1拉普拉斯方程边值问题的提法
数理方程与特殊函数教学大纲

数理方程与特殊函数课程简介:本课程为电子与通信工程类专业的基础课。
学分2,周学时2。
本课程由“数学物理方程”与“特殊函数”两大部分组成。
“数学物理方程”讲授物理学的一个分支——数学与物理所涉及的偏微分方程。
主要介绍物理学中常见的三类偏微分方程及其有关的定解问题和这些问题的几种常用解法。
“特殊函数”讲授贝塞尔函数与勒让德多项式,以及如何利用这两种特殊函数来解决数学物理方程的一些定解问题的过程。
教学目的与基本要求:通过数理方程与特殊函数课程的学习,使学生系统的掌握工程数学中数学物理方法的知识和技能,培养学生分析问题解决问题的能力,为后续课程的学习及研究奠定重要的数学基础。
本课程的先修课程为:高等数学,复变函数,积分变换主要教学方法:课堂讲授与课外习题。
第零章预备知识(4学时)复习先修课程中相关的一些内容,主要包括:二阶线性常微分方程解的结构以及常系数情形解的求法;积分学中的一些重要公式和技巧;傅里叶(Fourier)分析;解析函数的极点及其留数;拉普拉斯(Laplace)变换。
第一章典型方程和定解条件的推导(4学时)在讨论数学物理方程的求解之前,应建立描述某种物理过程的微分方程,再把一个特定物理现象所具有的具体条件用数学形式表达出来。
本章学习的重点和难点是了解数学物理方程的推导及定解问题的确定过程,学会推导一些简单物理过程的微分方程并能确定某些具体物理现象的定解条件。
第一节基本方程的建立通过几个不同的物理模型,推导出数学物理方程中的三种典型偏微分方程:波动方程、电磁场方程和热传导方程。
第二节初始条件与边界条件方程决定了物理规律的数学形式,但具体的物理问题所具有的特定条件也应用数学形式表达出来。
用以说明某一具体物理现象的初始状态的条件称为初始条件,用以说明其边界上约束情况的条件称为边界条件。
第三节定解问题的提法由于每一个物理过程都处在特定的条件之下,所以我们要求出偏微分方程适合某些特定条件的解。
初始条件和边界条件都称为定解条件。
数理方程:第10讲格林函数法

的解如果存在, 必可以表示为
uM0
f
u
v
1
n 4
1 n rM0M
dS
u
n
4
1 rM 0M
v dS
令 GM , M0 4
1 v, 则
rM0M
uM 0
u
GdS n
GM , M 0 称为拉普拉斯方程的格林函数.
如果能找到格林函数中的 v , 并且它在
上有一阶连续偏导数,
则狄利克雷问题 2u 0, u
u | f
格林公式中取 u 为上述调和函数, v 1 , 则
有解的必un要dS条件0.为所函以数紐曼满f内足问题(
u n
|)有f
fdS 0
事实上, 这也是紐曼内问题有解的充分条件.
2) 拉普拉斯方程解的唯一性问题
设 u1 , u2 是定解问题的两个解,则它们的
差 v u1 u2 必是原问题满足零边界条件的
(u2v v2u)dV
(u
v n
v
u n
)dS
可得
v u
(u
n
v
n
)dS
0
与
u
M
0
1
4
u
M
n
1 rM0M
1 rM0M
u M
n
dS
相加得
u M0
u
v
n
1
4
1 n rM0M
1
4
rM
0M
v
u n
dS
如果能找到调和函数 那么上式意味着
v
,
使得
v
|
4
1
rM0M
,
uM0
第五章 格林函数法

1 上, v 是任意可导的。 r
为了利用格林公式,我们在 内挖去 M 的球形邻 0 域 K , 是其球面 . 在区域 内及其边界 K
1 1 u r u 林 公 dS 0 4.2 格 式 n r n 在球面 , 上 令 0则 1/ r 1/ r 1 1 2u 2 n0 r r 0 lim 0 u uM lim 0 4 n 于是 因此 1 1/ r 1 1 1 1 u 2M dS 2 udS u 4 4 dS u u M 0 u u M 2 r n 4 r r n M M M M 0 0 同理可得 调和函数的积分表达式 1 u 1 u u dS dS 4 r n n n 因此
grad u grad v dV
u vdV
2
n
n
第二格林公式
所以
v u2vdV u n dS grad u grad v dV 第一格林公式
5.2 格 林 公 式
1) 牛曼内问题有解的必要条件 设u是在以 为边界的区域 内的调和函数 , 在 上有一阶连续偏导数 , 则在第二格林公式 u 中取 u 为上述调和函数, v ,则有 . dS 0 1 n u f 所以牛曼内问题( )有解的必要条件为函数 f满
v Qx, y, z u y
v R x, y , z u z
则
P, Q, R C C1
将 P, Q, R 代入高斯公式,等式右端为
拉普拉斯方程的完整求解

拉普拉斯方程的完整求解拉普拉斯方程是一种常见的偏微分方程,在数学、物理、工程等领域都有广泛的应用。
它描述了一个物理系统中的稳态情况,即在没有时间变化的情况下,物理量的分布情况。
在本文中,我们将介绍拉普拉斯方程的完整求解方法,包括数学推导和物理应用。
一、数学推导拉普拉斯方程的一般形式为:∇^2ϕ=0其中,∇^2为拉普拉斯算子,表示对空间中各个方向的二阶导数之和。
ϕ为待求函数。
为了求解该方程,我们需要先确定边界条件。
边界条件指的是在物理系统的边界上,待求函数的取值或导数的取值已知。
常见的边界条件包括:1. Dirichlet 边界条件:在边界上,待求函数的取值已知。
2. Neumann 边界条件:在边界上,待求函数的法向导数已知。
3. Robin 边界条件:在边界上,待求函数的取值或法向导数与外界参数成比例。
根据不同的边界条件,我们可以采用不同的数学方法求解拉普拉斯方程。
下面我们分别介绍三种常见的方法。
1. 分离变量法当边界条件为 Dirichlet 边界条件时,我们可以采用分离变量法求解拉普拉斯方程。
具体来说,我们假设待求函数可以表示为以下形式:ϕ(x,y,z)=X(x)Y(y)Z(z)将该式代入拉普拉斯方程,得到:X''/X+Y''/Y+Z''/Z=0由于等式左侧的三个部分只依赖于x、y、z 中的一个,因此它们必须都等于一个常数λ。
于是我们得到三个独立的常微分方程:X''+λX=0Y''+λY=0Z''+λZ=0这些方程的解分别为:X(x)=Asin(√λx)+Bcos(√λx)Y(y)=Csin(√λy)+Dcos(√λy)Z(z)=Esin(√λz)+Fcos(√λz)其中,A、B、C、D、E、F 为待定常数。
将这些解代入待求函数的表达式中,再利用边界条件,我们就可以求出这些常数,从而得到完整的解。
数学物理方程第10讲 格林函数法 叶葱

M(x,y,z)
v u (u v u)dV (u n v n )ds
现在的问题是, V(x,y,z)不包含M0这一点!!!! 所以运用公式时我们要挖去M0点(奇异点)
如何去除M0点??
最简单的,以M0为中心, ɛ 为半径作一个球面, 球面为Ƭɛ,球体积为Kɛ,挖去这样一个球。
1 u(M 0 ) 4 1 rMM 0 n 1 u ( M ) )ds rMM 0 n
(u(M )
我们要求区域内一点M0处的u, 要知道这个函数在区域边界Ƭ上的值 以及在Ƭ上的法向导数的值
1 r 1 u )ds 4u 4 ( u ) 0 根据 (u n r n n
0, lim u u(M 0 )
1 u(M 0 ) 4 1 rMM 0 n 1 u ( M ) )ds rMM 0 n
(u(M )
调和函数的积分表达式
M0(x0,y0,z0)
M(x,y,z)
考虑球面Ƭɛ上,即M点在球面,此时r=ɛ
1 1 r r 1 1 n r r2 2
1 r ds 1 u n 2
uds r 1 u )ds ? (u n r n
2 2
第二格林公式
现在我们求解u(x,y,z)
u0
2
Dirichlet 问题
u
f ( x, y , z )
求出调和函数 的积分表达式
首先构造一个辅助函数
M0(x0,y0,z0) r
M(X,Y,Z)
1 1 v( x, y, z) 2 2 2 r ( x x0 ) ( y y0 ) ( z z0 )
拉普拉斯方程的格林函数法

则 u(M 0)u (M ) n(4整r 1 M 理M 课0 件v)d S
19
2v0,in
令G(M,M0)41rM1M0 v, 其中调和函数v满足v4r1MM0
则 u(M0)u(M)G ndS.
称 G ( M ,M 0 ) 为 三 维 L a p l a c e 方 程 狄 氏 问 题 的 格 林 函 数 。 这 种 由 格 林 函 数 或 其 导 数 的 积 分 来 表 示 解 的 方 法 称 为 格 林 函 数 法 。
的 值 来 表 示 。
2) 若 M0为 外 或 边 界 上 的 点 , 类 似 推 导 有
u(M)nrM 1M0
1 rMM0
u ndS 24uu(0 (M , M00 M )), , 0在 M M 00在 在 外 上 内
整理课件
13
3 ) 若 u C 2 ( ) C 1 ( ) , 且 2 u = F , 我 们 可 以 得 到 类 似 公 式
取 v1,则 可 得 牛 曼 问 题 u n=f有 解 的 必 要 条 件 是 fdS0
整理课件
14
(3)平均值公式
定 理 : 设 函 数 u(M )在 区 域 内 调 和 的 , M 0(x0,y0,z0)为 其 中 任 一 点 ,
Ka表 示 以 M 0(x0,y0,z0)为 中 心 , 以 a为 半 径 且 完 全 落 在 内 部 的 球 面 ,
整理课件
15
(4)Laplace方程解的唯一性问题
定 理 : 狄 氏 问 题 在 C 2 ( )C 1 ( ) 内 解 唯 一 , 牛 曼 问 题 除 相 差 一 个
常 数 外 解 也 是 唯 一 确 定 的 。
证明:
设 u1,u2为 上 述 两 类 问 题 的 解 , 则 它 们 的 差 vu1u2必 是 原 问 题 的 满 足 零 边 界 条 件 的 解 , 即 对 于
拉普拉斯(laplace)变换法解常微分方程的初值问题

拉普拉斯(laplace)变换法解常微分方程的初值问题要求:拉普拉斯变换是求解微分方程和求解初值问题的有力工具。
本文将讨论拉普拉斯变换及其在求解常微分方程初值问题中的应用。
拉普拉斯变换是一种数学工具,用于将函数从时域变换到频域。
它是以18世纪法国数学家皮埃尔·西蒙·拉普拉斯的名字命名的。
函数f(t)的拉普拉斯变换定义为F(s) = L{f(t)} = ∫_0^∞ f(t) exp(-st) dts是复数。
拉普拉斯逆变换由f(t) =L^-1 {F(s)}=∫_\infty^s F(s) exp(st) ds拉普拉斯变换是求解常微分方程的有力工具。
基本思想是通过拉普拉斯变换将给定的ODE从时域转换到频域。
然后我们可以解变换后的方程用拉普拉斯逆变换将解变换回时域。
ode的初值问题也可以用拉普拉斯变换来解决。
假设我们想解初值问题y'(t) + ay(t) = g(t)y(0) = y_0其中a y_0和g(t)是已知的。
我们可以对方程两边做拉普拉斯变换得到sY(s) - y_0 + aY(s) = ∫_0^∞ g(t) exp(-st) dt或者Y(s) = [1/(s+a)]∫_0^∞ g(t) exp(-st) dt + {y_0/ (s+a)}然后我们就可以解出Y(s)并进行拉普拉斯逆变换来得到初值问题的解y(t) = L^-1 {Y(s)}= ∫_\infty^s {[1/(s+a)]∫_0^∞ g(t) exp(-st) dt + {y_0/ (s+a)}}exp(st) ds这给了我们初值问题的解,以卷积积分的形式。
总之,拉普拉斯变换是求解常微分方程初值问题的有力工具。
它不仅方便,使用起来相对简单,而且为我们提供了一个精确的通用解。
此外,拉普拉斯变换还可用于求解偏微分方程的初值问题,使其更加实用。
拉普拉斯算符的运算法则

拉普拉斯算符的运算法则1.基本法则:(1)加法性:对于两个标量函数f(x,y,z)和g(x,y,z),拉普拉斯算符满足∇²(f+g)=∇²f+∇²g。
(2)标量函数乘法法则:对于一个标量函数 f(x, y, z) 和一个常数 k,拉普拉斯算符满足∇²(kf) = k∇²f。
(3)链式法则:对于两个函数f(x,y,z)和g(t),其中f只依赖于变量t,而g只依赖于变量x、y和z,拉普拉斯算符满足∇²(f∘g)=(∇²f)⋅g+2(∇f)⋅(∇g)+f(∇²g)。
(4)乘积法则:对于两个函数 f(x, y, z) 和 g(x, y, z),拉普拉斯算符满足∇²(fg) = f∇²g + g∇²f + 2(∇f)⋅(∇g)。
2.定解问题法则:在求解偏微分方程时,拉普拉斯算符的运算法则还包括定解问题法则。
(1)边值定解问题法则:在求解偏微分方程的边值问题时,根据拉普拉斯算符的性质,我们可以通过给定边界值来确定解的行为。
比如,在求解二维泊松方程时,可以通过在边界上给定函数值来确定解的形状。
(2)初始条件定解问题法则:在求解时间相关的偏微分方程时,除了边值条件外,还需要给定初始条件。
在这种情况下,需要将初值问题转化为一个定解问题,通过迭代求解来确定解的行为。
(3)分离变量法:对于一些特殊的偏微分方程,我们可以使用分离变量法来求解,其中包括将解表示为两个或多个独立变量的乘积形式,然后逐个求解子问题。
总结起来,拉普拉斯算符的运算法则包括基本法则和定解问题法则。
基本法则是对于标量函数的运算法则,包括加法性、标量函数乘法法则、链式法则和乘积法则。
定解问题法则是在求解偏微分方程时的运算法则,包括边值定解问题法则、初始条件定解问题法则和分离变量法。
这些运算法则是求解偏微分方程和计算物理量的重要工具,对于理解和应用偏微分方程具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章 拉普拉斯方程的格林函数法
在第二、三两章,我们较系统地介绍了求解数学物理方程的三种常用方法——分离变量法、行波法与积分变换法,本章我们来介绍拉普拉斯方程的格林函数法。
先讨论此方程解的一些重要性质,再建立格林函数的概念,然后通过格林函数建立拉普拉斯方程第一边值问题解的积分表达式。
§4.1 拉普拉斯方程边值问题的提法
在第一章,我们已从无源静电场的电位分布及稳恒温度场的温度分布两个问题推导出了三维拉普拉斯方程
2222
2220.u u u u x y z ¶¶¶Ñº++=¶¶¶ 作为描述稳定和平衡等物理现象的拉普拉斯方程,它不能提初始条件。
至于边界条件,如第一章所述的三种类型,应用得较多的是如下两种边值问题。
(1)第一边值问题 在空间(,,)x y z 中某一区域W 的边界G 上给定了连续函数f ,要求这样一个函数(,,)u x y z ,它的闭域W +G (或记作W )上连续,在W 内有二阶连续偏导数且满足拉普拉斯方程,在G 上与已知函数f 相重合,即 . (4.1)u f G =
第一边值问题也称为狄利克莱(Dirichlet )问题,或简称狄氏问题,§2.3中所讨论过的问题就是圆域内的狄氏问题。
拉普拉斯方程的连续解,也就是说,具有二阶连续偏导数并且满足拉普拉斯方程的连续函数,称为调和函数。
所以狄氏问题也可以换一种说法:在区域W 内找一个调和函数,它在边界G 上的值为已知。
(2)第二边值问题 在某光滑的闭曲面G 上给出连续函数f ,要求寻找这样一个函数(,,)u x y z ,它在G 内部的区域W 中是调和函数,在W +G 上连续,在G 上任一点处法向导数u n
¶¶存在,并且等于已知函数f 在该点的值: , (4.2)u
f n G
¶=¶
这里n 是G 的外法向矢量。
第二边值问题也称牛曼(Neumann )问题。
以上两个边值问题都是在边界G 上给定某些边界条件,在区域内部求拉普拉斯方程的解,这样的问题称为内问题。
在应用中我们还会遇到狄氏问题和牛曼问题的另一种提法。
例如,当确定某
物体外部的稳恒温度场时,就归结为在区域W 的外部求调和函数u ,使满足边界条件u f G =,这里G 是W 的边界,f 表示物体表面的温度分布。
像这样的定解问题称为拉普拉斯方程的外问题。
由于拉普拉斯方程的外问题是在无穷区域上给出的,定解问题的解是否应加以一定的限制?基于在电学上总是假定在无穷远处的电位为零,所以在外问题中常常要求附加如下条件:
lim (,,)0 (r u x y z r ®¥==
(3)狄氏外问题 在空间(,,)x y z 的某一闭曲面G 上给定连续函数f ,要找出这样一个函数(,,)u x y z ,它在G 的外部区域¢W 内调和,在¢W +G 上连续,当点(,,)x y z 趋于无穷远时,(,,)u x y z 满足条件(4.3),并且它在边界G 上取所给的函数值
. (4.4)u f G =
(4)牛曼外问题 在光滑的闭曲面G 上给定连续函数f ,要找出这样一个函数(,,)u x y z ,它在闭曲面G 的外部区域¢W 内调和,在¢W +G 上连续,在无穷远处满足条件(4.3),而且它在G 上任一点的法向导数u n ¶¢
¶存在,并满足 , (4.5)u
f n G
¶=¢¶
这里n ¢是边界曲面G 的内法向矢量。
下面我们重点讨论内问题,所用的方法也可以用于外问题。