船舶强度

合集下载

船舶强度

船舶强度

' MS M' 船舶在实际装载状态下静水弯矩 S ,根据下列近似公式计算:
2)船舶在实际装载状态下静水弯矩
(5-4) 式中:△o——空船重量,t; m ——空船重量的相当力臂,m:中机船 m = 0.2277 Lbp; 中后机船 m = 0.2353 Lbp; 尾机船 m = 0.2478 Lbp; Pi ——载荷(包括货物、压载、燃油、淡水、粮食等)的重量,t; Xi ——载荷重心距船中距离的绝对值,m; △——船舶在计算状态时的排水量,t; C——船体浮力的相当力臂系数,可根据船舶在计算状态的方形系数Cb 从规范中查 得。如表 5-3;Lbp 为船舶垂线间长,m。 公式(5-4)中,9.81(△0· m + ΣPiXi)为船舶的重量力矩;9.81△·C·Lbp 为船 体的浮力矩,该数值可在船舶资料中查取,如表 5-4。 表 5-3 C 值表
图 5-3 船舶的最大剪力与最大弯矩
由于弯矩作用使船舶产生两种变形: 1.中拱(Hogging) :船体受正弯矩作用,中部上拱,这时船中部浮力大于重力,首、尾
部浮力小于重力,船舶上甲板受拉伸,船底受挤压。如图 5-4a 2.中垂(Sagging) :船体受负弯矩作用,中部下垂,这时船中部重力大于浮力,首、尾 部重力小于浮力,船舶上甲板受挤压,船底受拉伸。如图 5-4b
第一节
船舶强度基本概念
船舶结构抵抗船体发生极限变形和损坏的能力称为船舶强度(Strength of ships) 。船舶 强度分为总强度(包括纵向强度,横向强度,扭转强度)和局部强度。从船舶积载角度来说, 主要考虑船舶的纵向强度和局部强度问题。 船舶强度是否满足要求, 取决于船体结构尺度的 正确选择和船上载荷分布的合理性。 对于已投入营运的船舶, 只能通过合理的载荷分布来改 善船舶的受力情况。因此,正确地使用船舶,合理地分布载荷,保证船舶积载满足船舶的强 度要求,对保证船舶安全运输和延长船舶的使用寿命都具有重要的现实意义。 一、纵向强度 船体结构抵抗总纵弯曲或破坏的能力称为船体纵向强度(Longitudinal strength) ,纵向 强度主要研究船体在外力作用下抵抗纵向弯曲、剪切和扭转的能力。当船舶正浮时,船舶总 的重力与总浮力大小相等,方向相反,作用在同一条垂直线上,即重力与浮力相平衡。如图 5-1 所示。

中国船级社 船舶强度直接计算指南

中国船级社 船舶强度直接计算指南

中国船级社船舶强度直接计算指南下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!中国船级社船舶强度直接计算指南第一节强度计算原理1. 船舶强度概述船舶强度是指船舶在航行和运输过程中所承受的外力作用下不发生破坏或形变的能力。

船舶强度核算—局部强度的校核

船舶强度核算—局部强度的校核

“ Q”轮许用均布载荷和集中载荷一览表
某轮车辆许用甲板载荷
堆积负荷
船舶局部强度
三、用经验方法确定的允许负荷 1.上甲板: 允许负荷:
(kPa)
Hc—甲板设计堆高,重结构取1.5m,
轻结构取1.2m。
μ — 设计舱容系数。
三、用经验方法确定的允许负荷
2.中间甲板和底舱:
允许负荷:
实际值的计算
1)集中载荷 P ' 9.81W n
2)均布载荷
Pd
'
9.81 A
Pi
已知重量和底面积
已知高度和积载因数
Pd
'
9.81
hi SFi
四、船舶局部强度条件的校核
2.集装箱船局部强度条件的校核步骤:
1)计算实际值:Pc=∑Pi 2)查取允许值:Ps 3 ) 比较:Pc≤ Ps
四、保证满足船舶局部强度的措施
任务二: 局部强度校核
船舶局部强度
一、船舶局部强度概述 局部强度(local strength): 船体结构具有抵抗在局部外力作用下产生的局部极度变形或损坏的
能力。 重点考虑的船体局部位置:甲板、平台、舱底、舷侧、舱口、首尾
等。 船舶必须满足局部强度条件。
船舶局部强度
二、局部强度的表示方法 许用符荷的表示方法: 船体局部的允许负荷量可在船舶有关资料中查取。 1.均布载荷:kPa 2.集中载荷:kN 3.车辆甲板负荷:车轮 4.堆积负荷:集装箱
1)考虑船龄
2)货物均匀分布
3)加横跨骨材的衬垫
4)舱盖上不装重货
5)散货平舱
6)控制落底速度
7)注意局部强度的校核
(kPa)
H d — 舱高。 无设计值时,取rc=0.72 t/m3, 重结构取rc=1.2 t/m3。 rc =1/μ

第三章 船舶强度.

第三章 船舶强度.

第一节船舶强度概述船舶是一种由板材和骨架构成的浮动建筑物。

船体在重力、浮力、船体摇荡运动中的惯性力、风浪力等外力作用下,将不可避免地发生变形。

为保证船舶安全,船体结构必须具有抵抗发生过大变形和破坏的能力,这种能力称为船舶强度。

按照外力分布和船体结构变形范围的不同,船舶强度可分为总强度和局部强度,而总强度又按外力分布及相应船体变形的不同方向,分为纵向强度和横向强度。

对于营运船舶,主要应考虑船舶的总纵强度和局部强度。

营运中的船舶,为保证船舶安全运输及合理使用,应确保船舶具有足够的强度,这就要求船舶使用者通过合理配置载荷重量、优化载荷装卸顺序、限制载荷就位速度、减小航行中波浪冲击等措施来改善船体受力状态以确保船舶处于良好的营运状态。

第二节船舶总纵强度船舶产生纵向变形的原因: 1.船舶总纵强度概念船舶总纵强度是指船体整个结构抵御纵向变形或破坏的能力。

将船体视为一根空心变断面且两端自由支持的梁,船舶总纵强度研究的是船体在外力作用下整个船体梁所具有的抵御纵向弯曲、剪切和扭转的能力。

2.船舶纵向变形的原因作用于船体上的外力包括重力、浮力、摇荡时的惯性力、螺旋桨的推力、水对船体的阻力、波浪的冲击力等。

由于惯性力、推力、水阻力和波浪的冲击力对船舶总纵强度影响很小,故可忽略不计,而只考虑分布于船体上的重力和浮力。

从整体上讲,船舶重力和浮力大小相等、方向相反并作用于同一垂线上,但这两个力沿船长方向各区段内其大小并不都是相等的,即重力和浮力沿纵向分布规律不一致,由此导致船舶纵向发生变形。

重力、浮力、载荷沿船舶纵向分布:1.重力包括船体、机器设备、燃料、淡水、各种备品、压载水、所载货物等项重力。

由于船体结构和各类载重分布的不连续性,重力纵向分布呈跳跃状。

2.浮力是指船在平静水中或静置于波浪中,舷外水对船体压力的合力。

浮力纵向分布也是不均匀的,它取决于船体水线下的体积和形状。

3.载荷及载荷曲线沿纵向上船体各区段所受重力和浮力的差值就是该区段船体上所受垂向合外力,称为载荷。

船舶工程中的强度与稳性问题研究

船舶工程中的强度与稳性问题研究

船舶工程中的强度与稳性问题研究船舶工程是一门应用力学和海洋学知识,从设计、制造、检验到使用和维护各方面对船舶及其辅助设备进行全面掌握和研究的学科,与实际生活息息相关。

在船舶工程任务中,船舶的强度和稳性问题尤为重要。

强度问题船体强度是船舶产生载荷时所承受荷载、外界环境力量及其它影响的能力。

船舶设计中最基本原则之一是船舶中的最弱环节应具有所需的承载能力。

因此,船体构件的满足最小强度条件是设计过程中的主要问题之一,也是船舶技术领域中的研究热点。

根据不同造船材料的特性,其强度的评定方法也不尽相同。

对于钢材船舶,其强度评定与制造技术和钢材性质有关,一般采用两种最典型方法来评估船体强度:计算机模拟分析和试验验证。

计算机模拟分析是近年来快速发展的现代船舶设计和研发方法之一,其中包含广泛的机械学习、人工智能、计算流体力学等综合应用分析技术,已经成为船舶设计过程中不可或缺的工具。

针对船舶结构构件的强度试验活动同样是船舶研发过程中不可或缺的部分。

一方面,通过模拟海洋环境下的不同负载情况来检验和验证船舶的强度,也是验证计算机模拟结果的重要环节。

另一方面,通过强度试验,针对某些复杂情况下的结构构件,对于修正计算模型、确定实际荷载值、证明实际结构强度等方面有着不可替代的作用。

船舶重载既是船舶强度评估的一个主要问题,也是船舶安全评估中的一个热点研究问题。

船舶重载常常存在着误差,尤其是当人员、货物和设备的重心位置变化时,误差更容易发生。

此时,应对船舶初始装载状态进行实时监测,及时发现变化,进而对潜在的安全问题进行预防和修复。

稳性问题稳性问题的本质是船舶在复杂海况下的受力状态,特点是不断变化和不断出现新的影响因素。

稳性力学在船舶工程中被广泛应用,其目的是研究船舶平衡状态和支持力量之间的关系,确保船舶能够稳定运行。

稳性问题既牵涉到船舶的设计、建造和维护,也与运营过程中的船舶操纵有关。

在船舶设计时,稳性问题已经开始被考虑。

而在建造过程中,计算出船舶的稳性特性,则是后续验证其稳定性的基础。

中国船级社 船舶强度直接计算指南

中国船级社 船舶强度直接计算指南

中国船级社船舶强度直接计算指南1.船舶强度计算是船级社评定船舶结构强度的重要依据。

The calculation of ship strength is an important basisfor the classification society to evaluate the structural strength of ships.2.船舶结构强度直接计算是基于船舶的结构特征和材料性能进行的计算。

Direct calculation of ship structural strength is based on the structural characteristics of the ship and the performance of materials.3.直接计算方法可以准确地评估船舶的强度和稳定性。

The direct calculation method can accurately evaluate the strength and stability of the ship.4.船舶强度直接计算需要考虑船舶在不同载荷和海况下的应力和变形情况。

stress and deformation of the ship under different loads and sea conditions.5.船舶强度直接计算主要包括静力计算和动力计算两种方法。

Ship strength direct calculation mainly includes two methods: static calculation and dynamic calculation.6.通过静力计算可以评估船舶在静止状态下的结构强度情况。

Static calculation can be used to evaluate the structural strength of the ship in a static state.7.动力计算则是评估船舶在航行和发生船舶运动时的强度情况。

船舶强度的概念

船舶强度的概念

船舶强度的概念嘿,朋友们!今天咱来唠唠船舶强度这个事儿。

你想啊,船舶就好比是咱在大海上的移动房子,要是这房子不结实,那可不得出大乱子嘛!船舶强度,简单来说,就是船舶能承受多大的力。

这就跟咱人一样,有的人身体壮实,能抗住很多压力,而有的人就比较脆弱。

船舶也是如此啊!一艘船要是强度不够,在海上遇到点风浪,那可能就摇摇晃晃,甚至有散架的危险,这多吓人呀!咱可以把船舶强度想象成是一个大力士。

这个大力士得有足够的力气来应对各种情况。

比如说,船体结构得牢固吧,不能说随便碰一下就破个洞啥的。

还有啊,船上的各种设备、机器啥的,也得稳稳当当的,不能一颠簸就掉下来或者坏了。

你说要是在海上航行着,突然船的某个地方裂了,那可咋办?那不就跟咱家里房子漏了一样嘛,得赶紧修啊!可在海上哪有那么容易修呀,所以一开始就得把船舶强度给搞好。

咱再想想,船舶在海上要面对多大的压力呀!海水的压力、风浪的冲击、货物的重量等等。

这就好像一个人背着很重的东西,还得在狂风暴雨中走路,得多难呀!要是这人身体不强壮,那肯定走不了几步就趴下了。

船舶也是这样啊,强度不够,怎么能在大海上安全航行呢?你看那些大船,为啥造得那么结实?不就是为了保证强度嘛!它们就像是海上的勇士,不管遇到什么困难都能勇往直前。

而那些强度不行的船呢,就只能小心翼翼的,稍微有点风浪就吓得不行。

咱平时过日子还得注意身体呢,船舶也得注意强度呀!船东们得舍得花钱,把船造得结实点,船员们也得好好爱护船,别乱折腾。

只有这样,船舶才能在大海上安全地航行,把货物送到目的地,把乘客平安送回家。

总之,船舶强度可不是小事儿,这关系到船舶的安全,关系到大家的生命和财产。

咱可不能马虎,得重视起来呀!让我们一起为船舶的强度加油,让它们在大海上乘风破浪,勇往直前!。

船舶强度与设计名词解释

船舶强度与设计名词解释

船舶强度与设计名词解释
1、相当厚度:船体板厚度与所有纵骨剖面积平铺
2、骨架带板:与骨架相联在骨架受力发生变形时,一起与骨架抵抗变形并作为骨架梁的一部分参加计算骨架梁的剖面积、惯性矩、剖面模数等几何要素的有一定宽度的钢板
3、重量曲线:船舶在某一计算状态下,描述全船重量沿船长分布状况的曲线
4、浮力曲线:船舶在某一计算状态下,描述浮力沿船长分布状况的曲线。

5、总纵强度:船体梁抵抗总纵弯曲的能力
6、局部强度:船体抵抗局部变形失稳破坏的能力
7、剖面模数:W=I/1Z1。

即为剖面模数。

它是表征船体结构抵抗弯曲变形能力的一种几何特征,衡量船体总纵强度
8、纵向强力构件:纵向连续并能有效的传递总纵弯曲应力的构件
9、载荷曲线:在某一计算状态下,描述引起船体梁总纵弯曲的载荷沿船长分布状况的曲线。

10、总纵弯矩:静水弯矩和静波浪弯矩的代数和
11、剖面利用系数:实际所用的各种型材,其最小剂面模数仅为理想剂面的剖面模数的一部。

分,即w=yw0,y即为剖面利用系数。

12、剖面模数比面积:产生单位剖面模数所需的面积。

13、剖面惯性比面积:产生单位剖面惯性矩所需的面积。

14、极限弯矩:在船体剂面内离中和轴最远点的刚性构件中引起的应力达到结构材料屈服极。

— 1 —。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[σc]—材料的合成许用应力(拉力),取155MPa。 Mw—《规范》规定的波浪弯矩,特定船舶为一个特定值。 M’s—船中处的静水弯矩。
甲板剖面模数wd和舱底板剖面模数wb
弯曲应力
wd
Ix Zd
wb
Ix Zb
Zd Zb wd wb
1、船中实际静水弯矩校核和强度曲线图
Ml—空船重量对船中所取的重量弯矩,特定船舶为一个特定值。 Mb—正浮时的浮力对船中所取的弯矩,为平均吃水的函数。 Σ|PiXi|—载荷对中弯矩,总载重量的各个组成部分对船中所取的力
矩。(9.81KN.m)
1、船中实际静水弯矩校核和强度曲线图
营运中的船舶: 甲板剖面模数每年扣除腐蚀量:0.4%--0.6% 5年以下取下限 10年以上取上限
2、强度曲线的使用
强度曲线图 如图5-5 纵坐标∑︱PiXi︱为总载重量 的各个组成部分对船中所取 的力矩的绝对值之和。 横坐标为平均型吃水。
二、船体总纵强度校核
1、船中实际静水弯矩校核和强度曲线图 (1)依据
我国《钢质海船入级与建造规范》(1989年以前版本)要求船 中处的甲板剖面模数不小于根据静水弯矩和波浪附加弯矩计算 的临界值。
Wd—船中处的甲板剖面模数,特定船舶为一个确定值。(船体 横剖面水平中和轴的面积惯性矩除以剖面内计算点到该中和轴 的距离所得的值)
1、船体受力及其分布
2.横剖面上的切力和弯矩
切力和弯矩分布曲线:如图5 -2
2.横剖面上的切力和弯矩
剪力:Shear force 在数值上,纵向各横剖面上的剪力等于该剖面首向或尾 向一侧所受重力和浮力的差值。 当剖面船尾一侧的船体所受的重力大于浮力时,剖面上 的切力为正;反之为负。 经验表明,剪力绝对值的最大值一般出现在距船舶首尾 1/4船长处。船舶首尾端和船中附近,剪力为零。
重点与难点
重点 船舶总纵强度的表示和校核方法; 船舶局部强度的表示和校核方法; 保证船舶总纵强度和局部强度的措施。
难点 船舶总纵强度的表示和校核方法; 船舶局部强度的表示和校核方法。
第五章、保证船舶强度
船体强度:Strength of ship。 船体结构在规定外力作用下具有抵抗发生极度变形和损坏的 能力。
第五章 船舶强度
教学要求
1.掌握船舶强度的概念和种类; 2.理解船舶产生纵向变形的原因、拱垂变形与弯矩的关系; 3.掌握利用纵强度曲线图、载荷弯矩许用力矩表进行船体纵强度校核
的方法以及船体纵向变形的经验校核方法; 4.了解船体布置对船体纵向受力的影响; 5.掌握改善和保证船舶纵向强度的具体做法。 6.掌握船舶局部强度的校核方法和保证船舶局部强度不受损伤的措施。 学时:4学时
3.剪切变形与弯曲变形
弯曲变形:船体受到弯矩作用使其纵向构件产生的弯曲变形。 弯曲应力:船体构件单位横剖面面积上所受到的弯矩。
3.剪切变形与弯曲变形
拱垂变形:船体发生的总纵弯曲变形。 中拱变形:Hogging 当船舶首尾部重力大于浮力而中部浮力大于重力时的船体弯曲变形。
此时甲板受拉,船底受压。 当波峰在船中时,中拱变形最大。
船体强度的分类: 总强度:纵向强度、扭转强度、横向强度 局部强度 对于营运船舶:主要考虑纵向强度和局部强度。 1. 船舶横向强度一般都满足要求,无需校核。 2. 扭转强度是针对大开口舱口船舶,如集装箱船(问:集装箱 船设置双层船壳的目的) 3. 如此总强度主要考虑纵向强度,故称总纵强度
第一节 保证船舶的总纵强度
零)。首尾端弯矩为零。
3.剪切变形与弯曲变形:
剪切变形: 船体受到切力作用使其构件产生垂向位移的变形。
a、剪切变形—微小长度的船体在切力作用下所发生的变形 b、弯曲变形—微小长度的船体在弯矩作用下所发生的变形
3.剪切变形与弯曲变形:
a、剪切变形—微小长度的船体在切力作用下所发 生的变形 b、弯曲变形—微小长度的船体在弯矩作用下所发 生的变形
一、总纵强度概述 纵向强度(Longitudinal strength of ship)
船体结构所具有的抵御因重力和浮力沿纵向分布不一致而造成 的极度变形或损坏的能力。
一、总纵强度概述
整体平衡 纵向各舱不平衡
G
G6
GR
G5
G3
B6
BR
B5
G4
BB4
B3
G1
B2
B1
7
一、总纵强度概述
1.船体受力及其分布:如图5 -1
3、船舶总纵弯曲变形的判断
根据实船吃水判断 拱垂值:δ=|dж-dm| (m)
δ的范围 δ<Lbp/1200 δ= Lbp/1200~Lbp/800 δ= Lbp/800~Lbp/600 δ>Lbp/600
2、强度曲线图的使用
步骤 (1)在dm处作垂直于横坐标的垂直线 (2)计算∑︱PiXi︱,作垂直于纵坐标的水平线 (3)上述垂直线与水平线相交于一点。据此判断船体变形的方 向和范围。点划线
虚线 实线 点划线和虚线之间:有利范围 虚线和实线之间:允许范围 实线之外:危险范围 点划线左上方:中拱范围 点划线右下方:中垂范围
3.剪切变形与弯曲变形
中垂变形:Sagging 当船舶中部重力大于浮力而首尾部浮力大于重力时的船体弯曲变形。
此时甲板受压,船底受拉。 当波谷在船中时,中垂变形最大。
3.剪切变形与弯曲变形
波浪中航行的弯矩变形:
当波长=船长 中拱船船中位于波峰,中拱加大 中垂船船中位于波谷,中垂加大
19
4、扭转强度Torsion strength
1)概念 2)产生扭转变形的原因 ·船体斜置于波浪:影响最大 ·船舶横摇 ·装卸货物 集装箱船和固体散货船:舱口宽大、无中间甲板,扭转强度应予以
强固(双层船壳)
5.改善船体ቤተ መጻሕፍቲ ባይዱ度的策略
1)船舶设计建造方面:合理选择结构材料、尺寸和布局。 2)货物积载方面:保证货物及其它载重沿纵向分布的合理性。
2.横剖面上的切力和弯矩
弯矩:Bending moment。 重力对剖面所取的力矩大于浮力对剖面所取的力矩,M(x)为
(+);反之M(x)为(-)。 当首尾部重力大于浮力而中部浮力大于重力时,所出现的弯曲变形
称为中拱。此时对应的弯矩曲线为正。反之为负。 弯矩绝对值的最大值一般出现在船中处。(此时对应点的剪力为
相关文档
最新文档