近代合成氨工艺中使用的催化剂
合成氨催化剂

合成氨催化剂0707 应化杨超(41) 1.催化剂概述催化剂又叫触媒,根据国际纯粹与应用化学联合会(IUPAQ于1981年提出的定义,催化剂是一种物质,它能够改变反应的速率而不改变该反应的标准Gibbs 自由焓变化。
这种作用称为催化作用。
涉及催化剂的反应为催化反应。
催化剂( catalyst )会诱导化学反应发生改变,而使化学反应变快或减慢或者在较低的温度环境下进行化学反应。
催化剂在工业上也称为触媒。
我们可在波兹曼分布( Boltzmann distribution )与能量关系图( energyprofile diagram )中观察到,催化剂可使化学反应物在不改变的情形下,经由只需较少活化能( activation energy )的路径来进行化学反应。
而通常在这种能量下,分子不是无法完成化学反应,不然就是需要较长时间来完成化学反应。
但在有催化剂的环境下,分子只需较少的能量即可完成化学反应。
2.催化剂的分类2.1按性质分类催化剂有三种类型,它们是:均相催化剂、多相催化剂和生物催化剂。
均相催化剂和它们催化的反应物处于同一种物态 (固态、液态、或者气态)。
多相催化剂和它们催化的反应物处于不同的状态。
酶是生物催化剂。
活的生物体利用它们来加速体内的化学反应。
如果没有酶,生物体内的许多化学反应就会进行得很慢,难以维持生命。
大约在37C的温度中(人体的温度),酶的工作状态是最佳的。
如果温度高于50C或60C,酶就会被破坏掉而不能再发生作用。
因此,利用酶来分解衣物上的污渍的生物洗涤剂,在低温下使用最有效。
2.2按组成的组分分催化剂分均相催化剂与非均相催化剂。
非均相催化剂呈现在不同相 ( Phase) 的反应中,而均相催化剂则是呈现在同一相的反应。
一个简易的非均相催化反应包含了反应物(或zh-ch:底物;zh-tw:受质)吸附在催化剂的表面,反应物内的键因十分的脆弱而导致新的键产生,但又因产物与催化剂间的键并不牢固,而使产物出现。
合成氨催化剂的发展p

研究发现具有维氏体(WÜstite, Fe1-XO , 0.04≦x≦0.10)相结构的氧 化亚铁基氨合成催化剂具有最高活性 (氧化态 XRD谱如下图1),否定了 磁铁矿(Fe3O4 )相还原得到的催化 剂具有最高活性的经典结论。
➢大多数铁系催化剂都是用经过精选 的天然磁铁矿通过熔融法制备的, 习惯称熔铁催化剂。
铁系催化剂活性组分为金属铁。 未还原前为FeO和Fe2O3,其 中FeO质约为 0.5,一般在0.47~0.57之间, 成分可视为Fe3O4,具有尖晶
石结构。
之后人们通过大量试 验发现,铁比值与熔 铁基合成氨催化剂的 性能有着密切的关系, 并一致认为最佳铁比 值为0.5、最佳母体 相为磁铁矿,铁比值 与活性的关系呈火山 形分布。目前为止世 界上所有工业铁基合 成氨催化剂的主要成 份都是Fe3O4。
➢开发低温高活性的新型催化剂,降低反应 温度, 提高氨的平衡转化率和单程转化 率或实现低压合成氨,一直是合成氨工业 的追逐目标。从最初的钌基催化剂的发 明,到铁基催化剂体系的创立和三元氮 化物催化剂的问世,都说明了人们在探 索合成氨道路上所作出的不懈努力。
1.1 熔铁催化剂
长期以来,人们对氨合成催化剂作了大量 的研究,发现对氨合成有活性的一系列金 属为Os,U,Fe,Mo,Mn,W等,其中一 铁为主体的铁系催化剂,因其价廉易得、 活性良好、使用寿命长等特点,在合成氨 工艺中被广泛使用。
工艺过程是可行的。 于是他成功地设计了 原料气的循环工艺。 这就是合成氨的哈伯 法。
氨合成的催化剂

氨合成的催化剂一、引言氨合成是一种重要的工业化学反应,广泛应用于制造化肥等领域。
在氨合成反应中,催化剂起着至关重要的作用。
本文将详细介绍氨合成反应中常用的催化剂。
二、铁系催化剂铁系催化剂是氨合成反应最早采用的催化剂之一。
这种催化剂主要由铁、钴、锆等金属组成,其特点是具有较高的活性和选择性。
此外,铁系催化剂还具有良好的耐久性和稳定性,在工业生产中得到了广泛的应用。
三、钌系催化剂钌系催化剂是近年来被广泛研究和应用的一种新型催化剂。
这种催化剂主要由钌、锰等金属组成,其特点是具有较高的活性和选择性,并且在高温下仍能保持稳定性。
此外,钌系催化剂还具有良好的抗毒性,在氨合成反应过程中能够有效地抵御碳氢物质等有害物质对其产生的影响。
四、钼系催化剂钼系催化剂是一种常用的氨合成催化剂,主要由钼、铝等金属组成。
这种催化剂具有较高的活性和选择性,并且在高温下仍能保持稳定性。
此外,钼系催化剂还具有良好的抗毒性和耐腐蚀性,在氨合成反应中表现出色。
五、其他催化剂除了以上几种催化剂外,还有许多其他类型的氨合成催化剂。
例如,铑系催化剂、镍系催化剂、银基催化剂等都具有一定的应用前景。
这些新型催化剂在提高反应效率、降低生产成本等方面都具有重要作用。
六、结论综上所述,氨合成反应中的催化剂种类繁多,每种催化剂都具有其独特的优点和缺点。
在实际生产中,应根据不同情况选择最适合自己需求的催化剂,以达到最佳效果。
同时,未来还需要进一步研究和开发新型高效稳定的氨合成催化剂,以满足不断增长的市场需求。
合成氨的工艺流程

合成氨的工艺流程
《合成氨工艺流程》
合成氨是一种重要的化工原料,广泛应用于农业和化工领域。
合成氨的工艺流程主要包括催化剂制备、氮气和氢气的制备以及氨的合成三个主要步骤。
首先是催化剂的制备。
合成氨工艺中使用的主要催化剂是铁-
铝催化剂,它的制备需要经过一系列的化学反应和物理处理。
首先在高温下将铁酸钾和铝酸钾还原成铁铝合金,然后通过高温煅烧和还原处理,最终得到合成氨反应所需的铁-铝催化剂。
其次是氮气和氢气的制备。
氮气主要通过空气分离装置来获取,空气中的氮气含量大约为78%,通过空气分离装置可以将氮
气和氧气分离开来。
而氢气则主要通过蒸汽重整和部分氧化甲烷法制备,蒸汽重整法主要是通过将甲烷与水蒸气在催化剂的作用下反应生成一氧化碳和氢气,而部分氧化甲烷法则是通过将甲烷与氧气在高温下反应生成氢气和二氧化碳。
最后是氨的合成。
氮气和氢气经过净化后,进入合成氨反应器进行催化反应。
在高压和适当温度的条件下,铁-铝催化剂的
作用下,氮气和氢气会发生氮合成反应,生成氨。
这个反应是一个放热反应,因此需要控制反应温度及高压下的反应速率,避免能量过度损失。
综上所述,合成氨的工艺流程复杂且涉及多个步骤。
通过精确
控制每个步骤的条件和参数,可以确保生产安全高效地进行,从而满足氨的需求并为化工及农业领域提供丰富的原料。
合成氨工艺催化剂

合成氨工艺催化剂引言合成氨是一种重要的化工原料,广泛应用于农业肥料、塑料、石油化工等领域。
在合成氨的生产过程中,催化剂起着关键作用。
本文将详细介绍合成氨工艺催化剂的种类、性能以及制备方法。
催化剂种类合成氨工艺催化剂主要分为三类,分别为铁基催化剂、铁铅共催化剂和铜铁催化剂。
铁基催化剂铁基催化剂是合成氨工艺中最常用的催化剂之一。
它使用铁作为主要活性组分,通常与铝、钛、硅等辅助载体配合使用。
铁基催化剂具有良好的催化性能和稳定性,能够在相对较低的温度下即可实现合成氨的转化。
铁铅共催化剂铁铅共催化剂是在铁基催化剂的基础上进行改进的一种催化剂。
它通过铅的引入,可以进一步提高催化剂的催化活性和选择性。
铁铅共催化剂在工业生产中有广泛应用,并取得了良好的效果。
铜铁催化剂铜铁催化剂是近年来发展起来的一类新型催化剂。
相比于传统的铁基催化剂,铜铁催化剂具有更高的催化活性和选择性。
这得益于铜与铁之间的协同作用,能够加速反应速率并改善催化剂的稳定性。
催化剂性能合成氨工艺催化剂的性能主要包括催化活性、选择性和稳定性。
催化活性催化活性是指催化剂对于反应底物的转化能力。
合成氨的生产过程是一个高温高压的反应过程,因此催化剂需要具备较高的催化活性,才能保证反应的效果和产量。
选择性选择性是指催化剂在反应过程中对不同反应产物的选择性。
对于合成氨工艺而言,目标产物是氨气,因此催化剂需要具备高的选择性,以避免产生过多的副产物。
稳定性稳定性是催化剂的另一个重要性能指标。
由于合成氨反应条件的严苛性,在长时间的反应过程中,催化剂会受到高温高压等因素的影响,容易发生失活。
因此,稳定性是评价催化剂性能的关键指标之一。
催化剂制备方法合成氨工艺催化剂的制备方法多种多样,常见的方法包括物理混合法、浸渍法和共沉淀法。
物理混合法物理混合法是最简单的制备方法之一,它将催化活性组分与载体物理混合,通过高温煅烧使其形成均匀分散的催化剂颗粒。
物理混合法制备的催化剂成本较低,但催化活性和稳定性相对较差。
合成氨转催化剂

合成氨转催化剂合成氨转催化剂是一种非常重要的化学物质,广泛应用于合成氨的生产过程中。
它通过催化作用,将氮气和氢气转化为氨气,这是一种非常关键的化学反应,因为氨气是很多工业产品的基础原料,而且也用于制造化肥。
合成氨转催化剂的制备过程需要经过一系列的步骤,下面将对这些步骤进行详细介绍。
1. 催化剂制备催化剂是制备合成氨转催化剂的重要组成部分。
催化剂可以是一种固体物质,也可以是一种液体物质。
制备催化剂的过程涉及到一系列的化学反应和精细的材料科学。
催化剂需要具有高效率、高选择性和长寿命等特点,这样才能够在合成氨的生产过程中发挥出最大的作用。
2. 氮气和氢气的处理氮气和氢气是制备合成氨的原料,但它们需要进行一定的处理才能够在反应中有效地发挥作用。
这些处理包括:氮气的压缩、脱水、低温等处理,以及氢气的脱氧、加压等处理。
这些处理的目的是去除杂质、提高纯度和增强反应效果。
3. 反应过程控制在合成氨的生产过程中,需要对反应过程进行严格的控制。
这包括反应温度、压力、反应时间和催化剂的加入等参数的控制。
这些参数的不同组合会直接影响合成氨的产率和选择性。
4. 催化剂再生催化剂在反应过程中会因为各种原因发生损耗,催化活性会减弱或丧失。
为了保证反应的持续进行,需要对催化剂进行再生。
再生的过程包括将损耗剂除去、重新激活活性位点等步骤,这样才能够使催化活性恢复到正常水平。
总之,合成氨转催化剂的制备过程十分复杂,需要各种化学知识和技术。
只有通过科学的方法和严谨的操作,才能够制备出具有优异性能的催化剂,从而使得合成氨的生产能够保证高效、可靠和稳定。
kellogg工艺

2.3 KRES的优点
• ①设备造价低,结构小,占地面积小,节省基建投资 5%~10%; • ②采用自然转化炉的热量,可以更大范围地选择驱动系统, 最大程度地利用工程; • ③使用二段转化炉,因设备和管线减少而具有降低能耗的潜 力,可用于代替火管转化炉; • ④污染小。由于不在采用直接加热蒸汽转化,使NOx和CO2 的排放量减少75%; • ⑤由于采用了新的催化剂,操作可靠性得到了提高。设备结 构简单,维修方便,频率低,费用也低; • ⑥换热转化炉由碳钢制造,内装耐火衬里,外装有水夹套, 增加了装置的安全性和可靠性。 • ⑦转化换热系统操作简化,灵活性增大; • ⑧利用高品味的反应热来满足低品位的要求,减少废蒸汽发 生20%; • ⑨此设计不仅可用于改建,还可用于直接生产合成气。除合 成氨外还用于甲醇、氢气及碳、氢合成方面的生产。
3 结束语
• Kellogg正在研究把KAAP和KRES技术 结合起来,形成新一代有利于环境保护 的合成氨生产装置的基础,这类合成氨 装置投资省,能耗低,效率高,操作条 件温和,操作和维修费用小,安全可靠。 KAAP工艺可增加合成氨产量,KRES工 艺可增加合成气产量,从而使KAAP工艺 充分发挥作用。据估计,采用上述工艺, 投资费用和能源费用可减少5%~8%,每 吨产品的能耗可降低0.525~1.051GJ。生 产能力可从600t/d增加到850t/d,增加 40%。 • KAAP和KRES相结合将开创第二代合 成氨工艺的新阶段,预示着合成氨工艺 将出现重大变革。
1.1钌基催化剂
1.1.4使用条件
• 最初提出催化剂使用条件为:反应温度 300~500℃;压力3~20MPa,空速 5×103~3×104h-1。后来提出催化剂使用条件 为:反应温度300~450℃;压力4~15MPa,空 速1×103~1×104h-1;H2:N2=0.5:1~2:1.12。 • 1987年中期,在澳大利亚西部港口珀斯的奎那 那氮素公司的300t/d的氨厂中,在为期1.5年的 试验里测试为合成回路可在非化学计量的H2/N2 和低温(370~470℃)低压下(7~10.5MPa) 运行。 • 目前,该工艺的专利权属Kellogg公司,二催化 剂是恩格哈特公司受专利保护生产。 • 新工艺已在加拿大南部的不列颠哥伦比亚省特 马特市(Kitimat)的Ocelot制氨厂改造中首次 实现大规模生产,于1992年11月10日投产,以 甲醇合成的废氢气作为合成氨生产的原料。
氨合成铁系催化剂

氨合成熔铁催化剂氨合成熔铁催化剂,目前合成氨工业中普遍使用的主要是以铁为主体的多成分催化剂,又称铁触媒。
1、组成1.1组成主要成分是Fe3O4,含量在90%左右。
助催化剂为K2O、Al2O3、CaO、MgO等,含量小于催化剂总质量的9%,低压催化剂还增加了CoO(A201等)。
其按作用不同分为两类,一类是结构型助剂,如Al2O3、Cr2O3、ZrO2、TiO2、MgO、CaO、SiO2等难熔氧化物。
另一类是电子型助剂,如K20。
每种类型助剂都有各自的最佳添加量,一般均在0.6%~1.0%范围。
1.2 物理结构氧化态催化剂主体是磁铁矿,其化学计量式是FeO.Fe2O3或Fe3O4。
晶体结构类似于尖晶石(MgAl2O4)的结构(90%以上是具有反尖晶石结构、不均匀复杂体系的磁铁矿)。
是四面体和八面体结构的堆积结果。
其中形成两种间隙:四面体间隙和八面体间隙。
三价的金属离子占据四面体间隙的一半和八面体间隙的一半,二价的铁离子占据八面体间隙(Fe3+(Fe2+,Fe3+))。
磁铁矿的一个单胞(晶体的最小结构单元)由32个氧离子和24个铁离子所组成,即8(Fe3O4)。
按结晶学原理,32个氧原子按照面心立方堆积的每一单胞,有64个四面体间隙和32个八面体间隙。
如上所述,除了24个被铁离子占据以外,其余大部分是空的,因此可加入助催化剂占据这些空隙形成间隙固溶体。
而且化学式相近的物质,结构类型相同且质点(离子、原子或分子)半径近于相等的物质,可以发生同晶取代,生成置换固溶体,例如三价铝即可置换部分三价铁,形成置换固溶体。
(含量小于4%时主要生成置换固溶体。
若三氧化二铝全部取代氧化铁则生成FeOAl2O3)1.3 化学特点铁触媒在500 ℃左右时的活性最大,这也是合成氨反应一般选择在500 ℃左右进行的重要原因之一。
但是,即使是在500 ℃和30 MPa时,合成氨平衡混合物中NH3的体积分数也只为26.4%,即转化率仍不够大。