典型系统结构原理.
气路系统基本结构及工作原理

气路系统基本结构及工作原理一、气路系统基本结构气路系统是指用于控制和传输气体的系统,常用于工业生产、交通运输和家用设备等领域。
气路系统的基本结构包括气源、气路管道、控制元件和执行元件。
1. 气源:气源是气路系统的供气设备,通常采用压缩空气作为气源。
常见的气源设备有压缩空气机组、气瓶和气体管网等。
2. 气路管道:气路管道用于传输气体,通常由金属或塑料管道组成。
气路管道的尺寸和材料选择取决于气体的流量、压力和使用环境等因素。
3. 控制元件:控制元件用于控制气体的流动和压力。
常见的控制元件有阀门、调节阀、压力开关和传感器等。
阀门用于控制气体的开关和流量,调节阀用于调节气体的压力,压力开关用于监测气体的压力变化,传感器用于检测气体的流量、温度和压力等参数。
4. 执行元件:执行元件用于根据控制信号执行相应的动作。
常见的执行元件有气动缸、气动阀和气动马达等。
气动缸用于将气体的压力转换为机械运动,气动阀用于控制气体的开关和流量,气动马达用于将气体的压力转换为机械功。
二、气路系统工作原理气路系统的工作原理是通过控制气体的流动和压力来实现相应的功能。
下面以一个简单的气动控制系统为例,介绍气路系统的工作原理。
假设气动控制系统用于控制一个气动缸的运动,实现物体的推拉动作。
该系统包括气源、气路管道、压力开关、气动缸和控制阀等。
1. 气源:气源提供压缩空气作为气动控制系统的供气设备。
通过气源设备将压缩空气输送到气路管道中。
2. 气路管道:气路管道将压缩空气从气源输送到气动缸和控制阀等执行元件。
气路管道中通常安装有压力开关,用于监测气体的压力变化。
3. 压力开关:压力开关用于监测气体的压力变化,并根据设定的压力值切换控制信号。
当气体压力达到设定值时,压力开关会发出一个信号,控制阀打开,气动缸开始运动。
4. 气动缸:气动缸是气动控制系统的执行元件,将气体的压力转换为机械运动。
当气动缸接收到控制信号后,气体的压力将推动活塞运动,实现物体的推拉动作。
毕业论文--汽车典型ABS的结构原理与故障分析

汽车典型ABS的研究Representative ABS of automobileresearch(申请学位)独创性声明本人声明所呈交的论文是本人在导师指导下进行的研究工作和取得的研究成果,除了文中特别加以标注和致谢之处外,论文中不包含其他人已经发表或撰写过的研究成果,也不包含为获得长春汽车工业高等专科学校或其他教育机构的学位或证书而使用过的材料。
与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意。
论文作者签名:刘玉钊签字日期:年月日学位论文版权使用授权书本论文作者完全了解长春汽车工业高等专科学校有关保留、使用论文的规定。
特授权长春汽车工业高等专科学校可以将论文的全部或部分内容编入有关数据库进行检索,并采用影印、缩印或扫描等复制手段保存、汇编以供查阅和借阅。
(保密的论文在解密后适用本授权说明)论文作者签名:刘玉钊导师签名:签字日期:年月日签字日期:年月日中文摘要摘要:随着汽车技术的不断改进,ABS已逐渐成为汽车的标准配件。
在当代,安装ABS的车辆已经相当普遍,经济型车也安装有ABS并且随着对汽车安全性能的要求越来越高,一些更为先进的、保护范围更加广泛的安全装置相继问世了。
随着汽车技术的不断改进,ABS已逐渐成为汽车的标准配件,虽然ABS能大大提高汽车的制动性能,但是不同类型的ABS在制动中发挥的作用却不尽相同,驾驶员如果缺乏对各类ABS性能特点的了解,则可能在车辆紧急制动时得不到预想的制动效果,甚至会发生意外情况。
了解ABS这些技术对汽车制动系统的维修和故障诊断工作都是十分重要的。
本文主要介绍汽车ABS技术发展,ABS 基本结构和工作原理,ABS系统的检修,并对典型ABS系统的车辆也作了简要介绍。
关键词:ABS结构组成;ABS工作原理;故障检测ABSTRACTWith the continuous improvement of technology, ABS has become automobile standard parts.Install abs in the vehicle has been fairly general, there are also install abs car as to the safety requirements are higher, some more sophisticated, more extensive scope ofprotection of safety equipment were made. as a technological upgrading, abs is becoming a standard of the car, although abs can vastly improve the brake performances, but different types of abs in the role of the brake, but not identical If the lack of abs for the performance of understanding, may in the emergency brake is not anticipated the results are even'll be an accident. that abs these technologies is the brake system maintenance and failure diagnosis work is very important. this paper mainly introduces the abstechnological development, abs basic structure and workingmechanism, abs system. the typical abs system of cars made a briefintroduction.Keywords :abs construction works of abs ;;failure to detect目录第一章:绪论1.1:选题背景及研究意义第二章:汽车ABS技术发展2.1::ABS的作用2.2:ABS技术的发展及应用现状2.3:ABS的发展趋势2.4:结论第三章:ABS的结构组成和工作原理3.1:ABS的结构组成3.2:ABS的工作原理3.3:ABS的分类第四章:典型ABS系统的车辆的介绍4.1奔驰YBL6120H型客车ABS基本结构与工作原理4.2一汽捷达轿车ABS结构原理第五章:汽车ABS常见故障及分析5.1:.ABS故障诊断仪器和工具5,2:.故障诊断与排除的一般步骤5.3:常见故障及分析第六章:ABS系统的实例故障分析6.1本田雅阁ABS常见故障分析6.2奇瑞A516 ABS故障警告灯点亮且异常频繁工作的故障分析参考文献致谢第一章绪论1.1选题背景及研究意义ABS”(Anti-lockedBrakingSystem)中文译为“防抱死刹车系统”.它是一种具有防滑、防锁死等优点的汽车安全控制系统。
自动控制原理实验一 典型系统的时域响应和稳定性分析

实验一典型系统的时域响应和稳定性分析一、实验目的1.研究二阶系统的特征参量(ξ、ωn) 对过渡过程的影响。
2.研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。
3.熟悉Routh判据,用Routh判据对三阶系统进行稳定性分析。
二、实验设备PC机一台,TD-ACC+教学实验系统一套。
三、实验原理及内容1.典型的二阶系统稳定性分析(1) 结构框图:如图1-1所示。
图1-1(2)图1-2(3) 理论分析系统开环传递函数为:G(s)=K1T0⁄s(T1s+1)开环增益:K= K1T0⁄先算出临界阻尼、欠阻尼、过阻尼时电阻R的理论值,再将理论值应用于模拟电路中,观察二阶系统的动态性能及稳定性,应与理论分析基本吻合。
在此实验中由图1-2,可以确地1-1中的参数。
T0= 1s , T1= 0.1s ,K1= 200R , K= 200R系统闭环传递函数为:W(s)=5Ks2+5s+5K其中自然振荡角频率:?n ω= 10√10R;阻尼比:?ζ= √10R402.典型的三阶系统稳定性分析(1) 结构框图:如图1-3所示。
图1-3(2) 模拟电路图:如图1-4所示。
图1-4(3) 理论分析系统的开环传函为: G(s)H(s)=20K s 3+12s 2+20s系统的特征方程为:1()()0G s H s += : s 3+12s 2+20s+20K=0 (4) 实验内容实验前由Routh 判断得Routh 行列式为:S 3 1 20 S 2 12 20K S 1 20-5/3*K 0 S 0 20K为了保证系统稳定,第一列各值应为正数,因此可以确定系统稳定 K 值的范围 : 0<K <12 R >41.7k系统临界稳定K: K=12 R =41.7k 系统不稳定K 值的范围: K >12 R <41.7k四、实验步骤1)将信号源单元的“ST ”端插针与“S ”端插针用“短路块”短接。
plc控制系统结构及工作原理

PLC控制系统结构及工作原理
一、系统结构
PLC控制系统主要由以下几个部分组成:
1. 电源模块:提供系统所需的电能。
2. 中央处理单元(CPU):进行逻辑运算、算术运算和顺序控制等,实现各种数据操作。
3. 输入输出模块:实现外部信号的采集和输出,与外部设备进行数据交换。
4. 存储器:存储用户程序和数据。
5. 通信接口:实现PLC与外部设备的通信。
二、工作原理
PLC控制系统的工作原理可以概括为“输入-处理-输出”的过程。
首先,通过输入模块采集外部设备的信号,这些信号可以是开关状态、传感器读数等。
然后,这些信号被送到CPU进行处理。
在CPU中,根据预先编写好的程序,对这些信号进行逻辑运算、算术运算等处理。
处理完成后,输出模块将这些结果输出到外部设备,如马达、灯泡等。
三、控制功能实现
PLC控制系统的控制功能主要由用户程序实现。
用户程序可以根据实际需求进行编写,包括各种逻辑运算、算术运算、顺序控制等。
通过输入模块采集的信号,可以触发用户程序执行相应的操作。
这样,PLC控制系统就可以实现对外部设备的精确控制。
四、控制性能分析
PLC控制系统的控制性能主要取决于以下几个因素:
1. 硬件性能:包括CPU的处理能力、存储器的容量、输入输出模块的精度等。
2. 软件设计:包括用户程序的编写、程序结构的合理性、运算速度等。
3. 环境因素:包括温度、湿度、电磁干扰等环境因素对PLC控制系统性能的影响。
总的来说,PLC控制系统具有结构简单、运行可靠、操作方便等优点,因此在工业自动化领域得到了广泛应用。
气路系统基本结构及工作原理

气路系统基本结构及工作原理气路系统是一种常见于工业和机械设备中的系统,它负责控制气体的流动和压力,从而实现机械设备的正常运行。
本文将介绍气路系统的基本结构和工作原理,匡助读者更好地了解和理解这一重要的工程原理。
一、气路系统的基本结构气路系统由多个组件和元件组成,这些组件和元件相互配合,形成为了一个完整的系统。
下面将介绍气路系统的基本组成部份。
1. 压缩机:压缩机是气路系统的核心组件,它负责将气体压缩成高压气体。
压缩机通常采用活塞式或者螺杆式结构,通过机械运动将气体压缩,并将其送入气路系统。
2. 储气罐:储气罐是气路系统中的一个重要组件,它用于储存压缩后的气体。
储气罐的主要作用是平衡气体的压力,确保气路系统能够稳定运行。
3. 过滤器:过滤器用于过滤气体中的杂质和颗粒物,保护气路系统的正常运行。
过滤器通常采用网状或者纤维状的滤材,可以有效地过滤气体中的杂质。
4. 节流阀:节流阀用于控制气体的流量和压力。
它通过调节阀门的开度,改变气体流动的截面积,从而实现对气体流量和压力的控制。
5. 气缸:气缸是气路系统中的执行元件,它将气体的能量转化为机械能,推动机械设备的运动。
气缸通常由活塞、气缸筒和密封件组成,通过气体的压力差驱动活塞运动。
二、气路系统的工作原理气路系统的工作原理可以简单概括为气体的压缩、输送和控制。
下面将详细介绍气路系统的工作原理。
1. 压缩:气路系统中的压缩机负责将气体压缩成高压气体。
在压缩过程中,气体的体积减小,同时压力和温度增加。
压缩机通过机械运动将气体压缩,并将其送入储气罐。
2. 储存:储气罐用于储存压缩后的气体,平衡气体的压力。
当气路系统需要气体时,储气罐释放气体,维持系统的正常运行。
储气罐还可以平衡气体的压力波动,确保系统的稳定性。
3. 输送:气路系统通过管道将气体输送到需要的位置。
管道通常由金属或者塑料制成,具有一定的强度和密封性。
气体通过管道流动时,可以通过节流阀等元件进行流量和压力的控制。
典型的机电一体化系统解析

二、 工业机器人系统结构
六自由度工业机器人的系统结构
工业机器人系统的组成 1—机座 2—控制装置 3—操作机
工业机器人的组成
三、工业机器人的分类
按机械结构和代表性的自由度构成可分成五种: ① 圆柱坐标型机器人; ② 球坐标型机器人; ③ 直角坐标型机器人; ④ 关节型机器人; ⑤ 并联机器人。 按用途和作业类别分: 焊接机器人、冲压机器人、浇注机器人、搬运机 械器人、装配机器人、喷漆机器人、切削机器 人、检测机器人、采掘机器人、水下机器人
9.1 CNC机床
零 件 图 纸
数 控 程 序 编 制
机床本体
数 控 介 质
数 控 装 置
伺 服 机 构
执 行 元 件
执 行 机 构
零 件 成 品
位置检测装置
图9-l CNC机床加工过程原理
CNC(或加工中心)加工工艺过程
9.2 机械加工中心
1-X轴的直流伺服电动机;2-换刀机械手;3-数控柜;4-盘式刀库;5-主轴箱;6机床操作面板;7-驱动电源柜;8-工作台;9-滑座;10-床身
二、工业机器人的手腕
手腕是联接手臂和末端执行器的部件。 功能是实现末端件在作业空间的三个姿态坐 标,即实现三个旋转自由度。 如图所示:回转运动(θ )、左右摆动( φ ) 和俯仰运动( β )
手腕的自由度 1——手臂 2——机械接口
1. 用摆动液压马达驱动实现回转运动的手腕结构
夹持动作由活塞完成,一个自由度
液压驱动圆柱坐标型机器人手臂 1——活塞杆 2——液压缸 3——手臂端部 4——手臂支架 5——导轨 6——中间 支架 7、9——齿轮 8——挡块 10——行程开关 11——摆动液压马达
2. 电动机驱动机械传动圆柱座标机器人手臂
水源热泵系统的组成和工作原理

水源热泵系统的组成和工作原理一、组成结构:1.水源:水源热泵系统主要利用地下水、湖泊、江河等水源进行能量交换。
水源应具备充足的水量和稳定的温度,以满足系统的需求。
2.水泵:用于将水源中的水抽入系统并驱动水流。
3.蒸发器:负责吸收水源中的热量,并将制冷剂蒸发成气态。
4.膨胀阀:用于控制制冷剂的流量,并调节制冷剂的压力和温度。
5.冷凝器:通过管道将制冷剂进行冷却,并将它从气态变为液态。
6.压缩机:负责提高制冷剂的压力和温度,使其能够顺利进行制冷循环。
7.管道系统:用于连接各个组成部分,确保制冷剂的流动和热能的交换。
8.控制系统:用于监测和控制水源热泵系统的运行,以确保系统的效率和性能,并保护系统的正常运行。
二、工作原理:1.制冷循环:水源热泵系统利用制冷剂完成热能的传递。
首先,制冷剂通过膨胀阀进入蒸发器,此时制冷剂的压力降低,温度也随之降低。
接着,制冷剂吸收水源中的热量,使其蒸发成气态。
然后,气态的制冷剂通过压缩机被压缩,增加了其温度和压力。
最后,制冷剂通过冷凝器,将热量释放到供热系统中,同时由气态变为液态。
整个过程完成了制冷剂的循环,使得水源中的热能得以利用。
2.系统运行:水源热泵系统的运行过程可以分为制冷和制热两个周期。
在制冷周期中,制冷剂吸收水源中的热量,然后通过冷凝器将热量释放到室内空间中,起到制冷作用。
而在制热周期中,制冷剂吸收室内空间中的热量,通过蒸发器将热量释放到水源中,起到供热作用。
系统的运行通过控制系统进行监测和调节,以确保制冷和制热的顺利进行。
3.能量交换:水源热泵系统通过水源和室内空间之间的热量交换,实现了能源的高效利用。
在制冷周期中,系统从水源中吸收低温的热量,然后将高温的热量释放到室内空间中,实现了自然冷却。
而在制热周期中,则相反,系统从室内空间中吸收低温的热量,然后将高温的热量释放到水源中,实现了空间的供热。
总体来说,水源热泵系统的组成主要包括水源、水泵、蒸发器、膨胀阀、冷凝器、压缩机、管道系统和控制系统;其工作原理是通过制冷循环实现热能的传递和能量的交换,从而实现空间的制冷和供热。
DCS的基本结构及原理

DCS的基本结构及原理DCS(Distributed Control System,分散控制系统)是一种广泛应用于工业自动化领域的控制系统,它是由多个分布在不同位置的控制器通过网络连接而形成的分散控制系统。
DCS系统的基本结构和工作原理如下:1.基本结构:DCS系统的基本结构包含以下几个主要组成部分:(1)控制器:是DCS系统的核心,负责实时处理和控制系统中的各种信号和数据。
控制器通常由硬件和软件两部分组成,其中硬件包括处理器、存储器、输入输出接口等,而软件则是控制器的操作系统和应用程序。
(2)人机界面:为了方便操作和监控系统,DCS系统通常配备了人机界面,用于显示实时数据、控制参数的设定和调整,以及报警和故障的处理等。
人机界面有多种形式,如操作终端、PC软件、网络浏览器等。
(3)传感器和执行器:传感器负责收集各种设备和过程参数的实时数据,如温度、压力、流量等;而执行器则用于控制各种被控对象,如阀门、电机等。
传感器和执行器通过输入输出模块与控制器相连接。
(4)通信网络:控制器之间通过通信网络进行数据的传输和交换。
通信网络可以采用以太网、现场总线、串行通信等多种方式,其中以太网是DCS系统最常用的通信方式之一,它具有传输速度快、数据容量大、可靠性高等特点。
2.工作原理:DCS系统的工作原理主要包括以下几个方面:(1)数据采集和处理:根据控制策略和设定参数,控制器通过输入输出模块从传感器和执行器中采集实时数据,并对其进行处理和分析。
(2)控制策略和算法:控制器根据设定的控制策略和算法,对采集到的数据进行逻辑运算和计算,生成相应的控制命令。
(3)信号传输和执行控制:生成的控制命令通过通信网络传输给执行器,执行器根据控制命令调整对应的工作状态,控制被控对象的运行。
(4)监控和调节:DCS系统通过人机界面实时显示各种参数和数据,并根据实际情况进行监控和调节。
当系统出现异常或故障时,系统会产生相应的报警信号,提醒操作员及时处理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模块三 典型数控系统的结构和原理
课题一 数控系统的发展简介
模块三 典型数控系统的结构和原理
课题二 Fanuc-0i系统功能介绍
Fanuc-0ib系统
模块三 典型数控系统的结构和原理
课题二 Fanuc-0i系统功能介绍
刚性攻丝 主轴控制回路为位置闭环控制,主轴电机的旋转与攻丝轴 (Z轴)进给完全同步,从而实现高速高精度攻丝。
典型数控系统 的结构和原理
课题一.数控系统的发展简介
1.国外主流厂家产品
2.国内数控常见产品介绍
典型数控系统 的结构和原理
课题二.Fanuc-0i系统功能介绍
1.刚性攻丝 2.复合加工循环 3.圆柱插补 4.直接尺寸编程 5.记忆型螺距误差补偿 6.CNC内装PMC编程功能 7.使用了随机存储模块 8.多种显示装置 1 9.FANUC伺服电机 系统结构图
使用了随机存储模块 MTB(机床厂)可在CNC上直接改变PMC程序和宏执行器程序。由于使用的 是闪存芯片,故无需专用的RAM写入器或PMC的调试RAM。
模块三 典型数控系统的结构和原理
课题二 Fanuc-0i系统功能介绍
多种显示装置
模块三 典型数控系统的结构和原理
课题二 Fanuc-0i系统功能介绍 FANUC伺服电机:i系列
课题三 Fanuc-0ib系统的构成、硬件连接 模拟主轴的接口电缆连接
模块三 典型数控系统的结构和原理
课题三 Fanuc-0ib系统的构成、硬件连接
3.参数的分类
4.与数控维修有关的的参数的调整定方法
典型数控系统 的结构和原理
课题五.I/O接口及PMC编程
1.接口地址的意义及分配 2.重要接口信号的解释 3.PMC顺序程序编制的流程
4.顺序程序的执行过程
5.常用PMC指令的解释 6.编制简单的PMC程序
典型数控系统 的结构和原理
课题六.SINUMERIC 840D特点介绍及主要功能
模块三 典型数控系统的结构和原理
课题二 Fanuc-0i系统功能介绍
复合加工循环 复合加工循环可用简单指令生成一系列的切削路径。比如定义了工 件的最终轮廓,可以自动生成多次粗车的刀具路径,简化了车床编 程。
模块三 典型数控系统的结构和原理
课题二 Fanuc-0i系统功能介绍
圆柱插补 该功能最适用于切削圆柱上的槽。能够按照圆柱表面的展开图进行编 程。
2
典型数控系统 的结构和原理
课题三:fanuc-0ib系统的构成、硬件连接
1.系统构成 2.综合联线介绍 3.数控系统的电源连接介绍 4.数控系统与主轴单元的连接及控制信号 5.数字伺服的原理
6.I/O连接
典型数控系统 的结构和原理
课题四:系统的参数及设定
1.参数的意义
2.参数的显示、输入方法及存储
模块三 典型数控系统的结构和原理
课题三 Fanuc-0ib系统的构成、硬件连接
串 行 主 轴 接 系 口 统 : 与 主 轴 间 采 用 串 行 电 缆 通 讯
模块三 典型数控系统的结构和原理
课题三 Fanuc-0ib系统的构成、硬件连接
模拟主轴的接口及信号
主板的接口,插针的 定义
模块三 典型数控系统的结构和原理
1.显示功能(display) 2.操作功能(operation) 3.操作方式 4.驱动及轴的配置 5.主轴配置功能 6.CNC编程 7.PLC编程 8.存储能力 9.数据交换 10.安全和诊断功能
典型数控系统 的结构和原理
课题七.SINUMERIC 840C系统的 结构及各部分的功能
1.系统介绍 2.各模块的功能 3.系统的连接 4.驱动模块
模块三 典型数控系统的结构和原理
课题二 Fanuc-0i系统功能介绍
CNC内装PMC编程功能 PMC对机床和外部设备进行程序控制。
PMC-SA1 5μs/step 5000steps PMC-SB7 0.033μs/step 24000steps(限于0i)
模块三 典型数控系统的结构和原理
课题二 Fanuc-0i系统功能介绍
模块三 典型数控系统的结构和原理
课题二 Fanuc-0i系统功能介绍
值等尺寸,这些尺寸在 零件图上指定,这样能简化部件加工程序的编程。
模块三 典型数控系统的结构和原理
课题二 Fanuc-0i系统功能介绍
记忆型螺距误差补偿 利用该补偿功能,可对丝杠螺距误差等机械系统中的误差进行补偿, 补偿数据以参数的形式存储在CNC的存储器中。
数 控 系 统 的 电 源 连 接
模块三 典型数控系统的结构和原理
课题三 Fanuc-0ib系统的构成、硬件连接 数控系统与主轴单元的连接及控制信号
系统提供两种控制方式
1)串行主轴接口: 系统与主轴间采用串行电缆通讯 2)模拟主轴接口: 系统向主轴单元提供指令电压及其他控制指令, 主轴单元向系统输出其状态
系 统 构 成
机床I/F插座 显示器插座
机床I/F插座 机床I/F插座 机床I/F插座
机床I/F插座
模块三 典型数控系统的结构和原理
课题三 Fanuc-0ib系统的构成、硬件连接
综 合 联 线
系统模块
与系 统连 接的 伺系 统, 及外 围部 件
模块三 典型数控系统的结构和原理
课题三 Fanuc-0ib系统的构成、硬件连接
模块三 典型数控系统的结构和原理
课题二 Fanuc-0i系统功能介绍 FANUC伺服电机:i系列
模块三 典型数控系统的结构和原理
课题三 Fanuc-0ib系统的构成、硬件连接
存储卡插槽 显示状态/报警 的LED 显示状态/报警 的LED 保 险 I/O 设备 I/F 插座 电源指示灯 电源插座 显示状态/报警 的LED 显示状态/报警 的LED 显示状态/报警 的LED 显示状态/报警 的LED 显示状态/报警 的LED 显示状态/报警 的LED
典型数控系统 的结构和原理
淮南联合大学机电系 制作:CQX
典型数控系统 的结构和原理
本章学习内容
课题一:数控系统的发展简介 课题二:Fanuc-oi系统功能介绍 课题三:fanuc_0ib系统的构成、硬件连接
课题四:系统的参数及设定
课题五:I/O接口及PMC编程 课题六:SINUMERIC 840D特点介绍,及主要功能 课题七:SINUMERIC 840C系统的结构及各部分的功能