00)x ya b a b+=>,>过点(1,2),则2a b +的最小值为________. 【答案】8 【解析】 【分析】 由直线1(00)x y a b a b +=>,>过点(1,2),可得121a b +=,从而有()1222a b a b a b ⎛⎫+=++ ⎪⎝⎭,展开后利用基本不等式可求得其最小值 【详解】解:因为直线1(00)x y a b a b+=>,>过点(1,2),所以121a b +=,因为00a b >,>所以()12442222428a b a b a b a b a b b a b a ⎛⎫+=++=+++≥+⋅= ⎪⎝⎭, 当且仅当4a bb a =,即2,4a b ==时取等号, 所以2a b +的最小值为8 故答案为:8 【总结提升】常数代换法主要解决形如“已知x +y =t (t 为常数),求a b x y+的最值”的问题,先将a x +b y 转化为()a b x y x y t ++⋅,再用基本不等式求最值. 热点四 基本不等式的实际应用【典例11】(2023·全国·高三专题练习)迷你KTV 是一类新型的娱乐设施,外形通常是由玻璃墙分隔成的类似电话亭的小房间,近几年投放在各大城市商场中,受到年轻人的欢迎.如图是某间迷你KTV 的横截面示意图,其中32AB AE ==,90A B E ∠=∠=∠=︒,曲线段CD 是圆心角为90︒的圆弧,设该迷你KTV 横截面的面积为S ,周长为L ,则SL的最大值为( ).(本题中取π=3进行计算)A .6B .12315-C .3D .9【答案】B 【解析】 【分析】根据面积和周长的计算,可得SL,根据基本不等式即可求解最大值. 【详解】圆弧的半径为3(0)2r r <<,则32BC ED r ==-,π322CD rl r ==.所以周长162CD L AB BC l DE EA r =++++=-,面积2223139[()]22244r r S r r =-+⨯⨯=-.所以22191(12)24(12)135********12[(12)]122(12)12315212212212212S r r r r r L r r r r---+--=⋅=⋅=-⋅-+-⋅-⋅-----. 当且仅当1351212r r-=-,12315r =- 故选:B【典例12】(2017·江苏·高考真题)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是__________. 【答案】30 【解析】 【详解】 总费用为600900464()42900240x x x x +⨯=+≥⨯,当且仅当900x x=,即30x =时等号成立.故答案为30. 【总结提升】利用基本不等式解决实际问题的三个注意点(1)设变量时,一般要把求最大值或最小值的变量定义为函数. (2)解题时,一定要注意变量的实际意义及其取值范围.(3)在应用基本不等式求函数最值时,若等号取不到,可利用函数的单调性求解,如利用()a f x x x=+(a>0)的单调性.热点五 利用均值不等式连续放缩求最值【典例13】(2022·江苏·南京市第一中学高三开学考试)已知0a b >>,且1,ab =则不正确的是( ) A .20a b +> B .22log log 1a b +> C .2222a b +>D .22log log 0a b ⋅<【答案】B 【解析】 【分析】利用不等式的性质和基本不等式的应用,结合指数函数与对数函数的单调性,对选项逐一分析判断. 【详解】对A ,根据指数函数的性质20a b +>,故A 正确;对B ,2222log log log log 10a b ab +===,故B 错误;对C ,因为2a b ab +≥=,当且仅当a b =取等号,所以222222422a b a b +≥=>+C 正确; 对D ,因为1ab =,且0a b >>,故10>>>a b ,22log 0,log 0a b ><,所以22log log 0a b ⋅<;故D 正确. 故选:B【典例14】(2021·天津·高考真题)若0 , 0a b >>,则21a b ab ++的最小值为____________. 【答案】22【解析】 【分析】两次利用基本不等式即可求出. 【详解】0 , 0a b >>,2211222222a a b b a b a b b b b b∴++≥⋅=+≥⋅ 当且仅当21a a b =且2b b=,即2a b ==所以21ab ab ++的最小值为2 故答案为:22 【总结提升】第一次使用基本不等式是对原不等式的一次放缩,并为第二次使用基本不等式创造了条件,因此要使结果为原不等式的最值,两次使用基本不等式等号成立的条件应该是一致的.【精选精练】一、单选题1.(2023·全国·高三专题练习)已知02x <<,则24y x x =- ) A .2 B .4 C .5 D .6【答案】A 【解析】 【分析】由基本不等式求解即可 【详解】 因为02x <<,所以可得240x ->, 则()()2222244422x x y x x x x+-=-⋅-=,当且仅当224x x =-,即2x24y x x =-2.故选:A .2.(2023·全国·高三专题练习)已知a >0,b >0,且a +2b =ab ,则ab 的最小值是( ) A .4 B .8 C .16 D .32【答案】B 【解析】 【分析】利用基本不等式可得答案. 【详解】∵已知a >0,b >0,且a +2b =ab ,∴ab 2a b ⋅ 化简可得ab ≥2∴ab ≥8,当且仅当a =2b 时等号成立, 故ab 的最小值是8, 故选:B .3.(2022·江西·高三阶段练习(理))已知双曲线22:1(0,0)4n C mx y m n -=>>的一个焦点坐标为(1,0)-,当m n +取最小值时,C 的离心率为( )A 5B 3C .2D 2【答案】B 【解析】 【分析】根据双曲线的标准方程可得22214,,1a b c m n===,根据,,a b c 的关系可得141m n +=,由基本不等式的求解即可得26n m ==,进而2311a m ==,即可求离心率. 【详解】由22:1(0,0)4n C mx y m n -=>>可得22114x y m n-=,所以22214,,1a b c m n===, 故可得141m n +=,所以(4144)5529n m n m m n m n m n m n m n ⎛⎫+=++=+++⋅ ⎪⎝⎭, 当且仅当4n m m n =,即26n m ==时等号成立,所以2311a m ==,3a =1c =, 所以3==ce a, 故选:B .4.(2021·浙江·高考真题)已知,,αβγ是互不相同的锐角,则在sin cos ,sin cos ,sin cos αββγγα三个值中,大于12的个数的最大值是( ) A .0 B .1 C .2 D .3【答案】C 【解析】 【分析】利用基本不等式或排序不等式得3sin cos sin cos sin cos 2αββγγα++≤,从而可判断三个代数式不可能均大于12,再结合特例可得三式中大于12的个数的最大值. 【详解】法1:由基本不等式有22sin cos sin cos 2αβαβ+≤,同理22sin cos sin cos 2βγβγ+≤,22sin cos sin cos 2γαγα+≤,故3sin cos sin cos sin cos 2αββγγα++≤, 故sin cos ,sin cos ,sin cos αββγγα不可能均大于12. 取6πα=,3πβ=,4πγ=,则116161sin cos ,sin cos ,sin cos 4222αββγγα=<=>=>, 故三式中大于12的个数的最大值为2, 故选:C.法2:不妨设αβγ<<,则cos cos cos ,sin sin sin αβγαβγ>><<, 由排列不等式可得:sin cos sin cos sin cos sin cos sin cos sin cos αββγγααγββγα++≤++,而()13sin cos sin cos sin cos sin sin 222αγββγαγαβ++=++≤,故sin cos ,sin cos ,sin cos αββγγα不可能均大于12. 取6πα=,3πβ=,4πγ=,则116161sin cos ,sin cos ,sin cos 4222αββγγα=<=>=>, 故三式中大于12的个数的最大值为2, 故选:C.5.(2020·全国·高考真题(理))设O 为坐标原点,直线x a =与双曲线2222:1(0,0)x y C a b ab-=>>的两条渐近线分别交于,D E 两点,若ODE 的面积为8,则C 的焦距的最小值为( ) A .4 B .8 C .16 D .32【答案】B 【解析】 【分析】 因为2222:1(0,0)x y C a b a b -=>>,可得双曲线的渐近线方程是b y x a=±,与直线x a =联立方程求得D ,E 两点坐标,即可求得||ED ,根据ODE 的面积为8,可得ab 值,根据2222c a b =+得答案. 【详解】2222:1(0,0)x y C a b a b-=>> ∴双曲线的渐近线方程是by x a=±直线x a =与双曲线2222:1(0,0)x y C a b a b-=>>的两条渐近线分别交于D ,E 两点不妨设D 为在第一象限,E 在第四象限 联立x ab y x a =⎧⎪⎨=⎪⎩,解得x a y b =⎧⎨=⎩ 故(,)D a b联立x ab y x a =⎧⎪⎨=-⎪⎩,解得x a y b =⎧⎨=-⎩ 故(,)E a b - ∴||2ED b =∴ODE 面积为:1282ODE S a b ab =⨯==△ 双曲线2222:1(0,0)x y C a b a b-=>>∴其焦距为2222222168c a b ab =+≥==当且仅当22a b == ∴C 的焦距的最小值:8故选:B.6.(2023·全国·高三专题练习)已知0a >,0b >,且2ab a b =+,若228a b m m +-恒成立,则实数m 的取值范围是( ) A .426426m -+B .426m +或426m - C .19m - D .9m 或1m -【答案】C 【解析】 【分析】由题意化2ab a b =+为211b a=+,利用基本不等式求出2+a b 的最小值,再解关于m 的一元二次不等式即可. 【详解】解:0a >,0b >,且2ab a b =+,211b a∴=+, 1222222(2)()14529b a b aa b a b a b a b a b∴+=++=++++=,当且仅当3a b ==时取“=”; 若228a b m m +-恒成立, 则298m m -, 即2890m m --, 解得19m -,∴实数m 的取值范围是[1-,9].故选:C .7.(2023·全国·高三专题练习)已知ln ln 222+≥+-aa b b ,则a b +=( ) A .52B .4C .92D .6【答案】A 【解析】 【分析】根据基本不等式可得22222+-≥ab ab ,当且仅当4a b =时取等号,从而可到ln()2≥ab ab ,再构造函数分析可得ln()20-≤ab ab ,从而得到ln()20-=ab ab ,再根据基本不等式取得最值时的关系求解即可 【详解】 由题意得ln()222≥+-a ab b ,因为0a >,0b >,所以22222+-≥ab ab ,当且仅当4a b =时取等号,所以ln()2≥ab ab ,令()ln 22=-f x x x ,则11()-='=xf x x x,当(0,1)x ∈,()0f x '>,()f x 单调递增;当(1,)x ∈+∞时,()0,()f x f x '<单调递减,所以()(1)0f x f ≤=,当且仅当1ab =时取等号,即ln()220-≤ab ab ,所以ln()220-=ab ab ,所以1ab =,所以12,2a b ==,所以52a b +=. 故选:A8.(2017·天津·高考真题(理))已知函数23,1,()2, 1.x x x f x x x x ⎧-+≤⎪=⎨+>⎪⎩设a R ∈,若关于x 的不等式()||2x f x a ≥+在R 上恒成立,则a 的取值范围是( ) A .47[,2]16-B .4739[,]1616-C .[3,2]-D .39[23,]16- 【答案】A 【解析】 【详解】 不等式()2x f x a ≥+为()()2xf x a f x -≤+≤(*), 当1x ≤时,(*)式即为22332xx x a x x -+-≤+≤-+,2233322x x a x x -+-≤≤-+,又22147473()241616x x x -+-=---≤-(14x =时取等号),223339393()241616x x x -+=-+≥(34x =时取等号),所以47391616a -≤≤, 当1x >时,(*)式为222x x a x x x --≤+≤+,32222x x a x x--≤≤+, 又3232()2322x x x x --=-+≤-23x =,222222x x x x+≥⨯=(当2x =时取等号), 所以232a -≤, 综上47216a -≤≤.故选A . 【考点】不等式、恒成立问题 【名师点睛】首先满足()2x f x a ≥+转化为()()22x xf x a f x --≤≤-去解决,由于涉及分段函数问题要遵循分段处理原则,分别对x 的两种不同情况进行讨论,针对每种情况根据x 的范围,利用极端原理,求出对应的a 的范围. 二、多选题9.(2022·全国·高考真题)(多选)若x ,y 满足221+-=x y xy ,则( ) A .1x y +≤ B .2x y +≥- C .222x y +≤ D .221x y +≥【答案】BC 【解析】 【分析】根据基本不等式或者取特值即可判断各选项的真假. 【详解】因为22222a b a bab ++⎛⎫≤≤⎪⎝⎭(,a b R ),由221+-=x y xy 可变形为,()221332x y x y xy +⎛⎫+-=≤ ⎪⎝⎭,解得22x y -≤+≤,当且仅当1x y ==-时,2x y +=-,当且仅当1x y ==时,2x y +=,所以A 错误,B 正确;由221+-=x y xy 可变形为()222212x y x y xy ++-=≤,解得222x y +≤,当且仅当1x y ==±时取等号,所以C 正确;因为221+-=x y xy 变形可得223124y x y ⎛⎫-+= ⎪⎝⎭,设3cos sin 2y x y θθ-==,所以cos ,33x y θθθ==,因此2222511cos sin cos 12cos 233333x y θθθθ=θ-θ+=++42π2sin 2,23363θ⎛⎫⎡⎤=+-∈ ⎪⎢⎥⎝⎭⎣⎦,所以当33x y ==时满足等式,但是221x y +≥不成立,所以D 错误. 故选:BC .10.(2020·海南·高考真题)(多选)已知a >0,b >0,且a +b =1,则( ) A .2212a b +≥B .122a b -> C .22log log 2a b +≥- D 2a b【答案】ABD 【解析】 【分析】根据1a b +=,结合基本不等式及二次函数知识进行求解. 【详解】对于A ,()222221221a b a a a a +=+-=-+21211222a ⎛⎫⎪⎭+ ⎝≥-=,当且仅当12a b ==时,等号成立,故A 正确; 对于B ,211a b a -=->-,所以11222a b-->=,故B 正确;对于C ,2222221log log log log log 224a b a b ab +⎛⎫+=≤==- ⎪⎝⎭, 当且仅当12a b ==时,等号成立,故C 不正确; 对于D ,因为21212a bab a b =+++=,2a b ,当且仅当12a b ==时,等号成立,故D 正确; 故选:ABD11.(2023·全国·高三专题练习)(多选)已知a <b <0,则下列不等式正确的是( ) A .a 2>ab B .ln (1﹣a )>ln (1﹣b ) C .2a b ab+>D .a +cos b >b +cos a【答案】ABC 【解析】 【分析】利用不等式的性质判断A ,利用对数函数的单调性判断B ,利用基本不等式判断C ,利用构造函数判断D. 【详解】A:∵a <b <0,∴a 2>ab ,∴A 正确,B:∵a <b <0,1﹣a >1﹣b ,∴ln (1﹣a )>ln (1﹣b ),∴B 正确, C:∵a <b <0,∴2a bab -->2a b ab +>C 正确, D:设f (x )=x ﹣cos x ,则()f x '=1+sin x ≥0,∴f (x )在R 上为增函数,∵a <b <0,∴a ﹣cos a <b ﹣cos b ,a +cos b <b +cos a ,∴D 错误. 故选:ABC .12.(2022·江苏省如皋中学高三开学考试)(多选)若实数x ,y 满足1221x y ++=,m x y =+,111()()22-=+x y n ,则( ) A .0x <且1y <- B .m 的最大值为3- C .n 的最小值为7 D .22m n ⋅<【答案】ABD 【解析】 【分析】根据指数函数的性质判断A ,利用基本不等式判断B 、C ,根据指数幂的运算判断D ; 【详解】解:因为1221x y ++=,若0x ≥,则21x ≥,又120y +>,显然不成立,即0x <, 同理可得10y +<,所以1y <-,即0x <且1y <-,故A 正确; 又111122222x y x y x y ++++=+≥⋅=1222x y ++-≤,所以3x y +≤-,当且仅当11222x y +==,即1x =-,2y =-时取等号,即m 的最大值为3-,故B 正确; 又()111111112222222244x y x y x y x y n +-++⎛⎫=+=+=+⋅+ ⎪⎝⎭ 111144552922222222y x y xx y x y ++++⋅⋅=⋅+≥+=+,当且仅当1142222y xx y ++⋅=,即2log 3x =-,22log 13y =-时取等号,故C 错误;对于D :()111112()()22222222m x y x y x y x y y x n -+--+++⎡⎤⋅=+⋅=+⋅=+⎢⎥⎣⎦,因为1221x y ++=,所以()12222x y ++=,即12222x y +++=,即12422x y ++⨯=,即122322x y y ++⨯=+,因为302y ⨯>,所以1222x y +<+,即22m n ⋅<,故D 正确; 故选:ABD 三、填空题13.(2020·江苏·高考真题)已知22451(,)x y y x y R +=∈,则22x y +的最小值是_______.【答案】45【解析】 【分析】根据题设条件可得42215y x y -=,可得4222222114+555y y x y y y y -+=+=,利用基本不等式即可求解.【详解】 ∵22451x y y +=∴0y ≠且42215y x y-=∴422222222114144+2555555y y y x y y y y y -+=+=≥⋅,当且仅当221455y y =,即2231,102x y ==时取等号. ∴22xy +的最小值为45.故答案为:45.14.(2019·天津·高考真题(文)) 设0x >,0y >,24x y +=,则(1)(21)x y xy++的最小值为__________.【答案】92.【解析】 【分析】 把分子展开化为(1)(21)2212552x y xy x y xy xy xy xy xy++++++===+,再利用基本不等式求最值.【详解】由24x y +=,得2422x y xy +=≥2xy ≤(1)(21)221255592222x y xy x y xy xy xy xy xy ++++++===+≥+=,等号当且仅当2x y =,即2,1x y ==时成立. 故所求的最小值为92.15.(2018·江苏·高考真题)在ABC 中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为________. 【答案】9 【解析】 【详解】分析:先根据三角形面积公式得条件、再利用基本不等式求最值.详解:由题意可知,ABC ABD BCD S S S =+△△△,由角平分线性质和三角形面积公式得111sin1201sin 601sin 60222ac a c ︒=⨯⨯︒+⨯⨯︒,化简得11,1ac a c a c =++=,因此11444(4)()5529,c a c aa c a c a c a c a c+=++=++≥+⋅当且仅当23c a ==时取等号,则4a c +的最小值为9.16.(2018·天津·高考真题(理))已知,R a b ∈,且360a b -+=,则128ab+的最小值为_____________. 【答案】14【解析】 【分析】由题意首先求得3a b -的值,然后结合均值不等式的结论整理计算即可求得最终结果,注意等号成立的条件. 【详解】由360a b -+=可知36a b -=-,且:312228a ab b -+=+,因为对于任意x ,20x >恒成立, 结合均值不等式的结论可得:336122222224a b a b ---+≥⨯==.当且仅当32236a b a b -⎧=⎨-=-⎩,即31a b =-⎧⎨=⎩时等号成立.综上可得128ab +的最小值为14. 17.(2022·全国·高考真题(理))已知ABC 中,点D 在边BC 上,120,2,2ADB AD CD BD ∠=︒==.当ACAB取得最小值时,BD =________. 31##1+3-【解析】【分析】设220CD BD m ==>,利用余弦定理表示出22AC AB 后,结合基本不等式即可得解. 【详解】设220CD BD m ==>,则在ABD △中,22222cos 42AB BD AD BD AD ADB m m =+-⋅∠=++, 在ACD △中,22222cos 444AC CD AD CD AD ADC m m =+-⋅∠=+-, 所以()()()2222224421214441243424211m m m AC m m AB m m m m m m ++-++-===-+++++++ ()4433211m m ≥=-+⋅+ 当且仅当311m m +=+即31m =时,等号成立, 所以当AC AB取最小值时,31m =. 31.四、解答题18.(2023·全国·高三专题练习)设函数2()(2)3(0)f x ax b x a =+-+≠.(1)若不等式()0f x >的解集(1,1)-,求a ,b 的值;(2)若(1)3f =,0a >,0b >,求11a b +的最小值,并指出取最小值时a ,b 的值. 【答案】(1)3,2a b =-=(2)1a =,1b =时,11a b+的最小值是2 【解析】【分析】 (1)由根与系数的关系可得答案;(2)由(1)3f =得2a b +=,再利用基本不等式可得答案.(1)由()0f x >的解集是(1,1)-知1,1-是方程()0f x =的两根, 由根与系数的关系可得311211a b a ⎧-⨯=⎪⎪⎨-⎪-+=-⎪⎩解得32=-⎧⎨=⎩a b , 即32a b =-=,.(2)由(1)3f =得2a b +=,0a >,0b >,11111()2a b a b a b ⎛⎫∴+=++ ⎪⎝⎭1222b a a b ⎛⎫≥⋅= ⎪ ⎪⎝⎭, 当且仅当b a a b =,即1a =,1b =时取等号,11a b∴+的最小值是2.。

均值不等式常考题型

均值不等式及其应用一.均值不等式2 21. (1)若a,b € R ,则 a 2+b 2>2ab (2)若a,b 亡 R ,则 a^a b(当且仅当 a = b 时取“二”)2(2) 若a,b 壬R *,则a + b > 2(当且仅当a = b 时取“=”)x=1时取“=”);若X c 0,则X + —仝2 (当且仅当x = —1时取“=”)x若XHO ,则x +- >2即x +->2或x +-<-2 (当且仅当a = b 时取“=”3.若ab >0,贝y >2 (当且仅当a =b 时取“=”)b aa b a b a b —+ — >2即一+— >2或一+— <-2 (当且仅当a=b 时取“=”b a b a4.若a,b 忘R ,则(王^)22注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的 积的最小值,正所谓“积定和最小,和定积最大”.(2) 求最值的条件“一正,二定,三相等”(3) 均值定理在求最值、应用一:求最值 例1 :求下列函数的值域2步=V 6 •••值域为[76 ,+ m(2)当 x >0 时,y = X +1>2p x - X1当 X <0 时,y = x +- = —(— X —•••值域为(一s,— 2] U [2 ,2.(1)若a,^R*,则宁鼻"£ a⑶若a,b 壬R ,则ab 兰丨a +b i (当且仅当a = b 时取“=”)1 3.若X A O ,则X +— >2 (当且仅当 x2 2 <a b(当且仅当a=b 时取“=”) 221(1) y = 3x 2+ 21(2) y =x + x比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用.例1 :已知x 解:因4X-5V0,所以首先要“调整”符号,不是常数,所以对4x-2要进行拆、凑项,4x —5=—5-4x+^^ ]+3 兰—2 + 3 = 1I 5-4x 丿 又(4x-2)U 申 51 :X < — 5-4x A0,”■. y=4x-2+ ------ 4 4x —o 1解:(1) y = 3x + 2~T >1 x)—1 -=—2+s)解题技巧:技巧一:凑项5 4< —,求函数y =4x —2+---- 的最大值。

高中均值不等式讲解及习题

高中均值不等式讲解及习题一.均值不等式1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤(当且仅当ba =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”) (3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x +≥ (当且仅当1x =时取“=”);若0x <,则12x x+≤- (当且仅当1x =-时取“=”)若0x ≠,则11122-2x x x xxx+≥+≥+≤即或 (当且仅当b a =时取“=”)3.若0>ab ,则2≥+ab ba (当且仅当b a =时取“=”)若0ab ≠,则22-2a b a b a bb a b a b a+≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.(2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域(1)y =3x 2+12x2(2)y =x +1x解:(1)y =3x 2+12x 2≥23x 2·12x 2= 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1x≥2x ·1x=2;当x <0时, y =x +1x = -(- x -1x )≤-2x ·1x=-2 ∴值域为(-∞,-2]∪[2,+∞)解题技巧: 技巧一:凑项 例1:已知54x <,求函数14245y x x =-+-的最大值。

高中均值不等式讲解及习题

高中均值不等式讲解及习题一.均值不等式1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”) (3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x +≥ (当且仅当1x =时取“=”);若0x <,则12x x+≤- (当且仅当1x =-时取“=”)若0x ≠,则11122-2x x x xxx+≥+≥+≤即或 (当且仅当b a =时取“=”)3.若0>ab ,则2≥+ab ba (当且仅当b a =时取“=”)若0ab ≠,则22-2a b a b a bb a b a b a+≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.(2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域(1)y =3x 2+12x2(2)y =x +1x解:(1)y =3x 2+12x2 ≥23x 2·12x 2= 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1x≥2x ·1x=2;当x <0时, y =x +1x = -(- x -1x )≤-2x ·1x=-2∴值域为(-∞,-2]∪[2,+∞)解题技巧: 技巧一:凑项 例1:已知54x <,求函数14245y x x =-+-的最大值。

均值不等式应用及例题解析(PPT教案)


a/4 (x=a/8)
练习3
练习4 :已知2a b 2 求f ( x) 4a 2b的最值及此时的 a和b.
最小值 4 ,当2a=b时 有最小值(a=1/2 b=1)
三不等,改用“单调性”
例11.求函数 y
x2 5 x 4
2
的最小值. 5/2(x=0)
变形:
1 利用对勾函数 y t t
(t>0)的单调性.
练习:( 1 )求函数y (2)求函数y
2
x 5
2
x 1
2
的最小值;
sin x 5
2

sin x 1 1 1 (3)求函数y x 在 , 3上的值域。 x 2
的最小值;
例 12: 用三元均值不等式求最值
构造三 解: 1 x 0, 个数相 1 2 y x (1 x) x x (2 2 x) 加等于 2 定值.
注意:各项必须为正数
一 不 正 , 常 用 a b 2 a b ( a 0, b 0 )
二边乘-1不等式要变号
2x x 3 例8、( 1 )已知函数f(x) (x 0) x 求f ( x)的最大值,以及此时 x的值。
2
解:函数看不出二项相乘为定值,需要变形使它二项相乘为定值 (凑积定)
(拆项时常拆成两个相同项)。
五、错题辨析
阅读下题的各种解法是否正确,若有错, 指出有错误的地方。 1 1 1. 已 知 a, b R , 且 a 2 b 1, 求 的 最 小 值 . a b
1 1 1 1 解法二:由a 2b 1及a、b R , ( a 2b)( ) a b a b 1 1 1 2 2ab 2 , 的最小值为 4 2 . 因为二不定 ab a b
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概念、方法、题型、易误点及应试技巧总结不等式一.不等式的性质:1.同向不等式可以相加;异向不等式可以相减:若,a b c d >>,则a c b d +>+(若,a b c d ><,则a c b d ->-),但异向不等式不可以相加;同向不等式不可以相减;2.左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘:若0,0a b c d >>>>,则ac bd >(若0,0a b c d >><<,则a b c d>); 3.左右同正不等式:两边可以同时乘方或开方:若0a b >>,则n n a b >或>4.若0ab >,a b >,则11a b <;若0ab <,a b >,则11a b>。

如(1)对于实数c b a ,,中,给出下列命题:①22,bc ac b a >>则若; ②b a bc ac >>则若,22;③22,0b ab a b a >><<则若; ④ba b a 11,0<<<则若;⑤baa b b a ><<则若,0; ⑥b a b a ><<则若,0;⑦b c b a c a b a c ->->>>则若,0; ⑧11,a b a b>>若,则0,0a b ><。

其中正确的命题是______(答:②③⑥⑦⑧);(2)已知11x y -≤+≤,13x y ≤-≤,则3x y -的取值范围是______(答:137x y ≤-≤);(3)已知c b a >>,且,0=++c b a 则ac的取值范围是______(答:12,2⎛⎫-- ⎪⎝⎭)二.不等式大小比较的常用方法:1.作差:作差后通过分解因式、配方等手段判断差的符号得出结果; 2.作商(常用于分数指数幂的代数式); 3.分析法; 4.平方法;5.分子(或分母)有理化; 6.利用函数的单调性; 7.寻找中间量或放缩法 ;8.图象法。

其中比较法(作差、作商)是最基本的方法。

如(1)设0,10>≠>t a a 且,比较21log log 21+t t a a 和的大小(答:当1a >时,11log log 22a a t t +≤(1t =时取等号);当01a <<时,11log log 22a a t t +≥(1t =时取等号)); (2)设2a >,12p a a =+-,2422-+-=a a q ,试比较q p ,的大小(答:p q >);(3)比较1+3log x 与)10(2log 2≠>x x x 且的大小(答:当01x <<或43x >时,1+3log x >2log 2x ;当413x <<时,1+3log x <2log 2x ;当43x =时,1+3log x =2log 2x )三.利用重要不等式求函数最值时,你是否注意到:“一正二定三相等,和定积最大,积定和最小”这17字方针。

如 (1)下列命题中正确的是A 、1y x x =+的最小值是2B、2y =的最小值是2C 、423(0)y x x x =-->的最大值是2-D 、423(0)y x x x=-->的最小值是2-(答:C );(2)若21x y +=,则24x y +的最小值是______(答:;(3)正数,x y 满足21x y +=,则yx 11+的最小值为______(答:3+);4.常用不等式有:(12211a b a b+≥≥+(根据目标不等式左右的运算结构选用) ;(2)a 、b 、c ∈R ,222a b c ab bc ca ++≥++(当且仅当a b c==时,取等号);(3)若0,0a b m >>>,则b b ma a m+<+(糖水的浓度问题)。

如如果正数a 、b 满足3++=b a ab ,则ab 的取值范围是_________(答:[)9,+∞)五.证明不等式的方法:比较法、分析法、综合法和放缩法(比较法的步骤是:作差(商)后通过分解因式、配方、通分等手段变形判断符号或与1的大小,然后作出结论。

).常用的放缩技巧有:211111111(1)(1)1n n n n n n n n n-=<<=-++--=<<=如(1)已知c b a >>,求证:222222ca bc ab a c c b b a ++>++ ; (2) 已知R c b a ∈,,,求证:)(222222c b a abc a c c b b a ++≥++;(3)已知,,,a b x y R +∈,且11,x y a b >>,求证:x yx a y b>++; (4)若a 、b 、c 是不全相等的正数,求证:l g l g l g l g l g l g222a b b c c a a b c +++++>++; (5)已知R c b a ∈,,,求证:2222a b b c +22()c a abc a b c +≥++;(6)若*n N ∈,求证:(1)n +<n ;(7)已知||||a b ≠,求证:||||||||||||a b a b a b a b -+≤-+; (8)求证:2221111223n++++< 。

六.简单的一元高次不等式的解法:标根法:其步骤是:(1)分解成若干个一次因式的积,并使每一个因式中最高次项的系数为正;(2)将每一个一次因式的根标在数轴上,从最大根的右上方依次通过每一点画曲线;并注意奇穿过偶弹回;(3)根据曲线显现()f x 的符号变化规律,写出不等式的解集。

如 (1)解不等式2(1)(2)0x x -+≥。

(答:{|1x x ≥或2}x =-);(2)不等式(0x -≥的解集是____(答:{|3x x ≥或1}x =-); (3)设函数()f x 、()g x 的定义域都是R ,且()0f x ≥的解集为{|12}x x ≤<,()0g x ≥的解集为∅,则不等式()()0f x g x > 的解集为______(答:(,1)[2,)-∞+∞ ); (4)要使满足关于x 的不等式0922<+-a x x (解集非空)的每一个x 的值至少满足不等式08603422<+-<+-x x x x 和中的一个,则实数a 的取值范围是______.(答:81[7,)8)七.分式不等式的解法:分式不等式的一般解题思路是先移项使右边为0,再通分并将分子分母分解因式,并使每一个因式中最高次项的系数为正,最后用标根法求解。

解分式不等式时,一般不能去分母,但分母恒为正或恒为负时可去分母。

如(1)解不等式25123xx x -<--- (答:(1,1)(2,3)- );(2)关于x 的不等式0>-b ax 的解集为),1(+∞,则关于x 的不等式02>-+x bax 的解集为____________ (答:),2()1,(+∞--∞ ).八.绝对值不等式的解法:1.分段讨论法(最后结果应取各段的并集):如解不等式|21|2|432|+-≥-x x (答:x R ∈);(2)利用绝对值的定义;(3)数形结合;如解不等式|||1|3x x +->(答:(,1)(2,)-∞-+∞ )(4)两边平方:如若不等式|32||2|x x a +≥+对x R ∈恒成立,则实数a 的取值范围为______。

(答:4{}3)九.含参不等式的解法:求解的通法是“定义域为前提,函数增减性为基础,分类讨论是关键.”注意解完之后要写上:“综上,原不等式的解集是…”。

注意:按参数讨论,最后应按参数取值分别说明其解集;但若按未知数讨论,最后应求并集. 如(1)若2log 13a <,则a 的取值范围是__________(答:1a >或203a <<);(2)解不等式2()1ax x a R ax >∈- (答:0a =时,{|x 0}x <;0a >时,1{|x x a >或0}x <;0a <时,1{|0}x x a<<或0}x <)提醒:(1)解不等式是求不等式的解集,最后务必有集合的形式表示;(2)不等式解集的端点值往往是不等式对应方程的根或不等式有意义范围的端点值。

如关于x 的不等式0>-b ax 的解集为)1,(-∞,则不等式02>+-bax x 的解集为__________(答:(-1,2))十一.含绝对值不等式的性质:a b 、同号或有0⇔||||||a b a b +=+≥||||||||a b a b -=-; a b 、异号或有0⇔||||||a b a b -=+≥||||||||a b a b -=+. 如设2()13f x x x =-+,实数a 满足||1x a -<,求证:|()()|2(||1)f x f a a -<+ 十二.不等式的恒成立,能成立,恰成立等问题:不等式恒成立问题的常规处理方式?(常应用函数方程思想和“分离变量法”转化为最值问题,也可抓住所给不等式的结构特征,利用数形结合法) 1).恒成立问题若不等式()A x f >在区间D 上恒成立,则等价于在区间D 上()min f x A >若不等式()B x f <在区间D 上恒成立,则等价于在区间D 上()max f x B < 如(1)设实数,x y 满足22(1)1x y +-=,当0x y c ++≥时,c 的取值范围是______(答:)1,+∞);(2)不等式a x x >-+-34对一切实数x 恒成立,求实数a 的取值范围_____(答:1a <);(3)若不等式)1(122->-x m x 对满足2≤m 的所有m 都成立,则x 的取值范围_____(答:(712-,312+)); (4)若不等式na n n1)1(2)1(+-+<-对于任意正整数n 恒成立,则实数a 的取值范围是_____(答:3[2,)2-);(5)若不等式22210x mx m -++>对01x ≤≤的所有实数x 都成立,求m 的取值范围.(答:12m >-)2). 能成立问题若在区间D 上存在实数x 使不等式()A x f >成立,则等价于在区间D 上()max f x A >;若在区间D 上存在实数x 使不等式()B x f <成立,则等价于在区间D 上的()min f x B <.如已知不等式a x x <-+-34在实数集R 上的解集不是空集,求实数a 的取值范围____(答:1a >)3). 恰成立问题若不等式()A x f >在区间D 上恰成立, 则等价于不等式()A x f >的解集为D ;若不等式()B x f <在区间D 上恰成立, 则等价于不等式()B x f <的解集为D .。

相关文档
最新文档