船体扭转强度

合集下载

《船体结构与强度》课件

《船体结构与强度》课件
《船体结构与强度》PPT课件
# 船体结构与强度 ## 简介 - 船体结构的作用 - 船体强度的重要性 - 船体结构与强度之间的关系 ## 船体结构 ### 船体主要部件 - 船体骨架 - 船板 - 船底 - 船首 - 船尾 ### 船体结构设计要点 - 抗压性 - 抗弯性 - 抗剪性
船体结构与强度
船体结构
船体主要部件
船体骨架、船板、船底、船首、船尾是构成船体的主要部件。
船体结构设计要点
在船体结构设计过程中,需要考虑抗压性、抗弯性、抗剪性、抗扭性以及节能性等要点。
船体强度
1 船体强度分析方法
有限元方法、燃爆分析和沉没分析是常用的船体强度分析方法。
2 船体强度检测方法
超声波检测、磁粉探伤和声发射检测等方法可用于检测船体的强度。
船体结构的作用
船体强度的重要性
了解船体结构对船只性能的影响, 会使我们更好地了解整个船舶体 系的组成与工作原理。
船体强度是船只安全和有效运行 的基础,关系到船舶的使用寿命 以及航行过程中的安全性。
船体结构与强度之间的关系
船体结构和船体强度是相互关联 的,合理的设计和构造能够提高 船体的整体强度和稳定性。
船舶工业的发展趋势
未来,船只将更加先进和智能 化,船体结构和强度设计将更 加注重船舶的安全性和性能。ຫໍສະໝຸດ 船体结构与强度的未 来发展方向
船体结构和强度的未来发展方 向将致力于提高船体的轻量化、 智能化和可持续性。
船体结构与强度的优化
1
轻量化设计
通过使用新型材料和优化结构设计,减轻船体重量,提高航行性能。
2
智能化设计
引入智能化技术,提高船体结构和强度的可监测性和自主维护能力。
3
可持续发展设计

船舶稳性和强度须知

船舶稳性和强度须知

油水使用左右不均时,船舶很快偏向一舷; 用舵转向或拖船拖顶时,船舶明显倾斜且复原较慢; 甲板上浪、舱内货物少量移动、货舱少量进水时船舶出现较大横倾角; 货物装卸时因吊杆起落摆动或舱内货物左右不均而横倾异常,或缆绳受力过大。 应采取的相应措施: 尽量使用油水舱的调拨,将深液舱注满;将半舱的油水舱注满或抽空。 航行中,万不得已可驶往就近港口,进行上下轻重货的倒舱。 条件许可,抛弃部分甲板货。 码头边,可采取改变装货顺序,先装底舱,少装或停装上层舱。 船舶强度须知 船舶强度概述: 1. 船体强度是指船舶的船体结构抵抗各种内外力作用,不致造成严重变形或破坏的能力。 2. 船体强度,按船体结构的受力状况,分为总纵强度、局部强度、横向强度、扭转强度等。 总纵强度对应的外力是总纵弯曲力. 横向强度对应的外力是横向力, 局部强度对应的外力是 局部应力。对营运中的船舶来说,主要考虑总纵强度和局部强度。

改善中拱方法: 货物配置:按舱容比分配货物,在舱容允许的条件下,中区货舱应按装货重量的上限 值装,首尾货舱按下限值装;中途港货物不应过分集中于中区货舱。 油水分配及使用:油水应自中区向首尾装载;使用时应自首尾向中区。 与以上相反。 大型散货船满载时,如按舱容比配货,一般中垂较大,中间舱应适当的减少配货量, 减少量根据各船中垂的实际情况而定。

改善中垂方法:
4.5.3
局部强度 局部强度是船舶结构抵抗船体局部发生变形和破坏的能力; 船体局部结构抵抗内外力作用的能 力。 1. 负荷量的表示及局部强度的校核方法: 均布载荷 Pd 单位面积允许承受的最大重量(kPa)。 集中载荷 P:某一较小特定面积上允许承受的最大重量(kN)。 车辆载荷 Pv:载车部位允许承受的以特定车轮数目为前提的车辆及所载货物的总重量 (kN)。 堆积负荷 Pc:载箱部位上作用在箱底座处的集装箱总重量(kN)。 校核原则:甲板实际负荷量≤甲板允许负荷量。 应严格遵守《稳性手册》中甲板、舱盖和舱底的承重限制; 按船舶腐蚀程度确定允许负荷量; 舱内货物重量分布应均匀; 装载重大件货物时应根据船舶需要局部强度铺设足够的衬垫; 自动舱盖上不能装货或只能装轻货; 固体散货应合理配载、平舱; 装载重货时应限制其落底速度; 注意载重的横向和纵向分布。 散货船的货物操作不当,很容易造成船舶结构损坏。为提高散货船的安全性,国际海事组 织(IMO)针对散货船制定了一系列强制性要求,并陆续生效实施。船舶在实际操作中要严格遵 守这些规定,特别注意以下几点: 1. 在航更换压载水时,根据“压载水管理计划”合理选择压载水更换方法。在恶劣海况下不 宜使用排空法,尤其是老龄船。如果更换船舶压载水操作危及船舶和船员安全的话,将不得进 行更换,即安全是放在第一位的,到港后船长提供一份事实状况说明给港方。 2. IMO 规定船长 150 m 及以上所有散货船,即船长 150 m 及以上的散货船均应配备装载仪, 提供主船体梁的剪力和弯矩资料。它最主要的功能就是方便船员对各种装载状况下的强度计 算。在装卸货前大副要根据“装载手册”和“装卸货次序”等相关资料制定合理的装卸货次 序,确保在整个装卸货过程中,船体所承受的剪力和弯矩都在不损伤船体结构的合理范围内, 在装卸过程中驾驶员要监督装卸工人严格按照该计划进行装卸。 3. 定期对“关键结构区域”进行检查(可利用每次完货清舱时),查看是否有损害船舶结构 完整性的裂缝、屈曲、变形及腐蚀状况。

船体结构—船体结构概述

船体结构—船体结构概述
船体构件焊接连接的种类主要有对接、角接、搭接、塞焊和端接。
1.船体构件的连接方法
2. 对接(buttwelding)常用于两块钢板的拼接。手工焊接在板厚大于5— 6mm时需对被焊钢板边缘加开坡口(groove),以保证在焊接时能焊透。较薄 的板材一般单面开坡口,对较厚的板材一般需双面开坡口,坡口角度一般在 40’-60~之间。坡口的截面形状有V形、U形、X形、K形、双面U形及单边V 形或U形等。
2.船体结构概述
1)横骨架式船体结构 在主船体中,横向构件多, 排列密,尺寸小,而纵向 构件数目少,排列疏尺寸 大。主要是中小型船和内 河船舶(对总纵强度要求 不高)。 特点: 1. 横向强度和局部强度好 2. 结构简单, 容易建造 3. 舱容利用率高便于装卸 4. 空船重量大(加厚钢板 以保证纵强度) 5.船舶的横向刚性比纵向 刚性大
1.船体ቤተ መጻሕፍቲ ባይዱ件的连接方法
3. 角接(filletwelding)常用于相互垂直或交叉构件之间的连接。对有水密要 求或构件受力大的部位需双面连续焊接,板材厚时要开坡口以保证焊透。在一 般构件上有双面链式间断焊、双面交错间断焊和一面间断一面连续焊等。
1.船体构件的连接方法
4. 端接(edgewelding)仅用于薄板的连接,在船体结构中极少见。
2.船体结构概述
横向作用力 静水中的横向压力 波浪中横摇产生的肋骨歪斜
2.船体结构概述
3、设计与建造要求 具有足够的强度、刚度、稳定性、保持可靠的水密性。 构件避免应力集中,保持机械设备的性能 合理的施工工艺,提高劳动生产率,减轻劳动强度,减低成本。 考虑船体的美观和维护方便。 4、船体结构形式 组成船体的基本结构形式是骨架和板材。 按骨架排列形式的不同可将船体结构分成横骨架式、纵骨架式、混合骨架式。

第三章 船舶强度.

第三章 船舶强度.

第一节船舶强度概述船舶是一种由板材和骨架构成的浮动建筑物。

船体在重力、浮力、船体摇荡运动中的惯性力、风浪力等外力作用下,将不可避免地发生变形。

为保证船舶安全,船体结构必须具有抵抗发生过大变形和破坏的能力,这种能力称为船舶强度。

按照外力分布和船体结构变形范围的不同,船舶强度可分为总强度和局部强度,而总强度又按外力分布及相应船体变形的不同方向,分为纵向强度和横向强度。

对于营运船舶,主要应考虑船舶的总纵强度和局部强度。

营运中的船舶,为保证船舶安全运输及合理使用,应确保船舶具有足够的强度,这就要求船舶使用者通过合理配置载荷重量、优化载荷装卸顺序、限制载荷就位速度、减小航行中波浪冲击等措施来改善船体受力状态以确保船舶处于良好的营运状态。

第二节船舶总纵强度船舶产生纵向变形的原因: 1.船舶总纵强度概念船舶总纵强度是指船体整个结构抵御纵向变形或破坏的能力。

将船体视为一根空心变断面且两端自由支持的梁,船舶总纵强度研究的是船体在外力作用下整个船体梁所具有的抵御纵向弯曲、剪切和扭转的能力。

2.船舶纵向变形的原因作用于船体上的外力包括重力、浮力、摇荡时的惯性力、螺旋桨的推力、水对船体的阻力、波浪的冲击力等。

由于惯性力、推力、水阻力和波浪的冲击力对船舶总纵强度影响很小,故可忽略不计,而只考虑分布于船体上的重力和浮力。

从整体上讲,船舶重力和浮力大小相等、方向相反并作用于同一垂线上,但这两个力沿船长方向各区段内其大小并不都是相等的,即重力和浮力沿纵向分布规律不一致,由此导致船舶纵向发生变形。

重力、浮力、载荷沿船舶纵向分布:1.重力包括船体、机器设备、燃料、淡水、各种备品、压载水、所载货物等项重力。

由于船体结构和各类载重分布的不连续性,重力纵向分布呈跳跃状。

2.浮力是指船在平静水中或静置于波浪中,舷外水对船体压力的合力。

浮力纵向分布也是不均匀的,它取决于船体水线下的体积和形状。

3.载荷及载荷曲线沿纵向上船体各区段所受重力和浮力的差值就是该区段船体上所受垂向合外力,称为载荷。

船体结构与强度设计总结新

船体结构与强度设计总结新

1、结构的安全性是指结构能承受在正常施工和正常使用时大概浮现的各种载荷和(或)载荷效应,同时在偶然事件发生时及发生后,仍能保持必须的整体稳定性。

此外,结构在正常使用时,还必须适合营运的要求,并在正常的维护保养条件下,具有足够的耐久性。

2、船体强度计算包括:(1) 确定作用在船体或各个结构上的载荷的大小及性质,即外力问题;外载荷(2) 确定结构剖面中的应力与变形,即结构的响应分析(亦称载荷效应分析);或者求使结构失去它应起的各种作用中的任何一种作用时的载荷,即结构的极限状态分析(亦或求载荷效应的极限值),即内力问题。

响应(3) 确定合适的强度标准,并检验强度条件。

衡准(结构的安全性衡准都普遍采纳确定性的许用应力法)3、通常将船体强度分为总强度和局部强度来研究。

4、结构的安全性是属于概率性的。

5、把船体当做一根漂移的空心薄壁梁(成为船体梁),从整体上研究其变形规律和抵抗破坏的能力,通常成为总强度。

总强度就是研究船体梁纵弯曲问题。

从局部上研究局部构件变形规律和抵抗破坏的能力,通常称为局部强度。

6、作用在船体结构上的载荷,按其对结构的阻碍可分为:总体性载荷、局部性载荷。

按载荷随时刻变化的性质可分为:不变载荷、静变载荷、动变载荷和冲击载荷。

7、总体性载荷是指引起整个船体的变形或破坏的载荷和载荷效应。

局部性载荷是指引起局部结构、构件变形或破坏的载荷。

冲击载荷,是指在特别短的时刻内猛然作用的载荷,例如砰击。

8、结构设计的基本任务是:抉择合适的结构材料和结构型式,决定全部构件的尺寸和连接方式,在保证具有足够的强度和安全性等要求下,使结构具有最佳的技术经济性能。

9、船体结构设计,一般随全船设计过程分为三个时期,即初步设计、详细设计和生产设计。

10、结构设计应考虑:安全性、营运适合性、船舶的整体配合性、耐久性、工艺性、经济性。

11、大多数结构的优化设计都以最小重量(或最小体积)作为设计的目标。

然而,减小结构尺寸、降低结构重量,往往会增加建筑工作量,从而增加制造成本同时还会引起维护保养费用的增加。

集美大学 船舶结构力学(48学时)第一章 绪论(2014年)

集美大学 船舶结构力学(48学时)第一章 绪论(2014年)

8、船体扭转强度:当船舶在 斜浪上航行,整个船体将发生 扭转,船舶抵抗发生过大扭转 变形或受到破坏的能力。
9、应力集中:在船体结构不 连续的地方,发生应力汇集或 突然增大的现象,将引起构件 裂缝形成或蔓延。(参见图16及图片)
注: (1) 船舶强度(或船体强度) 是泛指研究船体结构强度的科 学,它包括外力、结构在外力 作用下的反应即内力研究和许 用应力的确定等一系列的问题。
3、工艺力学; 4、船体结构强度分析的一些特 殊力学问题。
(船舶进坞及下水强度、温度对船体结构的作 用及船舶抗冰强度)
教学目的:
1、通过本课程的学习,使学生掌 握船舶结构力学的基本理论与方 法; 2、 力求培养学生船舶结构分析 与计算等方面的能力;
3、 培养学生自学和独立思考 能力,以便在走上工作岗位后, 能通过自学不断地吸收新知识, 开拓新领域,研究新问题,探 求新的机理,充分发挥自己的 才能。
2、骨架的计算模型(连续梁、 板架、刚架)
就整个船体来说,船体的骨架 系统是一个复杂的空间杆系结构。 在实际计算时,尤其是采用经典方 法计算时,常常把杆系简化成一些 形状比较规则的简单的计算图形。
1) 杆件(杆):细长的型钢 或组合型材如横梁、肋骨、肋 板、纵骨、纵桁等船体骨架。
2) 杆件系统(杆系):相互 连接的船体骨架系统。船体的 杆系是一个复杂的空间系统。 简化后的典型杆系:连续梁; 板架;刚架。
3)连续梁(刚性支座上的连续 梁):两端以一定的形式固定, 中间具有多个刚性支座,且在 横向荷重作用下的直杆。(注: 属多次静不定结构。)
以远洋干货船船体结构甲 板部分(图1-7)为例介绍连 续梁模型的建立: (参见图1-8)
甲板纵骨
当计算甲板纵骨在垂直于甲板 的载荷作用下的弯曲应力与变形时, 可将其取为图1-6 a所示的计算图 形——两端刚性固定、中间自由支 持在刚性支座上的连续梁。

第6章-船舶货物的配积载

第6章-船舶货物的配积载

tM t ( m ) 1M 00T C
( 6 8 )
2021/3/11
29
·
5.吃水差的计算 由图6-5知,船舶纵倾力矩Mt是由于船舶的 重力作用线和浮力作用线沿纵向不在一条垂 线上而产生的,纵倾力臂lL 等于重心至浮力 作用线的距离。
2021/3/11
30
图6-5
2021/3/11
31
由于
2021/3/11
16
K G LKL GP iK i g L P i
( 6 3 )
式中:△L—空船排水量(t),可由船舶静水力资料 查得;
KGL—空船重心距基线高度(m),可由船舶静 水力资料查得;
Pi—载荷重量(t); Kgi—载荷重心距基线高度(m)。
2021/3/11
17
3.船舶初稳性的调整
14
由此可知,当船舶在一定排水量下发生小角度 横倾时,复原力矩的大小与初稳性高度GM成正 比。初稳性高度GM是衡量初稳性大小的基本标 志。要使船舶产生正的复原力矩,必须使GM为 正值,即重心点在稳心M点之下。
2021/3/11
15
(2)初稳性高度的计算
初稳性高度的计算公式:
GM=KM-KG
KM为船舶横稳心距基线高度,可根据平均吃水或 排水量在静水力曲线图或静水力参数表上查得;KG 为船舶重心距基线高度(重心高度),其值与空船 重心高度及载荷配置有关,根据力矩合成原理,按 下式计算。
积载图是卸货港卸货的依据。是由理货长在 装船理货完成后绘制并经船长或大副签字认可 的,是货物在船上的实际位置图。
2021/3/11
4
3.船舶配积载的基本要求
(1)充分利用船舶的装载能力; (2)确保船舶强度不受破坏; (3)保证船舶具有适度的稳定性和吃水差; (5)保证货物运输质量; (6)满足中途港卸货顺序的要求; (7)便于装卸,缩短船舶在港停泊时间; (8)正确合理的实现舱面积载。

船体强度与结构设计

船体强度与结构设计

船体强度与结构设计船体强度与结构设计1. 船体梁抵抗总纵弯曲的能⼒,成为总纵强度(简称纵强度)。

2. 重量的分类:(1)按变动情况来分○1不变重量,即空船重量,包括:船体结构、舾装设备、机电设备等各项固定重量。

○2变动重量,即装载重量,包括:货物、燃油、淡⽔、粮⾷、旅客、压载等各项可变重量。

(2)按分布情况分○1总体性重量,即沿船体梁全场分布的重量,通常包括:主体结构、油漆、索具等各项重量,对于内河⼤型客船,还包括:纵通的上层建筑及旅客等各项重量。

○2局部性重量:即沿船长某⼀区段分布的重量,通常包括:货物、燃油、淡⽔、粮⾷、机电设备、舾装设备等各项重量。

3.重量分布原则:对于各项重量按近似的和理想化的分布规律处理时,必须遵循静⼒等效原则1)保持重量的⼤⼩不变,这就是说要使近似分布曲线所围的⾯积等于该项实际重量2)保持重量重⼼的纵坐标不变,即要使近似分布曲线所围的⾯积⾏⼼纵坐标与该项重量的重⼼纵坐标相等3)近似分布的曲线的范围与该项重量的实际分布范围相同或⼤体相同3.描述浮⼒沿船长分布状况的曲线称为浮⼒曲线。

4.计算状态:通常是指,在总纵强度计算中为确定最⼤弯矩所选取的船舶典型装载状态,⼀般包括满载、压装、空载等和按装载⽅案可能出现的最不利以及其它正常营运时可能出现的更为不利的装载状态。

4.静波浪弯矩与船型、波浪要素以及船舶与波浪的相对位置有关,波浪要素包括波形、波长和波⾼,⽬前得到最⼴泛应⽤的坦⾕波理论,根据这⼀理论,⼆维波的剖⾯是坦⾕曲线形状。

坦⾕波曲线形状的特点是:波峰陡峭,波⾕平坦,波浪轴线上下的剖⾯积不相等,故谓坦⾕波。

4.传统的标准计算⽅法:(1)将船舶置于波浪上,即假想船舶以波速在波浪的船舶⽅向上航⾏,船舶与波浪处于相对静⽌状态。

(2)以⼆维坦⾕波作为标准波形,计算波长等于船长(内河船舶斜置于⼀个波长上),计算波⾼按有关规范或强度标准选取。

(3)取波峰位于船中及波⾕位于船中两种状态分别进⾏计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
船体强度与结构设计
天津大学建筑工程学院船舶工程系
第四章 船体扭转强度计算
4.1 船体扭转强度计算的必要性 1、船舶大开口引起船舶抗扭刚度减小
甲板开口船舶如下图所示:
甲板面积严重损失,开口宽度b与船舶宽度B比值可达到80%。
开口和闭口的自由扭转惯性矩按下式计算
开口惯性矩:
J n
1 3
n i 1
ti3hi
L
0 cdx W GM sin C
L 0
kdx
d 2 dt 2
L
idx I
0
d 2 dt 2
K
I
K d 2
dt 2
FD C C d 2
横摇扭矩产生的原因:船舶横摇 角时,浮力作用产生复原力矩c和惯性
倾斜力矩k在单位长度上是不相等的,其差值 (k 起c)单位长度的扭矩。
(4)距离尾端x处剖面上的扭矩计算公式
x
图、横摇扭矩
T (x)
x k c dx
0
x d 2
0
i
dt 2
c dx
d 2 x
x
T (x) dt 2
T (x)
(6)每个站的扭矩为
d 2
dt 2
x
idx
0
T (x) T (x) C(x)
角加速度转动方向与船舶横摇角度方向相反。
c ve
尾端扭矩=0
首端扭矩为:
T( L )
L
L
kdx cdx
0
0
船舶在静水中横摇运动的方程为
I
d 2 dt 2
W
GM
sin
0
GM:为初稳性高,M:为横稳心;G:重心;I:全船横摇转动惯量。
3 )计算扭转剪应力 计算模型:船体梁模型,按照总强度第一次总弯曲应力的计算方法,将
船体简化为梁模型,计算剖面的抗扭特性。
4.2 作用在船体上的扭转外力
作用在船体上的扭转外力包括扭矩和水平作用力。引起扭矩的原因在于 重量或者浮力分布关于中纵剖面不对称。假定船舶的重量分布关于中纵剖面 对称,则静水中不会发生扭转。
V : 前体排水量。
单位长度扭矩的计算:考虑单位船长,重力作用线通过中纵剖面,但是浮 力的作用线离开中纵剖面为距离e,如下图
图4-2. 单位长度浮力作用线偏离中纵剖面
单位长度的扭矩为 c v e t.m / m
e v :单位长度船舶浮力作用线到中纵剖面的距离; :单位长度的浮力 c :单位长度的扭矩。
idx cdx
0
0
计算步骤如下:
T
(x)
d 2
dt 2
x
x
idx cdx
0
0
(1)计算单位长度质量惯性矩 i
(2)计算船舶倾斜 角后的复原力矩
(3)计算每个站的质量惯性矩
x
I (x) 0 idx
(4)计算每个站的复原力矩
x
C(x) 0 cdx
(5)计算每个站的倾斜力矩:乘以角加速度即得
x 尾端点为自由端,扭矩等于零。则距离尾端点 位置,扭矩为
x
x
T (x) cdx cdx (v e)dx
首端点扭矩为零,即
0
0
L
T 0 cdx 0
船舶的扭矩曲线和分布扭矩曲线为:
10
20
0
图4-3. 波浪扭矩曲线的和分布扭矩曲线
扭矩曲线的斜率等于分布扭矩曲线: c dT dx
2、大开口船舶水平力引起的扭矩 由于扭转中心离开重心G较远,扭转中心在横剖面结构的下方,水平力:
两舷压力差引起水平扭矩,如下图4-4
图4-4. 吃水不对称引起的压力差
h e i 微段上压力差的合力作用中心; i :作用中心线到扭转中心的距离。
水平力引起的单位长度的扭矩为: ch,i hi ei
单位长度的总 扭矩为垂向力单位长度扭矩和水平力单位长度扭矩叠加,即
单位长度扭矩=c ch vi ei hi ei
:横摇加速度引起的单位长度的倾斜力矩
i mr2da A d 2 k i dt2
单位长度整个剖面质量对于扭转轴的质量惯性矩。
(3)船舶倾斜角时,浮力作用产生的复原力矩
c :船舶倾斜后的复原力矩:c v e
e : 单位长度上浮力作用线到重力作用线的距离。
v :船舶单位长度的排水量。
图.船舶倾斜力矩
闭口惯性矩:
J n
4 A2 ds
ct
开口后,扭转惯性矩显著降低。因此大开口船舶容易出现扭转刚度不足发生 扭转变形破坏。
2、提高扭转刚度的结构措施
3、船体扭转强度计算的方法与步骤 1)确定扭矩产生的原因,计算扭矩; 2)根据横剖面结构的布置,确定扭转刚度严重消弱的剖面,计算该剖面
的船体抗扭惯性矩;
4.2.1船舶斜浪航行引起的扭转力矩 计算假定:不考虑波浪的动效应,计算结果为静波浪扭矩。
前体
后体
图 4-1. 船舶斜浪航行受力图
波长与船长之间关系为: L cos
1、垂向力引起的扭矩
前体浮心距离中纵剖面为e,排水量为V;后体浮心距离中纵剖面为e。 在船中的扭矩为:
ቤተ መጻሕፍቲ ባይዱ
剖面处,产生的扭矩为: T中 V e
4.2.2船舶倾斜产生的扭矩(货物引起的扭矩) 船舶倾斜由于装载不对称引起,船舶在航行过程中,由于风浪作用船
舶发生剧烈运动,货物移动,导致装载不对称引起船舶出现倾角,船舶在有 静倾角的状态保持平衡状态:
全船重量=排水量,全船横倾力矩=全船复原力矩 产生扭矩的原因:虽然总体上船舶满足平衡状态,但是单位长度上倾斜 力矩与复原力矩不相等,其存在差额,该差额引起扭矩。
曲线2
x
I (x) idx 0
L
I 0 idx FB
3)给定船舶横摇角,计算浮力引起的复原力矩c:
曲线3
ci vi ei
4)积分得当每个站段的浮力引起的复原力矩:
曲线4:
x
C(x) 0 cdx
L
C(20) cdx FD 0
5)转动惯量曲线2扩大
d 2
d 2t
,得到惯性力矩曲线
在曲线的右端,船首部: K C T (L) 0
全船倾斜力矩:
L 0
k
dx
d 2 dt 2
L
idx
0
I
d 2 dt 2
K
L
全船复原力矩:
cdx W GM sin C
0
全船转动平衡条件,得:
T( L) 0
即横摇扭矩曲线端部为零。
(5)横摇扭矩曲线的计算和绘制
1)计算单位长度剖面的惯性矩
L
i mr 2da A
曲线1
2)积分得当每个站段的转动惯量得曲线2:
4.2.3船舶横摇引起的扭矩
船舶在波浪上横摇时,横摇加速度引起惯性力,产生扭矩。
mr( d )2 dt
mr( d )2
dt
图4-5. 横摇运动产生的惯性力:离心力和切向力
扭转轴:通过全船重心的纵轴。
(1)离心力对于扭转轴的回转力矩=0
(2)切向惯性力对于扭转轴的倾斜力矩
k
mr 2
A
ddt22 da
相关文档
最新文档