c++求解非线性方程组的牛顿顿迭代法(可编辑修改版).

合集下载

c语言计算机编程三种方法求解非线性方程

c语言计算机编程三种方法求解非线性方程

本科专业学年论文题目:非线性方程求解比较姓名:何娟专业:计算机科学技术系班级:08级本科(2)班指导老师:刘晓娜完成日期:2010年11 月21 日题 目:非线性方程求解比较摘 要本文给出了三种求解非线性方程的方法,分别是二分法,牛顿迭代法,割弦法。

二分法巧妙地利用插值得到的点以及有根区间中点这两点处的函数值,缩小隔根区间,以期望得到更快的收敛速度。

牛顿迭代法是非线性方程根的一种常见的数值方法,对于非线性方程的单重零点来说,牛顿迭代法一般具有局部二阶收敛性,但是当所求的根X*是F(X)的M 重根时,M 是大于等于2的整数,此时牛顿迭代法只有一阶收敛性。

弦截法是将牛顿迭代公式中用差商F(k x )-F(1-k x )/ (k x - 1-k x )代替导数'()k F x 。

本文给出了算法改进的具体步骤及算法流程图相关的数值结果也说明了方法的有效性。

关 键 词 : 二分法;牛顿迭代法;割弦法;非线性方程目录第一章绪论- 3 -第二章求解非线性方程的三种常见算法……………………………- 4-2.1 二分法………………………………………………………-4 -2.2 牛顿迭代法……………………………………………………- 5 -2.3 割弦法- 6 -第三章求解非线性方程的三种算法比较- 8 -3.1 二分法求解方法- 8 -3.2 牛顿迭代法求解- 10 -3.3 割弦法求解- 11 -参考文献- 14 -第一章绪论在科技飞速发展的今天,计算机已经成为我们生活中不可缺少的一部分了,在我们生活与生产中扮演越来越重要的角色,而科学计算已经成为科学计算的重要方法之一,其应用范围已渗透到所有科学领域,作为科学与工程计算的数学工具,计算方法已成为高等院校数学与应用数学,信息与计算科学,应用物理学等必修课。

在永恒变化发展的自然界与人类社会中,在研究其内部规律的各个科学领域中,更深刻、更精确地描述其内部规律的数学工具之一,就是非线性方程。

牛顿迭代法解非线性方程(组)

牛顿迭代法解非线性方程(组)

牛顿迭代法解非线性方程(组)在辨识工作中,常常需要对辨识准则或者判据进行求极值,这往往涉及到求非线性方程(组)的解问题。

牛顿迭代法是一种常用方法。

下面把自己对牛顿迭代法的学习和理解做个总结。

1.一元非线性方程的牛顿迭代公式和原理以一元非线性方程 f(x)=0 为例,对函数 f(x)进行Taylor级数展开(只展开至线性项)得f(x) = f(x0)+f'(x0)(x-x0)所以方程可写成f(x0)+f'(x0)(x-x0) = 0其中x0是给定的已知值,则不难推导出方程的解(当然,只是近似解,毕竟Taylor展开过程中只取了线性项)x = x0 - f(x0) / f'(x0)其中x不是真实解,但是相比之前的x0更靠近真实解了,因此可以多重复几次上述过程,从而使得到的解非常接近准确值。

所以,对于一元非线性方程,牛顿拉夫逊迭代公式为:x(k+1) = x(k) - f(x(k)) / f'(x(k))根据Taylor级数的几何意义我们可以从几何上形象的看牛顿迭代法的求解f(x)=0的过程。

第一次迭代x1 = x0 - f(x0) / f'(x0),其中f(x0) / f'(x0)的几何意义很明显,就是x0到x1的线段长度(这可以从直角三角形的知识得到)。

第二次迭代x2 = x1 - f(x1) / f'(x1),其中f(x1) / f'(x1)的几何意义很明显,就是x1到x2的线段长度。

同理可以进行第三次迭代第四次迭代,可以明显的看出x的取值在不断逼近真实解x*。

可能有人问,迭代求得的结果会不会不收敛,也就是x会不会偏离x*。

由于x0是在x*附近区域取值的,因此x0到x1这段曲线应该认为是平滑的没有转折的,因此切线与x轴的交点只会越来越接近真实解x*。

但是如果x0的取值离x*比较远的话,那么x0到x1这段曲线上可能有“转折”,这样就可能引起迭代的不收敛。

非线性方程求根—牛顿迭代法(新)

非线性方程求根—牛顿迭代法(新)

非线性方程求根——牛顿迭代法一、牛顿迭代法的基本思想基本思想:将非线性方程逐步归结为某种线性方程求解。

设方程f (x )=0有近似根x k (f `(x k )≠0),将f (x )在x k 展开:(ξ在x 和x k 之间)2()()()()()()2!k k k k f f x f x f x x x x x ξ'''=+-+-()()()()k k k f x f x f x x x '≈+-可设记该线性方程的根为x k +1,则()()()0k k k f x f x x x '+-=1()()k k k k f x x x f x +=-'故f (x )=0可近似表示为即为Newton 法迭代格式。

(k =0,1,……)例:用Newton 迭代法求方程310x x --=在x 0=1.5附近的近似实根。

解:32()1,()31f x x x f x x '=--=-迭代公式为312131kk k k k x x x x x +--=--计算步骤如下:(1)取初值x 0=1.5;(2)按照迭代公式计算x 1;(3)若|x 1-x 0|<=0.00001,终止迭代;否则,x 0=x 1;转(2);(4)输出迭代次数和近似根.二、牛顿迭代法的实现MATLAB求解程序设计:方程及一阶导数函数:function[fun,dfun]=fun0(x)fun=x^3-x-1;%求原函数的值dfun=3*x^2-1;%求一阶导数的值计算主程序:clearx0=1.5;[fun,dfun]=fun0(x0);x1=x0-fun/dfun;i=1;while abs(x1-x0)>1e-5x0=x1;[fun,dfun]=fun0(x0);x1=x0-fun/dfun;i=i+1;enddisp('the solution is x1=')x1disp('the iter time is ')i计算结果为:the solution is x1=x1 =1.3247the iter time isi =4可见经过4次迭代即到达要求的精度,原方程的一个近似实数根为1.3247.三、牛顿迭代法的收敛性牛顿迭代法的迭代函数:)()()(x f x f x x '-=ϕ222)]([)()()]([)()()]([1)(x f x f x f x f x f x f x f x '''='''-'-='ϕ设f (x *)=0,f `(x *)≠0,则ϕ`(x *)=0,故Newton 迭代法在x *附近至少平方收敛。

c++ 牛顿迭代法解方程组

c++ 牛顿迭代法解方程组

c++ 牛顿迭代法解方程组牛顿迭代法(Newton's Method)是一种用于解方程的迭代算法,可以用于解非线性方程组。

下面是使用 C++ 实现牛顿迭代法解方程组的示例:#include <iostream>#include <cmath>// 定义方程组中的函数double f1(double x, double y) {return x * x + y * y - 1;}double f2(double x, double y) {return x - y * y;}// 定义方程组中的偏导数double df1_dx(double x, double y) {return 2 * x;}double df1_dy(double x, double y) {return 2 * y;}double df2_dx(double x, double y) {return 1;}double df2_dy(double x, double y) {return -2 * y;}// 牛顿迭代法解方程组void newtonIteration(double x0, double y0, int maxIterations) { double epsilon = 1e-6; // 迭代精度double x = x0;double y = y0;for (int i = 0; i < maxIterations; i++) {double det = df1_dx(x, y) * df2_dy(x, y) - df1_dy(x, y) * df2_dx(x, y);double dx = (-f1(x, y) * df2_dy(x, y) + f2(x, y) * df1_dy(x, y)) / det;double dy = (f1(x, y) * df2_dx(x, y) - f2(x, y) * df1_dx(x, y)) / det;x += dx;y += dy;if (std::abs(dx) < epsilon && std::abs(dy) < epsilon) { std::cout << "Converged to solution: x = " << x << ", y = " << y << std::endl;return;}}std::cout << "Iteration did not converge to a solution" << std::endl;}int main() {double initialX = 0.5;double initialY = 0.5;int maxIterations = 100;newtonIteration(initialX, initialY, maxIterations);return 0;}在上述示例中,我们定义了一个方程组,包含两个方程 f1(x, y) = x^2 + y^2 - 1和f2(x, y) = x - y^2。

非线性方程的牛顿法

非线性方程的牛顿法

求函数 f x x 10 x 精度要求: 106
3

例题2
2
19.68x 10.944 的正实根
用Matlab画图,查看根的分布情形
从图形中我们可 以看出: 在x=7和x=8 之 间有一单根; 在x=1和x=2 之 间有一重根。
初值x0=8.0 时,计算的是单根, The iterative number is 28,The numerical solution is 7.600001481 初值x0=1.0 ,计算的是重根, The iterative number is 1356,The numerical solution is 1.198631981
重复上述过程
xk 1
f ( xk ) xk f ( xk )
牛顿法的几何意义
Tangent line : y f ( x0 ) f ( x0 )( x x0 )
y
f ( x0 ) x1 x0 f ( x0 )
x*
x2
x
x1 x0
牛顿法也称为切线法
f ( x1 ) x2 x1 f ( x1 )
例3:设C为正实数,导出用牛顿法求 C 的公式,并证明 2 en 迭代序列的误差 en xn C 满足 en 1 2 xn 2 x C 解:设 x C ,则 于是有
f ( x) x 2 C, f ' ( x) 2x, f ' ' ( x) 2
由于 f (0) C, f ( C 1) 2 C 1 0 ], 所以在 [0,1 C ] 内有一正根.又在 [0,1 C 内 f ' ( x) 0, f ' ' ( x) 0根据定理得牛顿迭代格式为:

非线性方程组的牛顿迭代法-最速下降法

非线性方程组的牛顿迭代法-最速下降法

数学软件实验任务书实验一 非线性方程组的牛顿迭代法 1 实验原理对于非线性方程11221212(,,,)(,,,)(,,,)n n n n f x x x f x x x f f x x x ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭ 在x (k )处按照多元函数的泰勒展开,并取线性项得到 ()()()()(1)()1111()()()()(1)()()122()()()()(1)()1(,,,)(,,,)()0(,,,)k k k k k k n n k k k k k k k n n n k k k k k k n n n nn f x x x x x f x x x x x f x f x x x x x +++⎛⎫⎛⎫- ⎪ ⎪- ⎪ ⎪'+= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭ 其中1111()n n n n f f x x f x f f x x ∂∂⎛⎫ ⎪∂∂ ⎪' ⎪= ⎪∂∂ ⎪ ⎪∂∂⎝⎭(1)()()()()()1111(1)()()()()()()1221(1)()()()()()1(,,,)(,,,)[()](,,,)k k k k k k n n k k k k k k k n n n k k k k k k n n n n n x x f x x x x x f x x x f x x x f x x x ++-+⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪'=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 2 数据来源计算非线性方程组22220.50440x x y x y ⎧--+=⎨+-=⎩ 初值取11x y ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦3 实验步骤步骤一:编写牛顿迭代法的基本程序。

打开Editor 编辑器,输入以下语句:function [x,n,data]=new_ton(x0,tol)if nargin==1tol=1e-10;endx1=x0-f1(x0)/df1(x0);MATLAB 241 数值分析与应用n=1;%迭代过程while (norm(x1-x0)>tol)x0=x1;x1=x0-f1(x0)/df1(x0);n=n+1;%data 用来存放中间数据data(:,n)=x1;endx=x1;以文件名new_ton.m保存。

C语言编程 牛顿迭代法求方程1

C语言编程 牛顿迭代法求方程1

牛顿迭代公式设r 是f(x) = 0的根,选取x0作为r 初始近似值,过点(x0,f(x0))的切线L ,L 的方程为y = f(x0)+f'(x0)(x-x0),求出L 与x 轴交点的横坐标 x1 = x0-f(x0)/f'(x0),称x1为r 的一次近似值。

过点(x1,f(x1))做曲线y = f(x)的切线,并求该切线与x 轴交点的横坐标 x2 = x1-f(x1)/f'(x1),称x2为r 的二次近似值。

重复以上过程,得r 的近似值序列,其中x(n+1)=x(n)-f(x(n))/f'(x(n)),称为r 的n+1次近似值,上式称为牛顿迭代公式。

解非线性方程f(x)=0似方法。

把f(x)在x0 f(x) = f(x0)+(x -x0)f'(x0)+(x -x0)^2*f''(x0)/2! +… 取其线性部分,作为非线性方程f(x) = 0的近似方程,即泰勒展开的前两项,则有f(x0)+f'(x0)(x -x0)-f(x)=0 设f'(x0)≠0则其解为x1=x0-f(x0)/f'(x0) 这样,得到牛顿法的一个迭代序列:x(n+1)=x(n)-f(x(n))/f'(x(n))。

牛顿迭代法又称牛顿切线法,它采用以下方法求根:先任意设定一个与真实的根接近的值x 0作为第一个近似根,由x 0求出f(x 0),过(x 0,f(x 0))点做f(x)的切线,交x 轴于x 1,把它作为第二次近似根,再由x 1求出f(x 1),再过(x 1,f(x 1))点做f(x)的切线,交x 轴于x 2,再求出f(x 2),再作切线……如此继续下去,直到足够接近真正的x *为止。

)()()()(0'0010100'x f x f x x x x x f x f -=-=因此, 就是牛顿迭代公式。

例1 用牛顿迭代法求方程2x 3-4x 2+3x-6=0在1.5附近的根。

求解非线性方程的三种新的迭代法

求解非线性方程的三种新的迭代法

求解非线性方程的三种新的迭代法【摘要】本文介绍了三种新的迭代法用于求解非线性方程,分别是Newton法,拟牛顿法和Levenberg-Marquardt算法。

在首先介绍了非线性方程及其求解的重要性,然后简要介绍了传统的迭代法。

在详细讨论了这三种新的迭代法的原理和应用情况。

在总结了三种新的迭代法的特点和适用范围,并展望了非线性方程求解方法的未来发展方向。

这些新的迭代法为解决复杂的非线性方程提供了新的思路和方法,有望在实际应用中取得更好的效果。

【关键词】非线性方程、求解方法、迭代法、Newton法、拟牛顿法、Levenberg-Marquardt算法、特点、适用范围、未来发展1. 引言1.1 介绍非线性方程及其求解的重要性非线性方程在数学和工程领域中无处不在,其求解具有广泛的应用价值和意义。

非线性方程是指未知数与未知数的各项之间存在着非线性关系的方程,与线性方程相比,非线性方程的求解更加困难。

非线性方程可以描述许多复杂的现实问题,如物理学中的非线性波动方程、工程学中的非线性力学问题等,因此求解非线性方程是科学研究和工程设计中的一个重要任务。

传统的迭代法是求解非线性方程的常用方法之一,其基本思想是通过不断迭代更新初始猜测值,直至满足一定的收敛条件为止。

传统的迭代法在求解复杂的非线性方程时存在收敛速度慢、计算量大等问题,因此需要更加高效和精确的迭代法来解决这些困难。

本文将介绍三种新的迭代法:Newton法、拟牛顿法和Levenberg-Marquardt算法,这些方法在求解非线性方程中具有独特的优势和应用价值。

通过对这些新的迭代法的研究和应用,可以提高非线性方程的求解效率和精度,推动非线性方程求解方法的发展和应用。

1.2 简要介绍传统的迭代法传统的迭代法是解决非线性方程的常见方法之一,它通过不断迭代逼近函数的根,直至满足一定的精度要求。

最常见的传统迭代法包括二分法、试位法和弦截法等。

二分法是一种简单但有效的方法,通过不断缩小根所在的区间来逼近根的位置;试位法则是通过选择一个适当的初始点,然后通过不断调整该点的位置来逼近根;弦截法则是通过连接两个不同点所在的直线,找到直线与横轴的交点,进而更新两个点的位置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

for (i=0;i<N;i++) x0[i]=x1[i];
} while (iter<Max);
return 0; }
void ff(float xx[N],float yy[N]) {float x,y; int i;
//调用函数
x=xx[0]; y=xx[1]; yy[0]=x*x-2*x-y+0.5; yy[1]=x*x+4*y*y-4;
newdundiedai(x0, invjacobian,y0,x1); errornorm=0; for (i=0;i<N;i++) errornorm=errornorm+fabs(x1[i]-x0[i]); if (errornorm<Epsilon) break;
//计算差向量的 1 范数 errornorm
计算近似解向量 x1
float x0[N]={2.0,0.25},y0[N],jacobian[N][N],invjacobian[N][N],x1[N],errornorm; int i,j,iter=0;
for( i=0;i<N;i++) cin>>x0[i];
//如果取消对 x0 的初始化,撤销下面两行的注释 符, 就可以由键盘向 x0 读入初始近似解向量
void inv_jacobian(float yy[N][N],float inv[N][N]); //计算雅克比矩阵的逆矩阵 inv
void newdundiedai(float x0[N], float inv[N][N],float y0[N],float x1[N]); //由近似解向量 x0
//计算雅克比矩阵 jacobian
The shortest way to do many things is
ffjacobian(x0,jacobian);
//计算雅克比矩阵的逆矩阵 invjacobian
inv_jacobian(jacobian,invjacobian);
//由近似解向量 x0 计算近似解向量 x1
cout<<"雅克比矩阵的逆矩阵: "<<endl; for (i=0;i<N;i++)
{ for(j=0;j<N;j++) cout<<inv[i][j]<<" ";
cout<<endl; } cout<<endl;
}
void newdundiedai(float x0[N], float inv[N][N],float y0[N],float x1[N]) {
The顿迭代法 c++程序设计
求解
0=x*x-2*x-y+0.5;
0=x*x+4*y*y-4;的方程
#include<iostream>
#include<cmath>
#define N 2
// 非线性方程组中方程个数、未知量个数
#define Epsilon 0.0001
cout<<endl;
for (i=0;i<N;i++) { for (k=i+1;k<N;k++) {L=-aug[k][i]/aug[i][i]; for(j=i;j<N2;j++) aug[k][j]=aug[k][j]+L*aug[i][j]; } }
The shortest way to do many things is
int i,j; float sum=0;
for(i=0;i<N;i++) { sum=0;
for(j=0;j<N;j++) sum=sum+inv[i][j]*y0[j]; x1[i]=x0[i]-sum;
}
cout<<"近似解向量:"<<endl; for (i=0;i<N;i++) cout<<x1[i]<<" "; cout<<endl;cout<<endl;
for (i=0;i<N;i++) { for(j=0;j<N2;j++) cout<<aug[i][j]<<" "; cout<<endl; }
cout<<endl;
for (i=N-1;i>=0;i--) for(j=N2-1;j>=0;j--) aug[i][j]=aug[i][j]/aug[i][i];
for (i=0;i<N;i++) { for(j=0;j<N2;j++) cout<<aug[i][j]<<" "; cout<<endl; for(j=N;j<N2;j++) inv[i][j-N]=aug[i][j]; }
cout<<endl;
The shortest way to do many things is
// 差向量 1 范数的上限
#define Max 100
//最大迭代次数
using namespace std;
const int N2=2*N;
int main()
{
void ff(float xx[N],float yy[N]);
//计算向量函数的因变量向量 yy[N]
void ffjacobian(float xx[N],float yy[N][N]);/ /计算雅克比矩阵 yy[N][N]
for (i=0;i<N;i++) { for(j=0;j<N2;j++) cout<<aug[i][j]<<" "; cout<<endl; }
cout<<endl;
for (i=N-1;i>0;i--) { for (k=i-1;k>=0;k--) {L=-aug[k][i]/aug[i][i]; for(j=N2-1;j>=0;j--) aug[k][j]=aug[k][j]+L*aug[i][j]; } }
x=xx[0]; y=xx[1]; //jacobian have n*n element yy[0][0]=2*x-2;
//计算函数雅克比的值
The shortest way to do many things is
yy[0][1]=-1; yy[1][0]=2*x; yy[1][1]=8*y;
cout<<"开始计算雅克比矩阵的逆矩阵 :"<<endl; for (i=0;i<N;i++)
{ for(j=0;j<N;j++) aug[i][j]=yy[i][j];
for(j=N;j<N2;j++) if(j==i+N) aug[i][j]=1; else aug[i][j]=0; }
for (i=0;i<N;i++) { for(j=0;j<N2;j++) cout<<aug[i][j]<<" "; cout<<endl; }
cout<<"雅克比矩阵是: "<<endl; for( i=0;i<N;i++) {for(j=0;j<N;j++)
cout<<yy[i][j]<<" "; cout<<endl; } cout<<endl; }
void inv_jacobian(float yy[N][N],float inv[N][N]) {float aug[N][N2],L; int i,j,k;
cout<<"初始近似解向量:"<<endl; for (i=0;i<N;i++)
cout<<x0[i]<<" "; cout<<endl;cout<<endl;
do {
iter=iter+1; cout<<"第 "<<iter<<" 次迭代开始"<<endl;
//计算向量函数的因变量向量 y0
ff(x0,y0);
}
//计算初值位置的值
cout<<"向量函数的因变量向量是: "<<endl; for( i=0;i<N;i++)
cout<<yy[i]<<" "; cout<<endl; cout<<endl;
}
void ffjacobian(float xx[N],float yy[N][N]) {
float x,y; int i,j;
相关文档
最新文档