人教版七年级数学上 第二章 整式的加减 单元检测卷 (6)
人教版数学七年级上册第二章整式的加减单元检测卷(含答案)

人教版数学七年级上学期第二章整式的加减测试一、选择题1.有理数a、b在数轴上的位置如图所示,则化简|a+b|-|a-b|的结果为()A. 2aB. -2bC. -2aD. 2b2.去括号后结果错误的是( )A (a+2b)=a+2b B. -(x-y+z)=-x+y-zC. 2(3m-n)=6m-2nD. -(a-b)=-a-b3.若单项式-12x2a-1y4与2xy4是同类项,则式子(1-a)2015等于()A. 0B. 1C. -1D. 1或-14.在去括号时,下列各式错误的是( )A. -[-(m+n)+m]=nB. m-(2m+3n)=-m-3nC. -[(4m-n)+2n]=-4m-nD. m-(m-n)=-n5.若多项式32281x x x-+-与多项式323253x mx x+-+的差不含二次项,则m等于()A 2 B. -2 C. 4 D. -46.若多项式11x5+16x2-1与多项式3x3+4mx2-15x+13的和不含二次项,则m等于( )A 2 B. -2 C. 4 D. -47.一个多项式加上x2y-3xy2得2x2y-xy2,则这个多项式是()A 3x2y-4xy2 B. x2y-4xy2 C. x2y+2xy2 D. -x2y-2xy28.单项式2x4-m y与6xy2的次数相同,则m的值为()A. 1B. 2C. 3D. 4二、填空题9.单项式−32πab c3的系数是_____,次数是_____.10.系数为-5,只含字母m、n的三次单项式有_____个,它们是______.11.单项式−22x y3的系数与次数之积为___________.12.有理数a、b、c在数轴上的对应点如图,化简代数式:|a-b|+|a+b|-2|c-a|=____.13.化简:-[-(a+b)]-[-(a-b)]=_____.14.已知单项式6x2y4与-3a2b m+2的次数相同,则m2-2m的值为_____.15.观察下列单项式:3a2、5a5、7a10、9a17、11a26…它们是按一定规律排列的,那么这列式子的第n个单项式是_____.16.化简:3(a-13b)-2(a+12b)=_____.三、解答题17.已知多项式-5x2a+1y2-14x3y3+13x4y.(1)求多项式中各项的系数和次数;(2)若多项式是7次多项式,求a的值.18.父母带着孩子(一家三口)去旅游,甲旅行社报价大人为a元,小孩为a2元;乙旅行社报价大人、小孩均为a元,但三人都按报价的90%收费,则乙旅行社收费比甲旅行社贵多少元?(结果用含a的代数式表示)19.已知(a-3)x2y|a|+(b+2)是关于x,y的五次单项式,求a2-3ab+b2的值.20.求k为多少时,代数式2x2+kxy-3y2-3xy-8中不含xy项.21.已知:A=2x2+3ax-2x-1,B=x2-x+1,若3A-6B的值与x的取值无关,求a的值.22.观察下列一串单项式的特点:xy,-2x2y,4x3y,-8x4y,16x5y,…(1)按此规律写出第9个单项式;(2)试猜想第n个单项式为多少?它的系数和次数分别是多少?23.若5a|x|b2与(y-2)a3b|y|是同类项,求x,y的值.24.十月二十日实验中学七年级师生准备到滨州农业培训基地接受培训.已知租一辆60座的大客车的租金为150元,租一辆45座的小客车的租金为126元,经数学兴趣小组李鑫同学的计算,需租用x辆60座的大客车,再租用比大客车少1辆的小客车,即可让全部师生都有座位,且各车刚好坐满,通过以上信息,你能表示出实验中学七年级师生共有多少人吗?需付多少元的租车费用?答案与解析一、选择题1.有理数a、b在数轴上的位置如图所示,则化简|a+b|-|a-b|的结果为()A. 2aB. -2bC. -2aD. 2b【答案】A【解析】试题分析:根据有理数a、b在数轴上的位置,可得,a<0,b>0,所以∣a∣<∣b∣,所以可得,a+b>0,a-b<0则=(a+b)+a-b=a+b+a-b=2a,故选A考点:1.数轴;2.绝对值2.去括号后结果错误的是( )A. (a+2b)=a+2bB. -(x-y+z)=-x+y-zC. 2(3m-n)=6m-2nD. -(a-b)=-a-b【答案】D【解析】【分析】根据去括号法则判断:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.【详解】A.(a+2b)=a+2b,故本选项正确;B.-(x-y+z)=-x+y-z,故本选项正确;C.2(3m-n)=6m-2n,故本选项正确;D.-(a-b)=-a+b,故本选项错误;故选D.【点睛】本题考查了去括号的法则,解题的关键是牢记法则,并能熟练运用,去括号时特别要注意符号的变化.3.若单项式-12x2a-1y4与2xy4是同类项,则式子(1-a)2015等于()A. 0B. 1C. -1D. 1或-1 【答案】A【解析】试题分析:利用同类项的定义求解即可.解:∵单项式﹣x 2a ﹣1y 4与2xy 4是同类项,∴2a ﹣1=1,解得a=1,∴(1﹣a)2015=0,故选A .考点:同类项.4.在去括号时,下列各式错误的是( )A. -[-(m+n)+m]=nB. m-(2m+3n)=-m-3nC. -[(4m-n)+2n]=-4m-nD. m-(m-n)=-n 【答案】D【解析】【分析】根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则.【详解】A 、原式=(m+n )-m=n ,计算正确,故本选项错误;B 、原式=m-2m-3n=-m-3n ,计算正确,故本选项错误;C 、原式=-(4m-n )-2n=-4m+n-2n=-4m-n ,计算正确,故本选项错误;D 、原式=m-m+n=n ,计算错误,故本选项正确;故选D .【点睛】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.5.若多项式32281x x x -+-与多项式323253x mx x +-+的差不含二次项,则m 等于( )A. 2B. -2C. 4D. -4 【答案】D【解析】【分析】用减法列式,即()32281x x x -+--()323253x mx x +-+,去括号合并同类项后,令二次项的系数等于0,即可求出m 的值.【详解】()32281x x x -+--(323253)x mx x +-+ =32322813253x x x x mx x -+---+-=()328264x m x x -+--+- ∵差不含二次项,∴820m --=,∴m =-4.故选D.【点睛】本题考查了整式的加减---无关型问题,解答本题的关键是理解题目中与字母x 的取值无关的意思,与哪一项无关,就是合并同类项后令其系数等于0.6.若多项式11x 5+16x 2-1与多项式3x 3+4mx 2-15x+13的和不含二次项,则m 等于( )A. 2B. -2C. 4D. -4【答案】D【解析】【分析】不含二次项,说明二次项的系数为0.【详解】(11x 5+16x 2-1)+(3x 3+4mx 2-15x+13)= 11x 5+16x 2-1+3x 3+4mx 2-15x+13= 11x 5+3x 3+(16+4m )x 2-15x+13,因为上式不含二次项,所以16+4m=0,解得m=-4,故选D .【点睛】本题考查的是整式的加减,根据题意把两多项式的二次项相加得到关于m 的方程是解答此题的关键.7.一个多项式加上x 2y-3xy 2得2x 2y-xy 2,则这个多项式是( )A. 3x 2y-4xy 2B. x 2y-4xy 2C. x 2y+2xy 2D. -x 2y-2xy 2 【答案】C【解析】试题分析:列代数式(2x 2y-xy 2)-(x 2y-3xy 2),然后去括号、合并同类项即可化简.即(2x 2y-xy 2)-(x 2y-3xy 2)=2x 2y-xy 2-x 2y+3xy 2=x 2y+2xy 2.故选C .考点:去括号,合并同类项8.单项式2x 4-m y 与6xy 2的次数相同,则m 的值为( )A. 1B. 2C. 3D. 4【答案】C【解析】【分析】根据两单项式的次数相同列出关于m 的方程,求出m 的值即可.【详解】∵单项式2x 4−m y 与6xy 2的次数相同,∴4−m=1,∴m=3,故答案选C.【点睛】本题考查了单项式,解题的关键是熟练的掌握单项式的相关知识点. 二、填空题9.单项式−32πab c 3的系数是_____,次数是_____. 【答案】3π-,6. 【解析】试题分析:∵单项式323ab c π-数字因数是3π-,所有字母指数的和=1+3+2=6,∴此单项式的系数是3π-,次数是6.故答案为3π-,6. 考点:单项式.10.系数为-5,只含字母m 、n 的三次单项式有_____个,它们是______.【答案】两个;-5m 2n 或-5mn 2.【解析】试题分析:单项式中前面的数字因数是单项式的系数 ,单项式中所有字母的指数和是单项式的次数,因此系数为-5,只含字母m 、n 的三次单项式可以是-5m 2n 或-5mn 2.共有两个.考点:单项式的系数与次数.11.单项式−22x y3的系数与次数之积为___________.【答案】-2【解析】【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.求出次数和系数,再将其相乘即可.【详解】解:根据单项式定义得:单项式的系数是﹣23,次数是3;其系数与次数之积为﹣23×3=﹣2.【点评】确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.12.有理数a、b、c在数轴上的对应点如图,化简代数式:|a-b|+|a+b|-2|c-a|=____.【答案】-2c【解析】【分析】根据数轴得出a<b<0<c,去掉绝对值符号,最后合并即可.【详解】∵从数轴可知:a<b<0<c,∴|a-b|+|a+b|-2|c-a|=b-a-a-b-2(c-a)=b-a-a-b-2c+2a=-2c.故答案为-2c.【点睛】本题考查了整式的加减,绝对值,数轴的应用,解此题的关键是能正确去掉绝对值符号.13.化简:-[-(a+b)]-[-(a-b)]=_____.【答案】2a【解析】【分析】先去小括号,再去中括号,最后合并整式中的同类项即可.【详解】-[-(a+b)]-[-(a-b)]=-[-a-b]-[- a+b]=a+b+a-b=2a.故答案为2a【点睛】本题考查了整式的加减、去括号法则,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.也考查了数轴与绝对值.14.已知单项式6x 2y 4与-3a 2b m+2次数相同,则m 2-2m 的值为_____.【答案】0【解析】分析】根据两个单项式的次数相同可得2+4=2+m+2,再解即可得到m 的值,进而可得答案.【详解】由题意得:2+4=2+m+2,解得:m=2,则m 2-2m=0.故答案为0.【点睛】此题主要考查了单项式,关键是掌握一个单项式中所有字母的指数的和叫做单项式的次数. 15.观察下列单项式:3a 2、5a 5、7a 10、9a 17、11a 26…它们是按一定规律排列的,那么这列式子的第n 个单项式是_____.【答案】(2n+1)21na + 【解析】【分析】先找出前3项的规律,然后通过后面的几项进行验证,找到规律得到答案即可.【详解】3a 2=(2×1+1)211a +, 5a 5=(2×2+1)221a +,7a 10=(2×3+1)231a +,… 第n 个单项式是:(2n+1)21na +, 故答案为(2n+1)21n a +.【点睛】本题考查了规律题——数字的变化类,根据前几项发现规律,通过观察发现每一项的系数与次数都与该项的序数有关是解题的关键.16.化简:3(a-13b)-2(a+12b)=_____. 【答案】a-2b【解析】【分析】先去括号,再合并同类项即可.【详解】原式=3a-b-2a-b= a-2b.故答案为a-2b【点睛】此题考查了整式的加减,即去括号,合并同类项,注意去括号时各项符号的变化.三、解答题17.已知多项式-5x2a+1y2-14x3y3+13x4y.(1)求多项式中各项的系数和次数;(2)若多项式是7次多项式,求a的值.【答案】(1)各项的系数分别为:-5,14-,13;各项的指数分别为:21a+, ,;(2)2a=.【解析】试题分析:(1)根据多项式次数、系数的定义即可得出答案;(2)根据次数是7,可得出关于a的方程,解出即可.试题解析:解:(1)-5x2a+l y2的系数是-5,次数是2a+3;14-x3y3的系数是14-,次数是6;13x4y的系数是13,次数是5;(2)因为多项式的次数是7次,可知-5x2a+1y2的次数是7, 即2a+1+2=7,解这个方程,得a=2.考点:多项式.18.父母带着孩子(一家三口)去旅游,甲旅行社报价大人为a元,小孩为a2元;乙旅行社报价大人、小孩均为a元,但三人都按报价的90%收费,则乙旅行社收费比甲旅行社贵多少元?(结果用含a的代数式表示) 【答案】乙旅行社收费比甲旅行社贵0.2a元.【解析】【分析】根据题意分别表示出甲乙两旅行社的费用,相减即可得到结果.详解】根据题意得:(a+a+a)×90%-(a+a+12 a)=2.7a-2.5a=0.2a(元),则乙旅行社收费比甲旅行社贵0.2a元.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.19.已知(a-3)x2y|a|+(b+2)是关于x,y的五次单项式,求a2-3ab+b2的值.【答案】-5.【解析】【分析】根据单项式及单项式次数的定义,可得出a、b的值,代入代数式即可得出答案.【详解】∵(a-3)x2y|a|+(b+2)是关于x,y的五次单项式,∴3230 aba⎧⎪-⎨⎪-≠⎩==,解得:32 ab-⎧⎨-⎩==,则a2-3ab+b2=9-18+4=-5.【点睛】本题考查了单项式的知识,属于基础题,掌握单项式的定义及单项式次数的定义是解答本题的关键.20.求k为多少时,代数式2x2+kxy-3y2-3xy-8中不含xy项.【答案】k=3.【解析】【分析】先合并同类项得2x2+(k-3)xy-3y2-8,再根据题意得到k-3=0,然后解方程即可.【详解】合并同类项得2x2+(k-3)xy-3y2-8,因代数式2x2+kxy-3y2-3xy-8不含xy项,所以k-3=0,所以k=3.【点睛】本题考查了合并同类项:合并同类项就是把同类项的系数相加减,字母和字母的指数不变.21.已知:A=2x2+3ax-2x-1,B=x2-x+1,若3A-6B的值与x的取值无关,求a的值.【答案】a=0.【解析】【分析】根据题意得出3A-6B的表达式,再令x的系数为0即可.【详解】3A-6B=3(2x2+3ax-2x-1)-6(x2-x+1)=6x2+9ax-6x-3-6x2+6x-6=9ax-9,因为3A-6B的值与x取值无关,所以9a=0,所以a=0.【点睛】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.22.观察下列一串单项式的特点:xy,-2x2y,4x3y,-8x4y,16x5y,…(1)按此规律写出第9个单项式;(2)试猜想第n个单项式为多少?它的系数和次数分别是多少?【答案】(1)256x9y;(2)(﹣1)n+12n﹣1x n y,它的系数是(﹣1)n+12n﹣1,次数是n+1.【解析】试题分析:(1)通过观察可得:n为偶数时,单项式的系数为负数,x的指数为n时,系数的绝对值是2n-1,由此即可解答本题;(2)先根据已知确定出第n个单项式,然后再根据单项式的系数是指单项式的数字因数,次数是所有字母指数的和解答即可.试题解析:(1)∵当n=1时,xy,当n=2时,﹣2x2y,当n=3时,4x3y,当n=4时,﹣8x4y,当n=5时,16x5y,∴第9个单项式是29﹣1x9y,即256x9y;(2)∵n为偶数时,单项式的系数为负数,x的指数为n时,系数为2n﹣1,单项式为-2n﹣1x n y,当n为奇数时的单项式为2n﹣1x n y,所以第n个单项式为(﹣1)n+12n﹣1x n y,它的系数是(﹣1)n+12n﹣1,次数是n+1.【点睛】本题考查的是单项式,根据题意找出各式子的规律是解答此题的关键.23.若5a|x|b2与(y-2)a3b|y|是同类项,求x,y的值.【答案】x=±3,y=-2.【解析】【分析】直接利用同类项法则得出|x|=3,|y|=2,y-2≠0,求出即可.【详解】因为5a|x|b2与(y-2)a3b|y|是同类项,所以|x|=3,|y|=2,y-2≠0,所以x=±3,y=-2.【点睛】此题主要考查了同类项,正确把握定义是解题关键.24.十月二十日实验中学七年级师生准备到滨州农业培训基地接受培训.已知租一辆60座的大客车的租金为150元,租一辆45座的小客车的租金为126元,经数学兴趣小组李鑫同学的计算,需租用x辆60座的大客车,再租用比大客车少1辆的小客车,即可让全部师生都有座位,且各车刚好坐满,通过以上信息,你能表示出实验中学七年级师生共有多少人吗?需付多少元的租车费用?【答案】共有(105x-45)人,需付(276x-126)元的租车费用.【解析】【分析】需租用x辆60座的大客车,再租用比大客车少1辆的小客车,所以共有60x+45(x-1)人,再由大客车的租金为 150元,租一辆45座的小客车的租金为126元可得出租车费用.【详解】由题意得60x+45(x-1)=(105x-45)人;150x+126(x-1)=(276x-126)(元).答:实验中学七年级师生共有(105x-45)人,需付(276x-126)元的租车费用.【点睛】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.。
七年级数学上册《第二章 整式的加减》单元测试卷及答案(人教版)

七年级数学上册《第二章整式的加减》单元测试卷及答案(人教版) 一、单选题1.整式:中,单项式有()A.2个B.3个C.4个D.5个2.计算aa5﹣(2a3)2的结果为()A.a6﹣2a5B.﹣a6C.a6﹣4a5D.﹣3a63.下面不是同类项的是()A.-2与12B.m与nC.−3m2n与m2n D.−m2n2与12m2n24.已知:a+b=m,ab=﹣4,化简(a﹣2)(b﹣2)的结果是()A.6 B.2m﹣8 C.2m D.﹣2m5.下列各式中,去括号正确的是()A.−(2x+y)=−2x+y B.2(x−y)=2x−yC.3x−(2y+z)=3x−2y−z D.x−(−y+z)=x−y−z6.当(m+n)2+2004取最小值时,m2﹣n2+2|m|﹣2|n|=()A.0 B.-1C.0或﹣1 D.以上答案都不对7.关于x,y的多项式2mxy2−3x4−2y2与x4−xy2+5的和不含三次项,则m的值为()A.−13B.12C.−12D.08.在①+(+1)与﹣(﹣1);②﹣(+1)与+(﹣1);③+(+1)与﹣|﹣1|;④+|﹣1|与﹣(﹣1)中,互为相反数的是()A.①B.②C.③D.④二、填空题9.−2a3bc5的系数是,次数是.10.-a-(b+c)的相反数为.11.去括号: a−(−2b+c)=.12.若单项式−x n y3与单项式15x2y m的和仍然是一个单项式A,则A=13.三个连续奇数中,最小的一个是2n﹣1,则这三个连续奇数的和是.14.计算:(1)-36×( 712−59−14 )(2)23 a 2-8a- 12 +6a- 23 a 2+ 3215.先化简,再求值:2(a 2b+ab 2)﹣3(a 2b ﹣1)﹣2ab 2﹣4其中a =2019,b = 12019 .16.已知有理数 a 、b 、c 在数轴上的位置如图,化简: |a|−|a +b|+|c −a|+|b +c|17.已知A =2x 2−x +6,B =3x 2−4x −1求2A +B .18.已知﹣4xy n+1与52x m y 4是同类项,求2m+n 的值.19.某同学在做一道数学题:“已知两个多项式A 、B ,其中B=4x 2−5x +6,试求A -B ”时,把“A -B ”看成了“A+B ”,结果求出的答案是−7x 2+10x +12,请你帮他求出“A -B ”的正确答案.20.已知A=3a 2b-2ab 2+abc ,小明同学错将“2A-B ”看成“2A+B ”,算得结果为4a 2b-3ab 2+4abc .(1)求出2A-B 的结果;(2)小强同学说(1)中的结果的大小与c 的取值无关,正确吗?若a=18 ,b= 15 求(1)中式子的值.1.B2.D3.B4.D5.C6.A7.B8.C9.﹣ ;510.a +b +c11.a +2b −c12.−45x 2y 313.6n+314.(1)解:原式=-36× 712 -36×( −59 )-36×( −14 )=-21+ 20+9=8(2)解:原式=( 23 a 2- 23 a 2)+(-8a+6a)+( −12+32 ) =-2a+115.解:原式= 2a 2b +2ab 2−3a 2b +3−2ab 2−4=−a 2b −1当a =2019,b = 12019 时原式= −20192×12019−1=−2019−1=−202016.解:由数轴可得:原式=-a-[-(a+b )]+c-a-(b+c )=-a .17.解:2A +B =2(2x 2−x +6)+(3x 2−4x −1)=4x 2−2x +12+3x 2−4x −1=7x 2−6x +11.18.解:由题意得:m=1,n+1=4解得:m=1,n=3.∴2m+n=5.19.解:∵B=4x2-5x+6,求A-B时,把A-B看成了A+B,且结果是-7x2+10x+12 ∴A=-7x2+10x+12-4x2+5x-6=-11x2+15x+6∴A-B=-11x2+15x+6-4x2+5x-6=-15x2+20x.20.(1)解:∵2A+B=4a2b-3ab2+4abc∴B=4a2b-3ab2+4abc-2A=4a2b-3ab2+4abc-2(3a2b-2ab2+abc)=4a2b-3ab2+4abc-6a2b+4ab2-2abc= −2a2b+ab2+2abc2A-B=2(3a2b-2ab2+abc)-( −2a2b+ab2+2abc )=6a2b-4ab2+2abc +2a2b−ab2−2abc= 8a2b−5ab2(2)解:小强说的正确,因为化简后与c无关;a= 18,b= 15时,原式= 8×(18)2×15−5×18×(15)2=140−140=0。
人教版数学七年级上册第二章整式的加减《单元综合测试卷》含答案

人教版数学七年级上学期第二章整式的加减测试一.选择题(共10小题)1.下列说法中,正确的是( ) A. 24m n 不是整式 B. ﹣32abc 的系数是﹣3,次数是3 C. 3是单项式D. 多项式2x 2y ﹣xy 是五次二项式 2.下列每组单项式中是同类项的是( )A. 2xy 与﹣13yx B. 3x 2y 与﹣2xy 2 C. 12x -与﹣2xy D. xy 与yz 3.下列各式合并同类项结果正确的是( )A. 3x 2﹣x 2=3B. 3x 2+5x 3=8x 3C. 3a 2﹣a 2=aD. 3a 2﹣a 2=2a 2 4.下列说法正确的是 ( )A. x 系数是0B. y 不是单项式C. 0.5是单项式D. -5a 的系数是5 5.单项式2a 3b 的次数是( )A 2B. 3C. 4D. 5 6.在代数式 a+b ,37x 2,5a ,m ,0,3a b a b +-,32x y -中,单项式的个数是( ) A. 6B. 5C. 4D. 3 7.对于式子:22x y +,2a b ,12,3x 2+5x -2,abc,0,2x y x +,m ,下列说法正确的是( ) A. 有5个单项式,1个多项式 B. 有3个单项式,2个多项式C. 有4个单项式,2个多项式D. 有7个整式 8.若代数式2x a y 3z c 与4212b x y z -是同类项,则( ) A. a=4,b=2,c=3B. a=4,b=4,c=3C. a=4,b=3,c=2D. a=4,b=3,c=4 9.多项式()1472m x m x --+是关于x 四次三项式,则m 的值是( ) A. 4 B. -2 C. -4 D. 4或-410.一个多项式减去x 2﹣2y 2等于x 2+y 2,则这个多项式是( )A. ﹣2x 2+y 2B. 2x 2﹣y 2C. x 2﹣2y 2D. ﹣x 2+2y 2二.填空题(共6小题) 11.225ab π-系数是________,次数是_______次; 12.把a ﹣b 当作一个因式,则3(a ﹣b)+4(a ﹣b)2﹣2(a ﹣b)﹣3(a ﹣b)2﹣(a ﹣b)2=_____.13.如果单项式a 13x y +与3b 2x y 是同类项,那么b a =____.14.若单项式﹣x m ﹣2y 3与23x n y 2m ﹣3n 的和仍是单项式,则m ﹣n =_____. 15.多项式2x 3-x 2y 2-3xy+x-1是__________次_________项式.16.一个多项式与单项式﹣4x 的差等于3x 2﹣2x ﹣1,那么这个多项式为_____.三.解答题(共7小题)17.先化简,再求值.()22222122322233x x xy y x xy y ⎡⎤⎛⎫--++--- ⎪⎢⎥⎝⎭⎣⎦,其中x =12,y =﹣1. 18.若2x m y 2﹣(n ﹣3)x+1是关于x 、y 的三次二项式,求m 、n 的值.19.已知多项式﹣3x 2+mx+nx 2﹣x+3的值与x 无关,求(2m ﹣n)2017的值.20.已知单项式﹣25m 2x ﹣1n 9和25m 5n 3y 是同类项,求代数式12x ﹣5y 的值. 21.某村小麦种植面积是a 公顷,水稻种植面积比小麦种植面积的2倍还多25公顷,玉米的种植面积比小麦种植面积少5公顷,列式计算水稻种植面积比玉米种植面积多多少公顷?22.当x=-12,y=-3时,求代数式 3(x 2﹣2xy)﹣[3x 2﹣2y+2(xy+y)]的值. 23.定义:若a b 2+=,则称a 与b 是关于1平衡数.(1)3与______是关于1的平衡数,5x -与______是关于1的平衡数.(用含x 的代数式表示)(2)若()22a 2x 3x x 4=-++,()2b 2x 3x 4x x 2⎡⎤=--+-⎣⎦,判断a 与b 是否是关于1 的平衡数,并说明理由.答案与解析一.选择题(共10小题)1.下列说法中,正确的是( )A.24m n不是整式 B. ﹣32abc的系数是﹣3,次数是3C. 3是单项式D. 多项式2x2y﹣xy是五次二项式【答案】C【解析】【分析】由数或字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式;系数就是一个单项式中的常数项;次数是指所有字母的指数之和;多项式的项数是指这个多项式中单项式的个数;多项式中各单项式的最高次数作为这个多项式的次数.【详解】根据定义可知:24m n是整式;﹣32abc的系数是﹣32,次数是3;多项式2x2y﹣xy是三次二项式;故选择C.2.下列每组单项式中是同类项是( )A. 2xy与﹣13yx B. 3x2y与﹣2xy2C.12x与﹣2xy D. xy与yz【答案】A【解析】【分析】根据同类项的概念(所含字母相同,并且相同字母的指数也相同)进行判断.【详解】A选项:2xy与﹣13yx含字母相同,并且相同字母指数也相同,所以是同类项,故是正确的;B选项:3x2y与-2xy2所含字母相同,但相同字母的指数不同,所以不是同类项,故是错误的;C选项:-12x与﹣2xy所含字母不同,所以不是同类项,故是错误的;D选项:xy与yz所含字母不同,所以不是同类项,故是错误的;故选A.【点睛】考查同类项,掌握同类项的定义:所含字母相同,并且相同字母的指数也相同是解题的关键.3.下列各式合并同类项结果正确的是( )A. 3x2﹣x2=3B. 3x2+5x3=8x3C. 3a2﹣a2=aD. 3a2﹣a2=2a2【答案】D【解析】【分析】所含字母相同且相同字母的指数也相同的项为同类项,只有同类项才能合并,合并时各同类项系数相加减,字母及其指数不变.【详解】解:A,原式=2x2,故错误;B,原式已是最简式,无法再进行合并,故错误;C,原式=2a2,故错误;D,原式=2a2,故正确;故选D.【点睛】本题考查了合并同类项的概念.4.下列说法正确的是 ( )A. x的系数是0B. y不是单项式C. 0.5是单项式D. -5a的系数是5【答案】C【解析】A选项,∵的系数是1,∴A选项说法错误;B选项,∵单独的一个数或字母都是单项式,∴B选项说法错误;C选项,∵单独的一个数或字母都是单项式,∴C选项说法正确;D选项,∵5a 的系数是,∴D选项说法错误;故选C.5.单项式2a3b的次数是( )A. 2B. 3C. 4D. 5【答案】C【解析】分析:根据单项式的性质即可求出答案.详解:该单项式的次数为:3+1=4故选C .点睛:本题考查单项式的次数定义,解题的关键是熟练运用单项式的次数定义,本题属于基础题型. 6.在代数式 a+b ,37x 2,5a ,m ,0,3a b a b +-,32x y -中,单项式的个数是( ) A. 6B. 5C. 4D. 3 【答案】D【解析】【分析】根据单项式的概念判断即可.【详解】代数式a+b ,37x 2,5a ,﹣m ,0,3a b a b +-,32x y -中单项式有:37x 2,5a ,﹣m ,0,共计3个. 故选D.【点睛】考查的是单项式的概念,数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式. 7.对于式子:22x y +,2a b ,12,3x 2+5x -2,abc,0,2x y x +,m ,下列说法正确的是( ) A. 有5个单项式,1个多项式 B. 有3个单项式,2个多项式C. 有4个单项式,2个多项式D. 有7个整式 【答案】C【解析】分析:分别利用多项式以及单项式的定义分析得出答案. 详解:22x y +,2a b ,12,3x 2+5x ﹣2,abc,0,2x y x +,m 中:有4个单项式:12,abc,0,m ; 2个多项式:22x y +,3x 2+5x-2. 故选C .点睛:此题主要考查了多项式以及单项式,正确把握相关定义是解题关键.8.若代数式2x a y 3z c 与4212b x y z -是同类项,则( ) A. a=4,b=2,c=3B. a=4,b=4,c=3C. a=4,b=3,c=2D. a=4,b=3,c=4 【答案】C【解析】根据同类项的概念,含有相同的字母,相同字母的指数相同,故可由代数式2x a y 3z c 与4212b x y z -是同类项,求得a=4,b=3,c=2,故选C .9.多项式()1472m x m x --+是关于x 的四次三项式,则m 的值是( ) A. 4 B. -2 C. -4 D. 4或-4【答案】C【解析】 ∵多项式()1472m x m x --+是关于x 的四次三项式, ∴|m|=4,且m-4≠0,∴m=-4,故选C.【点睛】本题考查了与多项式有关的概念,解题的关键理解四次三项式的概念,多项式中每个单项式叫做多项式的项,有几项叫几项式,这些单项式中的最高次数,就是这个多项式的次数.10.一个多项式减去x 2﹣2y 2等于x 2+y 2,则这个多项式是( )A. ﹣2x 2+y 2B. 2x 2﹣y 2C. x 2﹣2y 2D. ﹣x 2+2y 2【答案】B【解析】【分析】根据:被减式=减式+差,列式计算即可得出答案.【详解】解:这个多项式为:x 2﹣2y 2+(x 2+y 2),=(1+1)x 2+(﹣2+1)y 2,=2x 2﹣y 2,故选B .【点睛】本题主要考查整式的加减.熟练应用整式加减法计算法则进行计算是解题的关键. 二.填空题(共6小题) 11.225ab π-的系数是________,次数是_______次; 【答案】 (1). 25π-(2). 3 【解析】 单项式225ab π-的系数是-25π,次数是3. 点睛:单项式的定义:不含加减号的代数式(数与字母的积的代数式),一个单独的数或字母也叫单项式.单项式中的数字因数叫做这个单项式的系数.所有字母的指数和叫做这个单项式的次数.12.把a ﹣b 当作一个因式,则3(a ﹣b)+4(a ﹣b)2﹣2(a ﹣b)﹣3(a ﹣b)2﹣(a ﹣b)2=_____.【答案】a ﹣b【解析】【分析】把a-b 看作是一个整体.合并同类项时系数相加减,字母与字母的指数不变.【详解】3(a-b)+4(a-b)2-2(a-b)-3(a-b)2-(a-b)2=(3-2)(a-b)+(4-3-1)(a-b)2=a-b .【点睛】利用整体思想,且灵活运用合并同类项法则是解题关键.13.如果单项式a 13x y +与3b 2x y 是同类项,那么b a =____.【答案】8【解析】【分析】根据同类项的定义可知,相同字母的次数相同,据此列出方程即可求出a 、b 的值.【详解】∵单项式a 13x y +与3b 2x y 是同类项,∴a 13{b 3+==, 解得a 2{b 3==. ∴b 3a 2=8=.故答案为8.14.若单项式﹣x m ﹣2y 3与23x n y 2m ﹣3n 的和仍是单项式,则m ﹣n =_____. 【答案】13. 【解析】 ∵单项式﹣x m ﹣2y 3与23x n y 2m ﹣3n 的和仍是单项式, ∴m ﹣2=n,2m ﹣3n=3,解得:m=3,n=1,∴m ﹣n =3﹣1=13; 故答案为13. 15.多项式2x 3-x 2y 2-3xy+x-1是__________次_________项式.【答案】 (1). 四 (2). 五【解析】【分析】根据多项式的次数和项数的定义直接进行解答即可.【详解】多项式2x 3﹣x 2y 2﹣3xy+x ﹣1是四次五项式.故答案为四,五.16.一个多项式与单项式﹣4x 的差等于3x 2﹣2x ﹣1,那么这个多项式为_____.【答案】3x 2﹣6x ﹣1【解析】【分析】根据题意列出关系式,去括号合并即可得到结果.【详解】根据题意得:(3x 2-2x-1)+(-4x)=3x 2-2x-1-4x=3x 2-6x-1,故答案是:3x 2-6x-1【点睛】考查了整式的加减,熟练掌握运算法则是解本题的关键.三.解答题(共7小题)17.先化简,再求值.()22222122322233x x xy y x xy y ⎡⎤⎛⎫--++--- ⎪⎢⎥⎝⎭⎣⎦,其中x =12,y =﹣1. 【答案】x 2+2y 2,94. 【解析】【分析】先去小括号,再去中括号,合并同类项,最后代入求出即可. 【详解】()22222122322233x x xy y x xy y ⎡⎤⎛⎫--++--- ⎪⎢⎥⎝⎭⎣⎦ =2x 2﹣[﹣x 2+2xy +2y 2]﹣2x 2+2xy +4y 2=2x 2+x 2﹣2xy ﹣2y 2﹣2x 2+2xy +4y 2=x 2+2y 2,当x=12,y=﹣1时,原式=14+2=94.【点睛】本题考查了整式的加减-化简求值,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.18.若2x m y2﹣(n﹣3)x+1是关于x、y的三次二项式,求m、n的值.【答案】m=1,n=3【解析】【分析】根据题意,由三次二项式的定义得出m+2=3,n-3=0,然后解得m,n,即可求得答案.【详解】∵2x m y2﹣(n﹣3)x+1是关于x、y的三次二项式,∴m+2=3,n﹣3=0,解得m=1,n=3.【点睛】考查学生对多项式的理解和掌握,要求学生对多项式的概念有正确深入的理解.19.已知多项式﹣3x2+mx+nx2﹣x+3的值与x无关,求(2m﹣n)2017的值.【答案】-1【解析】【分析】先把多项式进行合并同类项得(n-3)x2+(m-1)x+3,由于关于字母x的二次多项式-3x2+mx+nx2-x+3的值与x无关,即不含x的项,所以n-3=0,m-1=0,然后解出m、n,代入计算(2m-n)2017的值即可.【详解】合并同类项得(n﹣3)x2+(m﹣1)x+3,根据题意得n﹣3=0,m﹣1=0,解得m=1,n=3,所以(2m﹣n)2017=(﹣1)2017=﹣1.【点睛】考查了多项式及相关概念:几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.20.已知单项式﹣25m2x﹣1n9和25m5n3y是同类项,求代数式12x﹣5y的值.【答案】-13.5. 【解析】分析】首先根据同类项的定义求出x和y的值,然后代入代数式得出答案.【详解】解:∵单项式﹣25m2x﹣1n9和25m5n3y是同类项,∴2x﹣1=5,3y=9, ∴x=3,y=3,∴12x﹣5y=12×3﹣5×3=﹣13.5.【点睛】本题主要考查的是同类项的定义以及代数式的求值问题,属于基础题型.理解同类项的定义是解题的关键.21.某村小麦种植面积是a公顷,水稻种植面积比小麦种植面积的2倍还多25公顷,玉米的种植面积比小麦种植面积少5公顷,列式计算水稻种植面积比玉米种植面积多多少公顷?【答案】a+30公顷.【解析】试题分析:根据题意可得水稻种植面积为(2a+25)公顷,玉米种植面积为(a﹣5)公顷,求出水稻种植面积与玉米种植面积的差即可得出结果.试题解析:水稻种植面积为(2a+25)公顷,玉米种植面积为(a﹣5)公顷,则水稻种植面积比玉米种植面积大(2a+25)﹣(a﹣5)=2a+25﹣a+5=a+30(公顷).考点:整式的加减.22.当x=-12,y=-3时,求代数式3(x2﹣2xy)﹣[3x2﹣2y+2(xy+y)]的值.【答案】﹣12【解析】试题分析:本题应对代数式进行去括号,合并同类项,将代数式化为最简式,然后把x的值代入即可.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.解:原式=3x2﹣6xy﹣3x2+2y﹣2xy﹣2y=﹣8xy,当x=,y=﹣3时,原式=﹣12.考点:整式的加减—化简求值.23.定义:若a b2+=,则称a与b是关于1的平衡数.(1)3与______是关于1的平衡数,5x-与______是关于1的平衡数.(用含x的代数式表示)(2)若()22a 2x 3x x 4=-++,()2b 2x 3x 4x x 2⎡⎤=--+-⎣⎦,判断a 与b 是否是关于1 的平衡数,并说明理由.【答案】(1)﹣1;x ﹣3;(2)a 与b 不是关于1的平衡数【解析】【分析】(1)由平衡数的定义即可求得答案;(2)计算a+b 是否等于1即可.【详解】(1)设3的关于1的平衡数为a ,则3+a=2,解得a=﹣1, ∴3与﹣1是关于1的平衡数,设5﹣x 的关于1的平衡数为b ,则5﹣x+b=2,解得b=2﹣(5﹣x )=x ﹣3, ∴5﹣x 与x ﹣3是关于1的平衡数,故答案﹣1;x ﹣3;(2)a 与b 不是关于1的平衡数,理由如下:∵a=2x 2﹣3(x 2+x )+4,b=2x ﹣[3x ﹣(4x+x 2)﹣2],∴a+b=2x 2﹣3(x 2+x )+4+2x ﹣[3x ﹣(4x+x 2)﹣2]=2x 2﹣3x 2﹣3x+4+2x ﹣3x+4x+x 2+2=6≠2, ∴a 与b 不是关于1的平衡数.。
人教版七年级数学上册《第二章 整式的加减》单元测试卷-含参考答案

人教版七年级数学上册《第二章整式的加减》单元测试卷-含参考答案一、选择题1.下列多项式中,是二次三项式的是()A.-x2-y3B.x3-y3C.x2+2xy+y2D.x+y+72.下列各式:−15a2b2,12x−1,−25,1x,x−y2,a2−2ab,其中单项式的个数有()A.1个B.2个C.3个D.4个3.下列各组式子中,是同类项的为()A.2a与2b B.a2b与2ab2C.2ab与−3ba D.3a2b与a2bc 4.下列说法正确的是()A.4a3b的次数是3 B.多项式x2−1是二次三项式C.2a+b−1的各项分别为2a,b,1 D.−3ab2的系数是−35.下列各组中的两个项不属于...同类项的是()A.3x2y和−2x2y B.−xy和2yx C.-1和114D.a2和326.多项式x2−3kxy−3y2+13xy−8合并同类项后不含xy项,则k的值是()A.13B.16C.19D.07.下列计算正确的是()A.3a+2b=5ab B.5y2−2y=3yC.a+6a=6a2D.m2n−2nm2=−nm28.若2x2−3xy−1−(−x2−7xy+2)=Ax2−Bxy+C,则A,B,C的值分别为()A.3,4,3 B.1,10,1 C.3,4,-3 D.3,-4二、填空题9.若单项式−3ab的次数是.10.多项式3x2+x−22中的常数项是.11.计算-x2+ 2x2的结果是.12.若2x3y2和−x m y2是同类项,则m的值是.13.多项式2x3−5x2+x−1与多项式3x3+(2m−1)x2−5x+3的和不含x2项,则m=.三、解答题14.计算:(1)(x2﹣x+4)+(2x﹣4+3x2);(2)6ab﹣2a2b2+4+3ab2﹣(2+6ab﹣2a2b2).15.若关于x,y的多项式3x2﹣nx m+1y﹣x是一个三次三项式,且最高次项的系数是2,求m2+n3的值.16.先化简,再求值.2(x3−2y2)−(x−2y)−(x−4y2+2x3),其中x=−2,y=3.17.先化简,再求值:已知和(1)化简.(2)当,时,求的值.18.小丽放学回家后准备完成下面的题目:化简,发现系数“□”印刷不清楚.(1)她把“□”猜成3,请你化简;(2)她妈妈说:你猜错了,我看到该题的标准答案是6.请通过计算说明题中“□”是几.参考答案1.C2.B3.C4.D5.D6.C7.D8.D9.210.-111.x212.313.314.解:(1)原式=x2﹣x+4+2x﹣4+3x2=4x2+x.(2)原式=6ab﹣2a2b2+4+3ab2﹣2﹣6ab+2a2b2=6ab﹣6ab﹣2a2b2+2a2b2+3ab2﹣2+4=3ab2+2.15.解:∵关于x,y的多项式3x2﹣nx m+1y﹣x是一个三次三项式,且最高次项的系数是3,∴m+1=2,﹣n=2,解得:m=1,n=﹣2,∴m2+n3=1﹣8=﹣7.16.解:原式=2x3−4y2−x+2y−x+4y2−2x3=−2x+2y当x=−2,y=3时,原式=−2×(−2)+2×3=4+6=10.17.(1)解:(2)解:把,代入得:18.(1)解:;(2)解:设“□”是a∵标准答案是6∴.解得.∴题中“□”是5。
【6套试卷】人教版数学七年级上册第二章整式的加减单元测试及答案.doc

人教版数学七年级(上)第二章单元质量检测试卷、答案一、选择题(共10小题;共30分)1. 多项式的项数和次数分别为A. ,B. ,C. ,D. ,2. 下列计算正确的是A. B.C. D.3. 的结果是A. B. C. D.4. 若单项式的次数是,则的值是A. B. C. D.5. 今年学校运动会参加的人数是人,比去年增加,那么去年运动会参加的人数为人.A. B. C. D.6. 下列说法正确的是A. 与不是同类项B. 不是整式C. 单项式的系数是D. 是二次三项式7. 设某数为,那么代数式表示A. 某数的倍的平方减去除以B. 某数的倍减的一半C. 某数与的差的倍除以D. 某数平方的倍与的差的一半8. 用字母表示与的和除与的差为A. B. C. D.9. 观察下列数表:第一行第二行第三行第四行根据数表所反映的规律,第行第列交叉点上的数应为A. B. C. D.10. 下面每个表格中的四个数都是按相同规律填写的:根据此规律确定人教版初中数学七年级上册第2章《整式加减》单元测试卷及答案一、选择题(每小题3分,共30分)1.建军的作业本中有四道列代数式的题目,其中错误的是().A.减去5等于x的数是x+5 B.4与a的积的平方为4a2C.m与n的和的倒数为1m n+D.比x的立方的2倍小5的数是2x3-52.下列说法中,正确的是().A.15x+是多项式B.213xπ-的系数是13-C.2x2-1的项是2x2和1 D.3xy2-y2+6是三次三项式3.某企业今年1月份产值为x万元,2月份比1月份减少了10%,3月份比2月份增加了15%,则3月份的产值是().A.(1-10%)(1+15%)x万元B.(1-10%+15%)x万元C.(x-10%)(x+15%)万元D.(1+10%-15%)x万元4.敏敏手中的纸条上写着多项式a3+a x+1b-2a2b2,慧慧手中的纸条上写着单项式-a3 b4 c,若这两个式子的次数相等,则x的值为().3图1 图2A.5 B.6 C.7 D.85.若多项式m3+m x+1n-2m2n2与单项式-a3 b4 c的次数相等,则x的值为().A.5 B.6 C.7 D.85.一组数:2,1,3,x,7,y,23,…,满足“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a-b”,例如这组数中的第三个数“3”是由“2×2-1”得到的,那么这组数中y表示的数为().A.7 B.9 C.-7 D.-96.友龙在电脑中设置了一个运算程序:输入数a,加“⊗”键,再输入数b,得到运算a⊗b=2ab2+a2b. 若a=-2,b=3,则输出的值为().A.-9 B.-12 C.-24 D.67.有一个三位数,它的百位上的数字是a,十位上的数字比百位上的数字大1,个位上的数字比百位上的数字小1,则这个三位数一定是().A.2的倍数B.3的倍数C.5的倍数D.9的倍数8.已知y=x-1,则(x-y)2+(y-x)+1的值为().A.-1B.0 C.1 D.29.已知有理数a、b、c在数轴上的位置如图1所示,且a与b互为相反数,那么| a-c |-| b+c |的值为().A.0 B.1 C.a+b D.2c10.如图2,将一个边长为a的正方形纸片剪去两个小长方形,得到一个“”的图案,再将剪下的两个小长方形拼成一个新长方形,则新长方形的周长为().A.2a-3b B.4a-8b C.2a-4b D.4a-10b二、填空题(每小题3分,共24分)11.为鼓励节约用电,某地对居民用户用电收费标准作如下规定:每户每月用电若不超过100度,每度按a元收费;若超过100度,那么超过部分每度按b元收费. 某户居民在一个月内用电160度,那么该户居民这个月应缴纳电费____________元.12.已知单项式2a3b n+1与单项式-3a m-2b2的和仍是单项式,则3m-4n=_________. 13.如图3,要给这个长、宽、高分别为x、y、z的箱子打包,其打包方式如图所示. 则打包带的长至少要____________.(用含x、y、z的代数式表示)图图414.已知(a +6)2+|b 2-2b -3 |=0,则2b 2-4b -a 的值为_________.15.已知关于x 的多项式(a +b )x 4+(b -2)x 3-2 (a +1)x 2+2ax -15中,不含x 3项和x 2项,则当x =-2时,这个多项式的值为__________.16.观察下列关于x 的单项式,探究其规律:x ,3x 2,5x 3,7x 4,9x 5,11x 6,…按照上述规律,第100个单项式是________. 17.已知x=34-12,y=32,求-x +(px -y 2)-2(x -y 2)的值,龙龙在做题时,把x 的值看成x=34,但最后也算出了正确的结果,若计算过程无误,由此可判定p 的值为_______. 18.出租车收费的标准因地而异,A 市的标准为:起步价10元,3千米后每千米为1.2元;B 市的标准为:起步价8元,3千米后每千米为1.4元. 则在A 市乘坐出租车x(x >3)千米比在B 市乘坐相同路程的出租车多花___________元. 三、解答题(共66分) 19.(8分)老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个二次三项式,形式如下:(1)求所捂的二次三项式;(2)若x =-6,求所捂二次三项式的值.20.(8分)如图4,一只蚂蚁从点A 沿数轴向右爬2个单位到达点B. 若点A 表示的数a为32-,设点B 所表示的数为b .(1)求b 的值;(2)先化简223(2)[322()]a ab a b ab b ---++,再求值.21.(8分)已知A=-6x 2+4x ,B=-x 2-3x ,C=5x 2-7x +4,小明和小金在计算时对x 分别取了不同的数值,并进行了多次计算,但所得A -B +C 的结果却是一样的,你认为这可能吗?说明你的理由. 22.(10分)张、王、李三家合办一个股份制企业,总股数为(5a 2-3a +3),每股20元,张家持有(2a 2+1)股,王家比张家少(a -1)股. (1)求王家和李家分别持有的股数.(2)若年终按持有股15%的比例支付股利,当a =300时,问李家能获得多少钱?222(3)51x x x --=-+23.(10分)用同样大小的黑色棋子按如图所示的规律摆放:第1个第2个第3个第4个(1)填写下表:(2)归纳猜测第n个图形棋子的个数(用含n的代数式表示);(3)建军认为第671个图形有2016颗黑色棋子,你同意他的说法吗?请说明理由.24.(10分)观察代数式x-3x2+5x3-7x4+……并回答下列问题:(1)它的第100项是什么?(2)它的第n(n为正整数)项是什么?(3)当x=1时,求它的前2016项的和.参考答案一、选择题1.B.提示:列代数式表示“a与4的积的平方”为(4a)2.2.D .提示:选项A 分母中含有字母,故不是多项式,选项B 的系数是13π-,选项C 的项是2x 2和-1.3.A .提示:由于2月份产值是(1-10%)x 万元,故3月份产值是在(1-10%)x 万元的基础上增加了15%,即为(1-10%)(1+15%)x 万元.4.B .提示:由于-a 3 b 4 c 的次数为8,则a 3+a x +1b -2a 2b 2的次数x +1+1=8,故x=6. 5.D .提示:根据“从第三个数起,前两个数依次为a 、b ,紧随其后的数就是2a -b ”,所以2×1-3=x ,故x=-1;又因为2x -7=y ,即2×(-1)-7=y ,故y=-9. 6.C .提示:当a =-2,b=3时,2ab 2+a 2b =2×(-2)×32+(-2)2×3=-24.7.B .提示:根据题意得100a +10(a +1)+(a -1)=111a +9=3(37a +3),故为3的倍数. 8.C .提示:由y=x -1,得y -x=-1或x -y=1,整体代入得,原式=12+(-1)+1=1. 9.A .提示:因为a 与b 互为相反数,所以a +b=0;根据数轴得a -c <0,b +c >0,故原式=-(a -c)-(b +c)=-a +c -b -c=-(a +b)=0. 10.B .提示:根据示意图知,剪下的两个小长方形拼成的新长方形的长为(a -b),宽为(a-3b),所以新长方形的周长为2(a -b)+2(a -3b) =2a -2b +2a -6b=4a -8b.二、填空题11.(100a +60b). 提示:前100度按每度a 元收费,故可收100a 元;超过100度的部分有60度,可收60b 元.12.11.提示:根据题意,两个单项式是同类项,所以m -2=3,n +1=2,故m =5,n =1. 13.2x +4y +6z. 提示:根据打包方式知,包带等于“长”的有2x ,包带等于“宽”的有4y ,包带等于“高”的有6z ,所以总长为2x +4y +6z.14.2.提示:由题意得a +6=0,b 2-2b -3=0,故a =-6,b 2-2b =3. 所以2b 2-4b -a =2(b 2-2b )-a =2×3-(-6)=12.15.5.提示:根据题意,得a =-1,b =2,所以这个多项式为x 4-2x -15. 当x =-2时,x 4-2x -15=(-2)4-2×(-2)-15=5.16.199x 100. 提示:由于x 的指数是连续自然数,而系数是连续奇数,即系数为(2n -1),故第100个单项式的系数为2×100-1=199. 所以这个单项式为199x 100.17.3.提示:-x +(px -y 2)-2(x -y 2)=-x +px -y 2-2x +2y 2=(p -3)x +y 2,因为把x 的值看错,但结果仍正确,所以x 的系数p -3=0,故p=3.18.(2.6-0.2x). 提示:在A 、B 两市乘车的费用分别为 [10+1.2(x -3)]元和[8+1.4(x -3)]元,故A 市比B 市乘坐相同路程需多花[10+1.2(x -3)]-[8+1.4(x -3)]= (2.6-0.2x)元. 三、解答题 19.(1)设所捂的二次三项式为A ,则有A -2(x 2-3)=x 2-5x +1.所以A=(x 2-5x +1)+2(x 2-3)= x 2-5x +1+2x 2-6= 3x 2-5x -5. (2)当x=-2时,3x 2-5x -5=3×(-2)2-5×(-2)-5=17. 20.(1)由于31222-+=,所以12b =.(2)原式22(36)(3222)a ab a b ab b =---++2236328a ab a ab ab =---=-.当32a =-,b =12时,原式=-8×(32-)×12=6.21.可能. 理由如下:A -B +C=(-6x2人教版初中数学七年级上册第二章《整式的加减》 单元测试一、选择题(每题3分,共30分) 1.下列说法正确的是( ) A.a 的系数是0 B.1y是一次单项式 C.-5x 的系数是5 D.0是单项式 2.下列单项式:①312a 2b ;②-2x 1y 2;③-32x 2;④-1a 2b .其中书写不正确的有( ) A.1个 B.2个 C.3个 D.4个3.下列各组中的两项,不是同类项的是( ) A.a 2b 与-6ab 2 B.-5x 3y 与934yx 3C.2πR 与π2RD.-35与53 4.下列说法正确的是( )A.整式就是多项式B.π是单项式C.x 4+2x 3是七次二项次D.315x 是单项式 5.不改变多项式3b 3-2ab 2+4a 2b -a 3的值,把后三项放在前面是“-”号的括号中,正确的是( )A.3b 3-(2ab 2-4a 2b +a 3)B.3b 3-(2ab 2+4a 2b +a 3)C.3b 3-(-2ab 2+4a 2b -a 3)D.3b 3-(2ab 2+4a 2b -a 3) 6.若m ,n 都是正整数,多项式x m +y n +3m +n 的次数是( )A.2m +2nB.m 或nC.m +nD.m ,n 中的较大数7.张老板以每颗a 元的单价买进水蜜桃100颗,现以每颗比单价多两成的价格卖出70颗后,再以每颗比单价低b 元的价格将剩下的30颗卖出,那么全部水蜜桃共卖( )元A.70a +30(a -b )B.70×(1+20%)×a +30bC.100×(1+20%)×a -30(a -b )D.70×(1+20%)×a +30(a -b )8.在一定条件下,若物体运动的路程s (m)与时间t (s)的关系式为s =5t 2+2t ,则当t =6秒时,该物体所经过的路程为( )A.198mB.192mC.188mD.182m9.明明在今天数学课上学习了整式的加减知识,放学后,明明见妈妈的午饭没有做好,拿出课堂笔记,认真地复习课上学习的内容,他突然发现一道题:(-x 2+3xy -12y 2)-(-12x 2+4xy -32y 2)=-12x 2y 2,被钢笔墨水弄污了,那么被弄污的地方应填( ) A.-7xy B.7xy C.-xy D.xy10.多项式-3x 2y -10x 3+3x 3+6x 3y +3x 2y -6x 3y +7x 3-2020的值是( ) A.与x ,y 都无关 B.只与x 有关 C.只与y 有关 D.与x ,y 都有关 二、填空题(每题3分,共24分)11.把多项式3x 2y -4xy 2+x 3-5y 3按y 的降幂排列是___.12.两堆棋子,将第一堆的2个棋子移到第二堆去之后,第二堆棋子数就成了第一堆棋子数的2倍,设第一堆原有a 个棋子,第二堆原有___个棋子.13.如果x 表示一辆火车行驶的速度,那么1.5x 可以解释为___.14.大家知道53是一个两位数,个位数字是3,十位数字是5,若将53写成5×10+3,如果一个两位数的个位数字是b ,十位数字是a ,用含a 、b 的式子表示这个两位数是___.15.化简:―[―(2a―b)]=___.16.的结果是___.17.小颖在计算a+N时,误将“+”看成“―”,结果得3a,则a+N=___.18.数学家发明了一个魔术盒,当任意实数对...(a,b)进入其中时,•会得到一个新的实数:a2+b+1.例如把(3,-2)放入其中,就会得到32+(-2)+1=8,现将实数对...(-2,3)放入其中得到实数m,再将实数对...(m,1)放入其中后,得到的实数是___.三、解答题(共66分)19.化简:(1)-0.8a2b-6ab-3.2a2b+5ab+a2b.(2)5(a-b)2-3(a-b)2-7(a-b)-(a-b)2+7(a-b).20.先化简,再求值:(1)5a2-4a2+a-9a-3a2-4+4a,其中a=-1 2 .(2)5ab-92a2b+12a2b-(114ab+a2b+5),其中a=1,b=-2.(3)2a2-(3ab+b2+a2-ab)-2b2,其中a2-b2=2,ab=-3.21.小明研究汽车行驶时油箱里的剩油量与汽车行驶的路程之间的关系如下表:n=150千米时,A 是多少?22.有这样一道题:“当a=2020,b=-2019时,求多项式7a3-6a3b+3a2b+3a3+6a3b -3a2b-10a3+2019的值.”小明说:本题中a=2020,b=-2019是多余的条件;小强马上反对说:这不可能,多项式中含有a和b,不给出a,b的值怎么能求出多项式的值呢?你同意哪名同学的观点?请说明理由.23.按照下列步骤做一做:第一步:任意写一个两位数;第二步:交换这个两位数的十位数字和个位数字,得到一个新数;第三步:求这两个两位数的差.再写几个两位数重复上面的过程,这些差有什么规律?这个规律对任意一个两位数都成立吗?为什么?24. 甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出300元之后,超出部分按原价的8折优惠;在乙超市购买商品超出200元之后,超出部分按原价的8.5折优惠,设某顾客预计累计购物x元(x >300元).(1)请用含x的代数式分别表示顾客在两家超市购物所付的费用.(2)当该顾客累计购物500元时在哪个超市购物合算.25.永丰学校七年级学生在5名教师的带领下去公园秋游,公园的门票为每人30元.现有两种优惠方案,甲方案:带队教师免费,学生按8折收费;乙方案:师生都7.5折收费.(1)若有m 名学生,用代数式表示两种优惠方案各需多少元?(2)当m =70时,采用哪种方案优惠?当m =100时,采用哪种方案优惠? 26.在边长为16cm 的正方形纸片的四个角各剪去一个同样大小的正方形,折成一个无盖的长方体.(1)如果剪去的小正方形的边长为x cm ,请用x 来表示这个无盖长方体的容积.(2)当剪去的小正方体的边长x 的值分别为3cm 和3.5cm 时,比较折成的无盖长方体的容积的大小.参考答案:一、1.D ;2.C ;3.A ;4.B ;5.A ;6.D ;7.D ;8B ;9.C ;10.A.点拨:-3x 2y -10x 3+3x 3+6x 3y +3x 2y -6x 3y +7x 3-2012=-2012.二、11.-5y 3-4xy 2+3x 2y +x 3;12.2a -6;13.这辆火车行驶了1.5小时的路程;14.10a +b ;15.2a -b ;16.m 2-m +1;17.-a ;18.66.三、19.(1)-3a 2b -ab .(2)(a -b )2.20.(1)5a 2-4a 2+a -9a -3a 2-4+4a =-2a 2-4a -4,当a =-12时,原式=-52.(2)5ab -92a 2b +12a 2b -(114ab +a 2b +5)=5ab -92a 2b +12a 2b -114ab -a 2b -5=94ab -5a 2b -5,当a =1,b =-2时,原式=12.(3)2a 2-(3ab +b 2+a 2-ab )-2b 2=2a 2-3ab -b 2-a 2+ab -2b 2=a 2-b 2-2ab ,当a 2-b 2=2,ab =-3时,原式=8.21.依题意,得A =20-Q ,A =20-0.04n ,当n =150时,A =20-0.04×150=14(升). 22.因为7a 3-6a 3b +3a 2b +3a 3+6a 3b -3a 2b -10a 3+2019=2019,所以a =2020,b =-2019是多余的条件,故小明的观点正确.23.第一步:如,24;第二步:得42;第三步:42-24=18,是9的倍数.猜想:这些差的规律是都能被9整除.理由:第一步:设原两位数的十位数字为b ,个位数字为a (b >a ),则原两位数为10b +a ;第二步:交换后的两位数为10人教版初中数学七年级上册第2章《整式加减》单元测试卷及答案一、选择题(每题3分,共30分) 1、用代数式表示比b 的18小7的数( ) A.18b +7 B.18b -7 C.18(b -7) D.78b 2、下列代数式中,不是单项式的是( )A.5B.2x C.2x D.23a3、①; ②; ③; ④分别是同类项的是( )(A )①② ; (B )①③; (C )②③ ; (D )②④ 4、-( a-1)-(-a-2)+3的值是( ) (A )4; (B )6;(C )0; (D )与的值有关。
【6套试卷】人教版七年级数学上册第二章整式加减单元测试(含答案).doc

人教版初中数学七年级上册第二章《整式的加减》单元测试一、选一选,看完四个选项再做决定! 1.下列各式:1+-x ,3+π,29>,y x y x +-,ab S 21=,其中代数式的个数是( ) A. 5B. 4C. 3D. 22. 以下代数式书写规范的是( )A. 2)(÷+b aB.y 56C. x 311D. y x +厘米3. 在下列各组的两个式子中,是同类项的是( )A. abc ab 32与B.222121mn n m 与 C. 0与21- D. 3与c4. 下列合并同类项中,正确的是( )A. xy y x 633=+B. 332532a a a =+C. 033=-nm mnD. 257=-x x5. 下列各式,正确的是( )A. 6)6(--=--x xB. )(b a b a +-=+-C. )6(530x x -=-D. 243)8(3-=-x x6. 图1的面积用代数式表示是( )A. bc ab +B. )((c a d d b c -+-C. )(d b c ad -+D. cd ab -7. 已知222653z y x A ++=,222822z y x B --=,222352y x z C --=,则C B A ++的值为( )A. 0B. 2xC. 2yD. 2z8. 当x =2时,下列代数式中与代数式12+x 的值相等的是( )A. 21x -B. 13+xC. 23x x -D. 12+x9. 已知做某件工作,每个人的工效相同,m 个人做n 天可完成,如果增加a 人,则完成工作所需天数为( ) A.am mn+B. a n -C. a nn +D. a n +10.按下面图2所示的程序计算,若开始输入的数为x =3,则最后输出的结果是( )abcd图1图2A. 6B. 21C. 156D. 231二、填一填,要相信自己的能力!11.今年小明m 岁,去年小明__________岁,8年后小明__________岁.12.一个长方形的宽为a cm ,长比宽的2倍少1cm ,这个长方形的长是______cm . 13.代数式x y y x -+-2312是________________________三项的和,它们的系数分别是__________________.14. 合并同类项:a a 83-=__________,a a a ---=___________.15.设x 表示一个数,用代数式表示“比这个数的平方小3的数”是_________. 16.如果x 表示一辆火车行驶的速度,那么1.5x 可以解释为________________.17.53是一两位数,个位数字是3,十位数字是5,可将53写成5×10+3. 如果一个两位数的个位数字是b ,十位数字是a ,用含a 、b 的代数式表示这个两位数是______________. 18. 化简:)]2([b a ---=___________. 19. 观察下列各式:121312⨯+=⨯ 222422⨯+=⨯ 323532⨯+=⨯ ……请你将猜想到的规律用自然数n (n ≥1)表示出来__________________. 20.用黑白两种颜色的正六边形地面砖按如图3所示的规律,拼成若干个图案:第1个 第2个 第3个(1)第4个图案中有白色地面砖 块; (2)第n 个图案中有白色地面砖 块. 三、做一做,要注意认真审题! 21.计算:(每小题4分,共12分)(1) 233323)3()2(2a a a a a +-+-++(2) 2222224)()3(8)4(5b a b a ab ab b a ab +-+--+-+(3) )58()37(z y z y ---(4) )6(4)2(322-++--xy x xy x22.(8分)一个多项式减去6142-+x x ,小明错误的当成了加法计算,从而得到结果是322+-x x ,请问正确的结果是多少?23.(9分)某市出租车收费标准是:起步价10元,3千米后每千米2元,某乘客乘坐了x人教版七年级上册数学第二章整式加减单元检测卷一、选择题:(每小题3分共30分)1.单项式 的系数和次数分别是( ) A.B.C.D.2.下列语句中错误的是( )A .单项式﹣a 的系数与次数都是1B .12xy 是二次单项式 C .﹣23ab 的系数是﹣23D .数字0也是单项式 3.某企业今年 月份产值为 万元, 月份比 月份增加了 , 月份比 月份减少了 ,则 月份的产值为( ) A. 万元 B. 万元 C. 万元 D. 万元4.已知单项式﹣25m 2x-1n 9和25m 5n 3y是同类项,则代数式x ﹣y 的值是( ) A .3B .6C .﹣3D .05.下列运算结果正确的是( ) A .33(2)6x x =B .33x x x ÷=C .325x x x ? D .23x x x +=6.如图,两个正六边形的面积分别为16,9,两个阴影部分的面积分别为a ,b ( ),则b-a 的值为( ).A.5B.6C.7D.87.已知a,b,c 是三个有理数,它们在数轴上的位置如图所示,则化简|a-b|+|c-a|-|b+c|+(c-a)的结果是( )A .3a-cB .-2a+cC .a+cD .-2b-c8.若代数式()()222x ax y 62bx 3x 5y 1(a,+-+----b 为常数)的值与字母x 的取值无关,则代数式a 3b +的值为( ) A .0B .1-C .2或2-D .69.设P 是关于x 的五次多项式,Q 是关于x 的三次多项式,则( ) A.P +Q 是关于x 的八次多项式 B.P -Q 是关于x 的二次多项式 C.P +Q 是关于x 的五次多项式D.P Q 是关于x 的十五次多项式10.为庆祝六一儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛,如图:按照上面的规律,摆 个“金鱼”需用火柴棒的根数为( ) A. 根B. 根C. 根D. 根二、填空题:(每小题3分共18分)11.3个连续奇数中,n 为最大的奇数,则这3个数的和为_________.12.单项式235πx y -的系数是____________13.已知a-b=-10,c+d=3,则(a+d )-(b-c )=______.14.已知一个多项式与3x 2+9x +2的和等于3x 2+4x -3,则此多项式是______.15.已知:2+23=22×23,3+38=32×38,4+415=42×415,5+524=52×524,…,若10+b a =102×b a符合前面式子的规律,则a+b=_____.16.如图,是用火柴棒摆出的一系列三角形图案,按这种方式摆下去,当每边上摆n 根火柴棒时,共需要摆__________根火柴棒.三、解答题:(共72分)17.先化简,再求值:22225(3)2(7)a b ab a b ab ---,其中1a =-,1b =.18.已知, , ,求 ,并确定当 时, 的值.19.探索规律:用棋子按如图所示的方式摆正方形.① ② ③……(1)按图示规律填写下表:(2)按照这种方式摆下去,摆第20个正方形需要多少个棋子? (3)按照这种方式摆下去,摆第n 个正方形需要多少个棋子?20.已知m 是最大的负整数,且212m y a b ++-与33x a b 是同类项,求代数式222223639x xy y mx mxy my -+-+-的值.21.化简或计算:( ) ; ( ) . ( ) ; ( ).22.(1)化简 :()()222252423-+-+-a b ab c c a b ab;(2)先化简,再求值:2212322232a a b a b ⎛⎫⎛⎫--+-+ ⎪ ⎪⎝⎭⎝⎭;其中 a = -2 ,b = 3223.父母带着孩子(一家三口)去旅游,甲旅行社报价大人为a 元,小孩为a2元;乙旅行社报价大人、小孩均为a 元,但三人都按报价的90%收费,则乙旅行社收费比甲旅行社贵多少元?(结果用含a 的代数式表示)24. 、 两仓库分别有水泥 吨和 吨, 、 两工地分别需要水泥 吨和 吨.已知从 、仓库到、工地的运价如下表:(1)若从仓库运到工地的水泥为吨,则用含的代数式表示从仓库运到工地的水泥为_____吨,从仓库将水泥运到工地的运输费用为______元;(2)求把全部水泥从、两仓库运到、两工地的总运输费(用含的代数式表示并化简);(3)如果从仓库运到工地的水泥为吨时,那么总运输费为多少元?第二章整式的加减一、选择题:(每小题3分共30分)1.单项式的系数和次数分别是()A. B. C. D.【答案】C解:单项式的系数是,次数=2+1+3=6.故选:C.2.下列语句中错误的是()A.单项式﹣a的系数与次数都是1 B.12xy是二次单项式C.﹣23ab的系数是﹣23D.数字0也是单项式【答案】A解A、单项式﹣a的系数是﹣1,次数是1,故此选项错误,符合题意;B、12xy是二次单项式,正确,不合题意;C、﹣23ab系数是﹣23,正确,不合题意;D 、数字0也是单项式,正确,不合题意; 故选:A .3.某企业今年 月份产值为 万元, 月份比 月份增加了 , 月份比 月份减少了 ,则 月份的产值为( ) A. 万元 B. 万元 C. 万元 D. 万元【答案】C解:由题意得3月份的产值为 万元,4月份的产值为 万元. 故选:C . 4.已知单项式﹣25m 2x-1n 9和25m 5n 3y是同类项,则代数式x ﹣y 的值是( ) A .3 B .6C .﹣3D .0【答案】D解由题意可得,2x ﹣1=5,3y =9,解得x =3,y =3,所以x ﹣y =3﹣3=0,故选:D . 5.下列运算结果正确的是( ) A .33(2)6x x = B .33x x x ÷= C .325x x x ? D .23x x x +=【答案】C解:A 、33(2)8x x =,故该选项计算错误;B 、331x x ÷=,故该选项计算错误;C 、325x x x ?,故该选项计算正确;D 、x 和x 2不是同类项,不能合并,故该选项计算错误; 故选:C .6.如图,两个正六边形的面积分别为16,9,两个阴影部分的面积分别为a ,b ( ),则b-a 的值为( ).A.5B.6C.7D.8【答案】C解∵两个正六边形的面积分别为16,9,两个阴影部分的面积分别为a,b(a<b), ∴b−a=b+空白面积−(a+空白面积)=大正六边形−小正六边形=16−9=7. 故选:C.7.已知a,b,c 是三个有理数,它们在数轴上的位置如图所示,则化简|a-b|+|c-a|-|b+c|+(c-a)的结果是( )A .3a-cB .-2a+cC .a+cD .-2b-c【答案】C解根据数轴得: 0c b a <<<,且a b c <<,0a b ∴->,0c a -<,b+c 0<,则原式=a-b+a-c+b+c+c-a=a+c , 所以C 选项是正确的.8.若代数式()()222x ax y 62bx 3x 5y 1(a,+-+----b 为常数)的值与字母x 的取值无关,则代数式a 3b +的值为( ) A .0 B .1- C .2或2-D .6【答案】B解原式22262351x ax y bx x y =+-+-+++,()()222a+347x b x y =-+++,代数式的值与x 的取值无关 ,()()22=0a+3=0b ∴-,, b=1a=-3∴, ,当b=1,a=-3时 , a+2b=-3+2=-1, 所以B 选项是正确的.9.设P 是关于x 的五次多项式,Q 是关于x 的三次多项式,则( ) A.P +Q 是关于x 的八次多项式 B.P -Q 是关于x 的二次多项式 C.P +Q 是关于x 的五次多项式D.P Q 是关于x 的十五次多项式【答案】C解A. 两式相加只能为5次多项式,故本选项错误;B、P−Q人教版数学七年级上册通关宝典(9)-《整式的加减》单元检测一、选择题(共10小题;共30分)1. 下列说法正确的是A. 的系数是B. 单项式的系数为,次数为C. 的次数为D. 的系数为2. 下列说法中,正确的有①的系数是;②的次数是;③多项式的次数是;④和都是整式.A. 个B. 个C. 个D. 个3. 多项式的次数及最高次项的系数分别是A. ,B. ,C. ,D. ,4. 在如图所示的年元月份的月历表中,任意框出表中竖列上四个数,这四个数的和可能是星期一星期二星期三星期四星期五星期六星期日A. B. C. D.5. 化简的结果等于A. B. C. D.6. 若,则的值为A. B. C. D.7. 若与是同类项,则的值为A. B. C. D.8. 已知,当时,的值是,当时,的值是A. B. C. D. 无法确定9. 古希腊著名的毕达哥拉斯学派把,,,这样的数称为“三角形数”,而把,,,这样的数称为“正方形数”.从图形可以发现,任何一个大于的“正方形数”,都可以看作两个相邻“三角形数”之和.下列等式中符合这一规律的是A. B. C. D.10. 下面每个表格中的四个数都是按相同规律填写的:根据此规律确定的值为A. B. C. D.二、填空题(共6小题;共18分)11. 如果,则.12. 单项式的系数是,次数是.13. 如果是五次多项式,那么.14. 填空:;.15. 若与的和是单项式,则式子的值是.16. 下面是小芳做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上面.,阴影部分即为被墨迹弄污的部分.那么被墨汁遮住的一项应是.三、解答题(共6小题;共52分)17. 去括号,并合并同类项:(1);(2).18. 将式子,分别反过来,你得到两个怎样的等式?(1)比较你得到的等式,你能总结添括号的法则吗?(2)根据上面你总结出的添括号法则,不改变多项式的值,把它的后两项放在:①前面带有“”号的括号里;②前面带有“”号的括号里.19. 如果关于的多项式不含项和人教版数学七上第二章单元质量检测试卷及答案一、选择题(共10小题;共30分)1. 已知,则的值为A. B. C. 或 D. 或2. 下列说法正确的是A. 单项式的系数是,次数是B. 单项式的系数是,次数是C. 是二次三项式D. 单项式的次数是,系数为3. 下面的计算正确的是A. B.C. D.4. 下列式子,符合代数式书写格式的是A. B. C. D.5. 下列说法中,正确的是A. 一定是负数B. 一定是正数C. 一定是正数D. 一定是正数6. 化简结果为A. B. C. D.7. 单项式与单项式是同类项,则的值是A. B. C. D.8. 已知的值为,则代数式的值为A. B.人教版初中数学七年级上册第2章《整式加减》单元测试卷(及答案)一.选择题1.a、b、c、m都是有理数,且a+2b+3c=m,a+b+2c=m,那么b 与c的关系是()A.互为相反数B.互为倒数C.相等D.无法确定2.单项式﹣5ab的系数是()A.5B.﹣5C.2D.﹣23.多项式3x2+xy﹣xy2的次数是()A.2B.1C.3D.44.下列多项式是五次多项式的是()A.x3+y2B.x2y3+xy+4C.x5y﹣l D.x5﹣y6+15.与2ab2是同类项的是()A.4a2b B.2a2bC.5ab2D.﹣ab6.下列去括号正确的是()A.﹣3(b﹣1)=﹣3b﹣3B.2(2﹣a)=4﹣aC.﹣3(b﹣1)=﹣3b+3D.2(2﹣a)=2a﹣47.在下列整式中,次数为4的单项式是()A.mn2B.a3﹣b3C.x3y D.5st8.计算4a2﹣5a2的结果是()A.﹣a2 B.﹣1C.a2 D.9 a29.已知A=﹣4x2,B是多项式,在计算B+A时,李明同学把B+A看成了B•A,结果得32x5﹣16x4,则B+A为()A.﹣8x3+4x2B.﹣8x3+8x2C.﹣8x3D.8x310.已知:a2+2a=1,则代数式2a2+4a﹣1的值为()A.1B.0C.﹣1D.﹣211.按如图所示的运算程序,能使运算输出结果为﹣5的是()A.x=1,y=﹣2B.x=1,y=2C.x=﹣1,y=2D.x=﹣1,y=﹣212.在式子a2+2,,ab2,,﹣8x,0中,整式有()A.3个B.4个C.5个D.6个13.下列说法中正确的是()A.xy﹣x+y﹣4的项是xy,x,y,4B.单项式m的系数为0,次数为0C.单项式2a2b的系数是2,次数是2D.1是单项式14.甲、乙两个商家对标价相同的同一件商品进行价格调整,甲的方案是:先提价8%,再降价8%;乙的方案是:先降价8%,再提价8%;则甲、乙两个商家对这件商品的最终定价()A.甲比乙多B.乙比甲多C.甲、乙一样多D.无法确定15.已知a﹣b=3,c+d=2,则(a+c)﹣(b﹣d)的值为()A.1B.﹣1C.5D.﹣5二.填空题16.若5a m b2n与﹣9a5b6是同类项,则m+n的值是.17.已知m2+m=﹣2,则2m2+2m+2023=.18.已知多项式x2﹣(3k﹣1)xy﹣3y2+3mxy﹣8中不含xy项,则8k+1×4÷23m+2的值为.19.班主任老师的想法:七年级我班50名同学,想参加元旦长跑活动的同学就举手,当举手的人数和没有举手的人数之差是一个奇数时,全班就不参加;如果是偶数,全班就参加元旦长跑活动.请思考:老师的想法(填“参加”或“不参加”).20.若代数式﹣(3x3y m﹣1)+3(x n y+1)经过化简后的结果等于4,则m﹣n的值是.21.已知(a+b)2=7,|ab|=3,则(a2+b2)﹣ab=.三.解答题22.先化简,再求值:(1)2x3﹣(7x2﹣9x)﹣2(x3﹣3x2+4x),其中x=﹣1.(2)已知x2﹣2y﹣5=0,求3(x2﹣2xy)﹣(x2﹣6xy)﹣4y的值.23.计算:﹣3[b﹣(3a2﹣3ab)]﹣[b+2(4a2﹣4ab)]24.已知代数式A=x2+xy﹣2y,B=2x2﹣2xy+x﹣1(1)求2A﹣B;(2)若2A﹣B的值与x的取值无关,求y的值.25.已知含字母x,y的多项式是:3[x2+2(y2+xy﹣2)]﹣3(x2+2y2)﹣4(xy﹣x﹣1).(1)化简此多项式;(2)若x,y互为倒数,且恰好计算得多项式的值等于0,求x的值.26.已知多项式A=2x2﹣xy+my﹣8,B=﹣nx2+xy+y+7,A﹣2B中不含有x2项和y项,求n m+mn的值.参考答案一.选择题1.A;2.B;3.C;4.B;5.C;6.C;7.C;8.A;9.C;10.A;11.C;12.C;13.D;14.C;15.C;二.填空题16.8;17.2019;18.16;19.参加;20.﹣2;21.﹣或;三.解答题22.解:(1)原式=2x3-7x2+9x-2x3+6x2-8x=-x2+x,当x=-1时,原式=-1-1=-2;(2)原式=3x2-6xy-x2+6xy-4y=2x2-4y=2(x2-2y),由x2-2y-5=0,得到x2-2y=5,则原式=10.23.解:原式=-3b+9a2-9ab-b-8a2+8ab=a2-4b-ab24.解:(1)2A-B=2(x2+xy-2y)-(2x2-2xy+x-1)=2x2+2xy-4y-2x2+2xy-x+1=4xy-x-4y+1;(2)∵2A-B=4xy-x-4y+1=(4y-1)x-4y+1,且其值与x无关,∴4y-1=0,解得y=25.解:(1)原式=3x2+6(y2+xy-2)-3x2-6y2-4xy+4x+4=3x2+6y2+6xy-12-3x2-6y2-4xy+4x+4=2xy+4x-8;(2)∵x,y互为倒数,∴xy=1,则2xy+4x-8=2+4x-8=4x-6,由题意知4x-6=0,解得:x=26.解:∵A=2x2-xy+my-8,B=-nx2+xy+y+7,∴A-2B=2x2-xy+my-8+2nx2-2xy-2y-14=(2+2n)x2-3xy+(m-2)y-22,由结果不含有x2项和y项,得到2+2n人教版初中数学七年级上册第2章整式的加减单元测试卷一、单选题(共10题;共30分)1.下列运算中,结果正确的是().A. 4+=B.C.D.解:A.4与不是同类项,所以不能合并,错误;B.6xy与x不是同类项,所以不能合并,错误;C.,同类项与字母顺序无关,正确;D.12x3与5x4字母指数不同,不是同类项,所以不能合并,错误.故答案为:C.2.多项式﹣x2+2x+3中的二次项系数是()A. ﹣1B. 1C. 2D. 3解:多项式﹣x2+2x+3中的二次项系数是:﹣1.故答案为:A3.下列语句中错误的是()A. 数字0也是单项式B. 单项式–a的系数与次数都是1C. xy是二次单项式D. –的系数是–解:A,0也是单项式,故A不符合题意;B、单项式–a的系数与次数都是-1,故B符合题意;C、是二次单项式,故C不符合题意;D、的系数是,故D不符合题意;故答案为:B4.多项式- 2a3b + 3a2 - 4的项数和次数分别为()A. 3,3B. 4,3C. 3,4D. 3,6 解:题目中多项式是四次三项式,故次数是4,项数是3.故答案为:C.5.在代数式x2+5,-1,x2-3x+2,π,,中,整式有()A. 3个B. 4个C. 5个D. 6个解:依题可得:整式有:x2+5,-1,x2-3x+2,,共4个.故答案为:B.6.下列是用火柴棒拼成的一组图形,第①个图形中有3 根火柴棒,第②个图形中有9 根火柴棒,第③个图形中有18 根火柴棒,…,按此规律排列下去,第⑥个图形中火柴棒的根数是().A. 63B. 60C. 56D. 45解:∵第①有1个三角形,共有3×1根火柴;第②个有1+2个无重边的三角形,共有3×(1+2)根火柴;第③个有1+2+3个无重边的三角形,共有3×(1+2+3)根火柴;…∴第n个有1+2+3+…+n个无重边的三角形,共有3×(1+2+3+…+n)n(n+1)根火柴;∴第⑥个图形中火柴棒根数是×6×(6+1)=63.故答案为:A.7.下列各组整式中是同类项的是()A. a3与b3B. 2a2b与﹣a2bC. ﹣ab2c与﹣5b2cD. x2与2x 解:A、a3与b3所含的字母不同,不是同类项;B、2a2b与-a2b是同类项;C、-ab2c与-5b2c所含字母不同,不是同类项;D、x2与2x相同字母的指数不相同,不是同类项.故答案为:B.8.观察如图图形,并阅读相关文字:那么10条直线相交,最多交点的个数是()A. 10B. 20C. 36D. 45解:2条直线相交,只有1个交点,3条直线相交,最多有3个交点,4条直线相交,最多有6个交点,…,n条直线相交,最多有个交点,n=10时,=45.故答案为:D9.已知和是同类项,则m+n=()A. 6B. 5C. 4D. 3解:由题意得m=3,n-1=2,∴n=3,∴m+n=3+3=6.故答案为:A.10.按图示的方法,搭1个三角形需要3根火柴棒,搭2个三角形需要5根火柴棒,依此类推,若搭个三角形需2019根火柴棒,则()A. 1008B. 1009C. 1010D. 1011解:∵一个三角形需要3根火柴,2个三角形需要3+2=5根火柴,3个三角形需要3+2×2=7根火柴,m个三角形需要3+2(m-1)=(2m+1)根火柴.由2m+1=2019解得m=1009,所以有2019根火柴棒,可以搭出这样的三角形1009个.故答案为:B.二、填空题(共6题;共18分)11.的系数是________,次数是________次解:单项式−a2bc3的系数是−,次数是6.故答案是:−,6.12.如果是一个五次三项式,那么m=________.解:由题意得m+2=5,故m=3。
人教版数学七年级上册第二章整式的加减《单元综合检测卷》附答案

人教版数学七年级上学期第二章整式的加减测试一.选择题1.下列计算正确的是( )A. 4a﹣2a=2B. 2x2+2x2=4x4C. ﹣2x2y﹣3yx2=﹣5x2yD. 2a2b﹣3a2b=a2b2.下列说法中,正确的个数有( )①有理数包括整数和分数;②一个代数式不单项式就是多项式;③几个有理数相乘,若负因数的个数是偶数个,则积为正数;④倒数等于本身的数有﹣1.A. 1个B. 2个C. 3个D. 4个3.下面关于单项式-13a3bc2的系数与次数叙述正确的是A. 系数是13,次数是6 B. 系数是-13,次数是5C. 系数是13,次数是5 D. 系数是-13,次数是64.下列各组单项式中,是同类项的是( )A.25x y与﹣x2y B. 2a2b与2ab2C. a与1D. 2xy与2xyz5.如果A是3m2﹣m+1,B是2m2﹣m﹣7,且A﹣B+C=0,那么C是( )A. ﹣m2﹣8B. ﹣m2﹣2m﹣6C. m2+8D. 5m2﹣2m﹣66.下列说法中正确的是( )A. a和0都是单项式B. 单项式﹣23a b的系数是﹣13次数是4C. 式子x2+1x是整式D. 多项式﹣3a 2b+7a 2b 2+1的次数是77.若﹣2a m b 4与5a 2b 2+n 是同类项,则m n 的值是( )A. 2B. 0C. 4D. 18.如图,两个面积分别为35,23的图形叠放在一起,两个阴影部分的面积分别为a ,b (a b >),则-a b 的值为( )A. 6B. 8C. 12D. 9 9.若多项式5x 2y |m|14-(m+1)y 2﹣3是三次三项式,则m 等于( ) A. ﹣1 B. 0 C. 1 D. 210.使(ax 2﹣3xy+4y 2)﹣(﹣x 2+bxy+5y 2)=6x 2﹣7xy+cy 2成立的a,b,c 的值依次是( )A. 7,﹣4,﹣1B. 5,4,﹣1C. 7,﹣4,1D. 5,4,1二.填空题11.某单项式含有字母x,y,次数是4次.则该单项式可能是_____.(写出一个即可)12.如果单项式﹣3x a+2y 3 与 2y b x 6 是同类项,那么 a 、b 的值分别是_________13.某同学在做计算2A+B 时,误将“2A+B”看成了“2A ﹣B”,求得的结果是9x 2﹣2x+7,已知B=x 2+3x+2,则2A+B 的正确答案为_____.14.多项式112m x -﹣3x+7是关于x 的四次三项式,则m 的值是_____. 15.一个多项式与单项式﹣4x 的差等于3x 2﹣2x ﹣1,那么这个多项式为_____.16.已知ab <0,且|a|<|b|,化简|a+b|+|a ﹣b|+|b ﹣a|=_____.三.解答题(共7小题)17.计算:2x 2+(3y 2﹣xy )﹣(x 2﹣3xy ).18.一堂公开课,老师在黑板上写了两个代数式34a +与237a -,让大家相互之间用这两个代数式出题考对方. (1)小明给小红出的题为:若代数式34a +与237a -的值多1,求3a 2﹣2(2a 2+a)+2(a 2﹣3a )的值; (2)小红想为难一下小明,她给小明出题为:已知a 为负数,比较代数式34a +与237a -的大小,请你帮小明作出解答.19.一般情况下2323a b a b ++=+不成立,但有些数可以使得它成立,例如:a=b=0.我们称使得2323a b a b ++=+成立的一对数a,b 为“相伴数对”,记为(a,b).(1)若(1,b)是“相伴数对”,求b 值;(2)写出一个“相伴数对”(a,b),其中a ≠0,且a ≠1;(3)若(m,n)是“相伴数对”,求代数式m ﹣223n ﹣[4m ﹣2(3n ﹣1)]的值. 20.已知a 是绝对值等于4的负数,b 是最小的正整数,c 的倒数的相反数是﹣2,(1)求a,b,c 的值;(2)求:4a 2b 3﹣[2abc+(5a 2b 3﹣7abc)﹣a 2b 3].21.已知A=2x 2+3ax ﹣2x ﹣1,B=﹣x 2+ax ﹣1,且3A+6B 的值与x 的取值无关,求5a ﹣1的值22.A 、B 、C 、D 四个车站的位置如图所示,求:(1)A 、D 两站的距离;(2)A 、C 两站的距离.23.如果单项式2ax m y 与单项式5bx 2m ﹣3y 都是关于x 、y 单项式,并且它们是同类项.(1)求m 的值;(2)若2ax m y+5bx 2m ﹣3y=0,且xy≠0,求(2a+5b)2017+m 值.答案与解析一.选择题1.下列计算正确的是( )A. 4a﹣2a=2B. 2x2+2x2=4x4C. ﹣2x2y﹣3yx2=﹣5x2yD. 2a2b﹣3a2b=a2b【答案】C【解析】【分析】合并同类项时,把同类项的系数相加,所得和作为合并后的系数,字母和字母的指数不变.【详解】A、4a﹣2a=2a,此选项错误;B、2x2+2x2=4x2,此选项错误;C、﹣2x2y﹣3yx2=﹣5x2y,此选项正确;D、2a2b﹣3a2b=﹣a2b,此选项错误;故选C.【点睛】本题考查了合并同类项,熟练掌握合并同类项的方法是解答本题的关键.所含字母相同,并且相同字母的指数也相同的项,叫做同类项.2.下列说法中,正确的个数有( )①有理数包括整数和分数;②一个代数式不是单项式就是多项式;③几个有理数相乘,若负因数的个数是偶数个,则积为正数;④倒数等于本身的数有﹣1.A. 1个B. 2个C. 3个D. 4个【答案】A【解析】【分析】根据有理数的分类,代数式的意义,有理数的乘法法则,倒数的意义逐个说法分析,利用排除法即可得出答案. 【详解】①有理数包括整数和分数,正确;②一个代数式不是单项式就是多项式,单项式和多项式属于整式,分式也属于代数式,故此说法错误;③几个有理数相乘,若负因数的个数是偶数个,则积为正数,错误,因数中不能有零;④倒数等于本身的数有﹣1,还有1,故此选项错误.故选A.【点睛】本题考查了有理数的分类,代数式的意义,有理数的乘法法则,倒数的意义,熟练掌握各知识点是解答本题的关键.3.下面关于单项式-13a3bc2的系数与次数叙述正确的是A. 系数是13,次数是6 B. 系数是-13,次数是5C. 系数是13,次数是5 D. 系数是-13,次数是6【答案】D【解析】分析:根据单项式的系数和次数的定义即可得出答案.单项式前面的常数叫做单项式的系数,各个字母的指数之和叫做单项式的次数.详解:单项式的系数为:13;次数为:3+1+2=6.故选D.点睛:本题主要考查的是单项式的系数和次数,属于基础题型.在解答这种问题时需要注意的是π是系数,次数是指所有字母的指数之和.4.下列各组单项式中,是同类项的是( )A.25x y与﹣x2y B. 2a2b与2ab2C. a与1D. 2xy与2xyz 【答案】A【解析】【分析】直接利用同类项的定义分析得出答案.【详解】A、25x y与-x2y,是同类项,符合题意;B 、2a 2b 与2ab 2,不是同类项,不合题意;C 、a 与1,不是同类项,不合题意;D 、2xy 与2xyz ,不是同类项,不合题意;故选A .【点睛】此题主要考查了同类项,正确把握相关定义是解题关键.5.如果A3m 2﹣m+1,B 是2m 2﹣m ﹣7,且A ﹣B+C=0,那么C 是( )A. ﹣m 2﹣8B. ﹣m 2﹣2m ﹣6C. m 2+8D. 5m 2﹣2m ﹣6 【答案】A【解析】【分析】根据题意得出等式,化简即可得出答案.【详解】解:A-B+C=3m 2﹣m +1-(2m 2﹣m ﹣7)+C =0,解得C=﹣m 2﹣8,故选:A.【点睛】本题考查了根据题意列等式,仔细审题是解答本题的关键.6.下列说法中正确的是( )A. a 和0都是单项式B. 单项式﹣23a b π的系数是﹣13次数是4 C. 式子x 2+1x是整式 D. 多项式﹣3a 2b+7a 2b 2+1的次数是7【答案】A【解析】试题解析:A. 单独的一个数或字母也是单项式.故本选项正确;B. 单项式23a b π-系数是3π-,次数是3, 故本选项错误;C. 式子21x x+不是整式, 故本选项错误;D. 多项式222371a b a b -++的次数是4, 故本选项错误.故选A.7.若﹣2a m b 4与5a 2b 2+n 是同类项,则m n 的值是( )A. 2B. 0C. 4D. 1【答案】C【解析】【分析】依据同类项的定义可得到关于m 、n 的方程组,然后可求得m 、n 的值,最后再求得m n 的值即可.【详解】∵﹣2a m b 4与5a 2b 2+n 是同类项,∴m =2, 2+n=4,解得: m =2, n =2,∴22 4.n m ==故选C.【点睛】考查同类项的概念以及有理数的乘方,根据同类项的概念求出m 、n 的值是解题的关键. 8.如图,两个面积分别为35,23的图形叠放在一起,两个阴影部分的面积分别为a ,b (a b >),则-a b 的值为( )A. 6B. 8C. 12D. 9【答案】C【解析】【分析】 设重叠部分面积为c ,-a b 可理解为:()()a c b c +-+即两个长方形面积的差.【详解】解:设重叠部分面积为c ,∴()()352312a b a c b c -=+-+=-=;故选择:C【点睛】本题考查了整式的加减,将阴影部分的面积之差转换成整个图形的面积之差是解题的关键.9.若多项式5x2y|m|14-(m+1)y2﹣3是三次三项式,则m等于( )A. ﹣1B. 0C. 1D. 2 【答案】C【解析】试题解析:根据三次三项式的定义,可得2+|m|=3,-14(m+1)≠0,联立方程组,得2310mm⎧+⎨+≠⎩=解得m=1.故选C.10.使(ax2﹣3xy+4y2)﹣(﹣x2+bxy+5y2)=6x2﹣7xy+cy2成立的a,b,c的值依次是( )A. 7,﹣4,﹣1B. 5,4,﹣1C. 7,﹣4,1D. 5,4,1【答案】B【解析】【分析】先把左边去括号合并同类项,然后和右边比较,即可列出关于a,b,c的方程,从而求出a,b,c的值.【详解】(ax2﹣3xy+4y2)﹣(﹣x2+bxy+5y2)=a x2﹣3xy+4y2+x2﹣bxy﹣5y2=(a+1)x2+(﹣3﹣b)xy﹣y2=6x2﹣7xy+cy2,可得a+1=6,﹣3﹣b=﹣7,c=﹣1,解得:a=5,b=4,c=﹣1,故选B.【点睛】本题考查了整式的加减,整式加减的运算法则:一般地,几个整式相加减,如果有括号先去括号,然后再合并同类项.整式加减的结果要最简:①不能有同类项;②含字母项的系数不能出现带分数,带分数要化成假分数.二.填空题11.某单项式含有字母x,y,次数是4次.则该单项式可能是_____.(写出一个即可)【答案】x 2y 2【解析】【分析】根据单项式的定义即可求出答案.【详解】由题意可知:x 2y 2,故答案为x 2y 2【点睛】本题考查单项式的定义,解题的关键是熟练运用单项式的定义,本题属于基础题型. 12.如果单项式﹣3x a+2y 3 与 2y b x 6 是同类项,那么 a 、b 的值分别是_________【答案】4,3.【解析】【分析】根据相同字母的指数相等列式求解即可.【详解】∵单项式﹣3x a+2y 3与2y b x 6是同类项,∴a +2=6,b =3,则a =4,故答案为4,3.【点睛】本题考查了利用同类项的定义求字母的值,熟练掌握同类项的定义是解答本题的关键,所含字母相同,并且相同字母的指数也相同的项,叫做同类项,根据相同字母的指数相同列方程(或方程组)求解即可.13.某同学在做计算2A+B 时,误将“2A+B”看成了“2A ﹣B”,求得的结果是9x 2﹣2x+7,已知B=x 2+3x+2,则2A+B 的正确答案为_____.【答案】211411x x ++【解析】【分析】根据题意得:22292732A x x x x =-++++()(),求出2A 的值,代入后求出即可. 【详解】解:∵22292732A x x x x =-++++()()22222222927321092109321093211411x x x x x x A B x x x x x x x x x x =-++++=++∴+=+++++=+++++=++,().故答案为211411x x ++.【点睛】本题考查了整式的加减的应用,关键是求出2A 的值. 14.多项式112m x -﹣3x+7是关于x 的四次三项式,则m 的值是_____. 【答案】5【解析】【分析】根据多项式是关于x 的四次三项式可得m-1=4,即可得出结论. 【详解】多项式12x m-1-3x+7是关于x 的四次三项式, 则m-1=4,m=5.故答案为5.【点睛】本题考查了多项式,解题的关键是熟练的掌握多项式的定义. 15.一个多项式与单项式﹣4x 的差等于3x 2﹣2x ﹣1,那么这个多项式为_____.【答案】3x 2﹣6x ﹣1【解析】【分析】根据题意列出关系式,去括号合并即可得到结果.【详解】根据题意得:(3x 2-2x-1)+(-4x)=3x 2-2x-1-4x=3x 2-6x-1,故答案是:3x 2-6x-1【点睛】考查了整式的加减,熟练掌握运算法则是解本题的关键.16.已知ab <0,且|a|<|b|,化简|a+b|+|a ﹣b|+|b ﹣a|=_____.【答案】2a ﹣3b 或3b ﹣a【解析】【分析】先根据ab <0,且|a |<|b |,判断出a ,b 的取值范围,然后分两种情况根据绝对值的意义化简即可.【详解】∵ab <0,且|a |<|b |,∴a >0,b <0或a <0,b >0,当a >0,b <0时,a +b <0,a ﹣b >0,b ﹣a <0,原式=﹣a ﹣b +a ﹣b +a ﹣b =2a ﹣3b ;当a <0,b >0时, a +b >0,a ﹣b <0,b ﹣a >0,原式=a +b +b ﹣a +b ﹣a =3b ﹣a ,则原式=2a ﹣3b 或3b ﹣a .故答案为2a ﹣3b 或3b ﹣a【点睛】本题考查了绝对值的化简及分类讨论的数学思想,根据ab <0,且|a |<|b |,判断出a ,b 的取值范围是解答本题的关键.三.解答题(共7小题)17.计算:2x 2+(3y 2﹣xy )﹣(x 2﹣3xy ).【答案】2232x y xy ++【解析】试题分析:先去掉括号,再合并同类项即可.试题解析: 原式=222233x y xy x xy +--+ =2232x y xy ++18.一堂公开课,老师在黑板上写了两个代数式34a +与237a -,让大家相互之间用这两个代数式出题考对方. (1)小明给小红出的题为:若代数式34a +与237a -的值多1,求3a 2﹣2(2a 2+a)+2(a 2﹣3a )的值;(2)小红想为难一下小明,她给小明出的题为:已知a 为负数,比较代数式34a +与237a -的大小,请你帮小明作出解答.【答案】(1)-15;(2)详见解析.【解析】【分析】(1)先根据代数式34a +与237a -的值多1,列方程求出a 的值,再把3a 2﹣2(2a 2+a)+2(a 2﹣3a )化简,然后把求得的a 的值代入计算即可;(2)用作差法比较大小即可.【详解】解:(1)由题意可知:323147a a +-=+, 解得:a=5,原式=3a 2﹣4a 2﹣2a+2a 2﹣6a=a 2﹣8a=25﹣40=﹣15; (2)32347a a +-- =3328a -+ ∵a 0< ∴3328a -+>0 ∴a 32a 347+-> 【点睛】本题考查了一元一次方程的解法,整式的加减及分类讨论的数学思想,熟练掌握整式的加减法法则是解答本题的关键.19.一般情况下2323a b a b ++=+不成立,但有些数可以使得它成立,例如:a=b=0.我们称使得2323a b a b ++=+成立的一对数a,b 为“相伴数对”,记为(a,b).(1)若(1,b)是“相伴数对”,求b 的值;(2)写出一个“相伴数对”(a,b),其中a ≠0,且a ≠1;(3)若(m,n)是“相伴数对”,求代数式m ﹣223n ﹣[4m ﹣2(3n ﹣1)]的值. 【答案】(1)94b =-; (2) 9(2,)2-(答案不唯一);(3)-2. 【解析】试题分析: (1)把(1,b )代入2323a b a b ++=+中,可解出b ; (2)在2323a b a b ++=+中,把看作常数,可解得94b a =-,给取定一个值,就可得到对应的的值; (3)把(m,n )代入2323a b a b ++=+中,化简可得:940m n +=,把式子 ()2242313m n m n ⎡⎤----⎣⎦ 化成用“94m n +”表达的形式就可求出其值了. 试题解析:(1)∵(1,b )是“相伴数对”, ∴11+2323b b +=+,即151066b b +=+,解得94b =-; (2)∵2323a b a b ++=+, ∴151066a b a b +=+, ∴94b a =-, ∴给任取一个值,可得对应的的值,从而得到一对“相伴数对”,如当2a =时,92b ,这样可得“相伴数对”:(922-,). (3)∵(m,n )是“相伴数对”, ∴2323m n m n ++=+,化简可得:940m n +=, 又∵22[42(31)]3m n m n ---- =224623m n m n --+-=94233m n --- =(94)23m n -+-. ∴原式=0-2=-2.20.已知a 是绝对值等于4的负数,b 是最小的正整数,c 的倒数的相反数是﹣2,(1)求a,b,c 的值;(2)求:4a 2b 3﹣[2abc+(5a 2b 3﹣7abc)﹣a 2b 3].【答案】(1)a=﹣4,b=1,c=12;(2)-10. 【解析】【分析】(1)根据a 是绝对值等于4的负数可知a =-4,根据b 是最小的正整数可知b =1,根据c 的倒数的相反数是﹣2可知c =12; (2)先把所给代数式去括号合并同类项,然后把(1)中求得的a ,b ,c 的值代入计算即可.【详解】解:(1)由题意可知:a=﹣4,b=1,c=12(2)当a=﹣4,b=1,c=12时, 原式=4a 2b 3﹣(2abc+5a 2b 3﹣7abc ﹣a 2b 3)=4a 2b 3﹣(4a 2b 3﹣5abc)=4a 2b 3﹣4a 2b 3+5abc=5abc,=5×(﹣4)×1×12=﹣10.【点睛】本题考查了绝对值、相反数、倒数的意义、整式的化简求值,熟练掌握整式的加减法法则是解答本题的关键.21.已知A=2x 2+3ax ﹣2x ﹣1,B=﹣x 2+ax ﹣1,且3A+6B 的值与x 的取值无关,求5a ﹣1的值【答案】1.【解析】【分析】先把A=2x2+3ax﹣2x﹣1,B=﹣x2+ax﹣1代入3A+6B,化简后根据3A+6B的值与x的取值无关,求出a的值,然后把求得的a的值代入5a﹣1计算即可.【详解】解:3A+6B=3(2x2+3ax﹣2x﹣1)+6(﹣x2+ax﹣1)=6x2+9ax﹣6x﹣3﹣6x2+6ax﹣6=(15a﹣6)x﹣9,∵3A+6B的值与x的取值无关,∴15a﹣6=0,解得a=,则5a﹣1=5×﹣1=1.【点睛】本题考查了整式的加减---无关型问题,解答本题的关键是理解题目中与字母x的取值无关的意思,与哪一项无关,就是合并同类项后令其系数等于0.22.A、B、C、D四个车站的位置如图所示,求:(1)A、D两站的距离;(2)A、C两站的距离.【答案】(1)AD= 4a+3b;(2)AC=3a.【解析】【分析】(1)由图可知A、D两站的距离=AB+BD,把AB=a+b,BD=3a+2b代入计算即可;(2)由图可知A、C两站的距离=AB+BC=AB+BD-CD,把AB=a+b,BD=3a+2b,CD=a+3b代入计算即可.【详解】解:(1)根据题意得:AD=AB+BD=a+b+3a+2b=4a+3b;(2)根据题意得:AC=AB+BC=a+b+(3a+2b)﹣(a+3b)=a+b+3a+2b﹣a﹣3b=3a.【点睛】本题考查了整式加减运算的应用,根据图示正确列出算式是解答本题的关键.23.如果单项式2ax m y与单项式5bx2m﹣3y都是关于x、y的单项式,并且它们是同类项.(1)求m的值;(2)若2ax m y+5bx2m﹣3y=0,且xy≠0,求(2a+5b)2017+m的值.【答案】(1)m=3;(2)0.【解析】【分析】(1)利用同类项的概念得出m=2m-3,进而求出即可;(2)利用单项式的和为0,得出其系数是互为相反数,进而得出答案.【详解】(1)∵单项式2ax m y与单项式5bx2m﹣3y是关于x,y的单项式,并且它们是同类项,∴m=2m﹣3,解得:m=3;(2)∵单项式2ax m y+5bx2m﹣3y=0,且xy≠0,∴2a+5b=0,m=3∴(2a+5b)2017+2m=02023=0.【点睛】本题考查了同类项与单项式,解题的关键是熟练的掌握同类项的概念与单项式的性质.。
第二章 整式的加减单元达标检测卷(含解析)

人教版七年级上册第2章整式的加减单元达标检测卷一.选择题(共10小题,满分30分,每小题3分)1.下列代数式书写规范的是( )A.B.5÷h C.9+x千克D.3y2.代数式﹣2x的意义可以是( )A.﹣2与x的和B.﹣2与x的差C.﹣2与x的积D.﹣2与x的商3.单项式3xy2z4次数是( )A.2B.4C.6D.74.在下列给出的四个多项式中,为三次二项式的多项式是( )A.a2﹣3B.a3+2ab﹣1C.4a3﹣b D.4a2﹣3b+25.下列各式:﹣mn,m,8,,x2+2x+6,,,y2﹣5y+中,整式有( )A.3个B.4个C.6个D.7个6.下列各组单项式中,是同类项的是( )A.﹣x2与2yx2B.2m与3nC.acb2与D.﹣m2n与2n2m7.下列运算正确的是( )A.2xy﹣yx=xy B.5a﹣3a=2C.3x+5y=8xy D.x+2x=2x28.下列运算中“去括号”正确的是( )A.a+(b﹣c)=a﹣b﹣c B.a﹣(b+c)=a﹣b﹣cC.m﹣2(p﹣q)=m﹣2p+q D.x2﹣(﹣x+y)=x2+x+y9.若a2﹣4a﹣12=0,则2a2﹣8a﹣8的值为( )A.24B.20C.18D.1610.若代数式x2+ax﹣(bx2﹣x﹣3)的值与字母x无关,则a﹣b的值为( )A.0B.﹣2C.2D.1二.填空题(共8小题,满分24分,每小题3分)11.单项式的系数是 .12.多项式2x3+3x2﹣1的二次项系数是 .13.计算a﹣(2a﹣b)的结果为 .14.把多项式6x﹣7x2+9按字母x的降幂排列为 .15.单项式3x a﹣1y3﹣b与4x2y是同类项,则a b= .16.若|m﹣3|+(2n﹣1)2=0,则的值为 .17.弟弟今年m岁,比哥哥小三岁,10年后,哥哥的年龄是 岁.18.某个数值转换器原理如图所示:若开始输入的值是1,第1次输出的结果是4,第2次输出的结果是2,依次继续下去,则第2023次输出的结果是 .三.解答题(共8小题,满分66分)19.(8分)先去括号,再合并同类项(1)2(2b﹣3a)+3(2a﹣3b)(2)4a2+2(3ab﹣2a2)﹣(7ab﹣1)20.(6分)已知m为自然数,且多项式是严格按字母x的升幂排列的.(1)求m的值;(2)将多项式按字母y的升幂排列.21.(7分)先化简,再求值:4a2b+(﹣2ab2+5a2b)﹣2(3a2b﹣ab2),其中a=﹣,b=2.22.(7分)如图,在一长方形休闲广场的四角都设计一块半径相同的四分之一圆的花坛,若圆形的半径为r米,广场长为a米,宽为b米.(1)请列式表示广场空地的面积;(2)若休闲广场的长为400米,宽为100米,圆形花坛的半径为10米,求广场空地的面积(计算结果保留π).23.(8分)小琦同学在自习课准备完成以下题目时:化简(□x2﹣6x+5)﹣(﹣6x+5x2﹣2)发现系数“□”印刷不清楚.(1)他把“□”猜成2,请你化简(2x2﹣6x+5)﹣(﹣6x+5x2﹣2);(2)老师见到说:“你猜错了,我看到该题标准答案的结果是常数”,请你通过计算说明原题中“□”是几.24.(10分)观察下列一系列单项式的特点:y,﹣x2y2,x2y3,﹣x2y4,…(1)写出第8个单项式;(2)猜想第n(n大于0的整数)个单项式是什么?并指出它的系数和次数.25.(10分)已知:A=(2x﹣3)﹣(3x﹣5).(1)化简整式A;(2)若2A+B=﹣x+6,①求整式B;②在“A□B”的“□”内,填入“+,﹣,×,÷”中的一个运算符号,经过计算发现,结果是不含一次项的整式,请你写出一个符合要求的算式,并计算出结果.26.(10分)一个三位数的百位数字是a,十位数字是b,个位数字是c(a≠0,c≠0).(1)列式表示这个三位数;(2)将该数的个位数字移到百位上,得到一个新的三位数;①列式表示这个新三位数;②计算新三位数与原三位数之差的绝对值,该绝对值能被9整除吗?说明理由.第2章整式的加减参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】根据代数式的书写要求判断各项.【解答】解:A、书写规范,故此选项符合题意;B、除法运算要写成分数的形式,故此选项不符合题意;C、代数和后面写单位,代数和要加括号,故此选项不符合题意;D、带分数要写成假分数的形式,故此选项不符合题意.故选:A.2.【分析】根据代数式的意义进行解答即可.【解答】解:代数式﹣2x的意义是﹣2与x的积.故选:C.3.【分析】根据单项式次数的定义作出判断.【解答】解:单项式3xy2z4次数是7,故选:D.4.【分析】根据多项式的次数和项数即可得出答案.【解答】解:A选项是二次二项式,故该选项不符合题意;B选项是三次三项式,故该选项不符合题意;C选项是三次二项式,故该选项符合题意;D选项是二次三项式,故该选项不符合题意;故选:C.5.【分析】根据整式的定义,结合题意即可得出答案.【解答】解:整式有,m,8,x2+2x+6,,,一共6个.故选:C.6.【分析】根据同类项的定义即可求解,所含字母相同,且相同字母的指数也相同的两个单项式是同类项.【解答】解:A、﹣x2与2yx2,字母不同,不是同类项,故该选项不正确,不符合题意;B、2m与3n,字母不同,不是同类项,故该选项不正确,不符合题意;C、acb2与,是同类项,故该选项正确,符合题意;D、﹣m2n与2n2m,对应字母的次数不同,不是同类项,故该选项不正确,不符合题意.故选:C.7.【分析】根据合并同类项法则进行判断即可.【解答】解:A.2xy﹣yx=xy,正确,不符合题意;B.5a﹣3a=2a,原计算错误,不符合题意;C.3x与5y不是同类项,不能合并,不符合题意;D.x+2x=3x,原计算错误,不符合题意.故选:A.8.【分析】原式各项变形得到结果,即可作出判断.【解答】解:A、原式=a+b﹣c,错误;B、原式=a﹣b﹣c,正确;C、原式=m﹣2p+2q,错误;D、原式=x2+x﹣y,错误,故选:B.9.【分析】由已知条件可得a2﹣4a=12,然后将2a2﹣8a﹣8变形后代入数值计算即可.【解答】解:∵a2﹣4a﹣12=0,∴a2﹣4a=12,∴2a2﹣8a﹣8=2(a2﹣4a)﹣8=2×12﹣8=24﹣8=16,故选:D.10.【分析】原式去括号合并后,根据结果与字母x无关,确定出a与b的值,代入原式计算即可求出值.【解答】解:∵x2+ax﹣(bx2﹣x﹣3)=x2+ax﹣bx2+x+3=(1﹣b)x2+(a+1)x+3,且代数式的值与字母x无关,∴1﹣b=0,a+1=0,解得:a=﹣1,b=1,则a﹣b=﹣1﹣1=﹣2,故选:B.二.填空题(共8小题,满分24分,每小题3分)11.【分析】利用单项式的次数的确定方法分析得出答案.【解答】解:单项式的系数是.故答案为:.12.【分析】由多项式知道二次项为3x2,从而得到二次项系数.【解答】解:多项式2x3+3x2﹣1的二次项为:3x2,系数为:3.故答案为:3.13.【分析】直接去括号,再合并同类项得出答案.【解答】解:a﹣(2a﹣b)=a﹣2a+b=﹣a+b.故答案为:﹣a+b.14.【分析】根据多项式的定义解决此题.【解答】解:∵多项式6x﹣7x2+9含3项,分别是6x、﹣7x2、9,x的指数分别是1、2、0,∴多项式6x﹣7x2+9按字母x的降幂排列为﹣7x2+6x+9.故答案为:﹣7x2+6x+9.15.【分析】根据同类项的概念“所含字母相同,相同字母的指数也相同的单项式叫同类项”解答即可.【解答】解:根据同类项的定义可得:a﹣1=2,3﹣b=1,解得:a=3,b=2.所以a b=32=9.故答案为:9.16.【分析】利用非负数的性质求出m与n的值,原式去括号合并后代入计算即可求出值.【解答】解:∵|m﹣3|+(2n﹣1)2=0,∴m﹣3=0,2n﹣1=0,解得:m=3,n=,则原式=3m2n﹣2m2n+5mn2+mn2=m2n+6mn2,当m=3,n=时,原式=32×+6×3×()2=+=9.故答案为:9.17.【分析】先求出哥哥今年的年龄是(m+3)岁,再求出10年后哥哥的年龄即可.【解答】解:哥哥今年(m+3)岁,所以10年后哥哥的年龄是(m+3)+10=(13+m)岁.故答案为:(13+m).18.【分析】由第1、2、3、4次输出结果可以判断:输出结果每三次一个循环,由2023=3×674+1即可得出答案.【解答】解:第1次输出:x=1时,x+3=4;第2次输出:x=4时,;第3次输出:x=2时,,第4次输出:x=1时,x+3=4,从而,可以得出每三次一个循环.∵2023=3×674+1,∴第2023次输出的结果是4.故答案为:4.三.解答题(共8小题,满分66分)19.【分析】(1)根据括号前是正号去括号不变号,括号前是负号去掉括号要变号,可去掉括号,根据合并同类项,可得答案;(2)根据括号前是正号去括号不变号,括号前是负号去掉括号要变号,可去掉括号,根据合并同类项,可得答案;【解答】解:(1)2(2b﹣3a)+3(2a﹣3b)=4b﹣6a+6a﹣9b=﹣5b;(2)4a2+2(3ab﹣2a2)﹣(7ab﹣1)=4a2+6ab﹣4a2﹣7ab+1=﹣ab+1.20.【分析】(1)根据按多项式中x的升幂排列可以得出m的值;(2)先分清多项式的各项,然后按多项式中y的升幂排列的定义排列.【解答】解:(1)因为已知m为自然数,且多项式是严格按字母x的升幂排列的,所以m+1=3,所以m=4,即m的值是4;(2)当m=4时,原多项式为x2y5+x3y3﹣3x4y2.按字母y的升幂排列得:﹣3x4y2+x3y3+x2y5.21.【分析】先去括号,再合并同类项,然后将a=﹣1,b=2代入计算即可.【解答】解:4a2b+(﹣2ab2+5a2b)﹣2(3a2b﹣ab2)=4a2b﹣2ab2+5a2b﹣6a2b+2ab2=3a2b.当时,原式=.3×(﹣)2×2=3××2=22.【分析】(1)观察可得空地的面积=长方形的面积﹣圆的面积,把相关数值代入即可;(2)把所给数值代入(1)得到的代数式求值即可.【解答】解:(1)空地的面积=ab﹣πr2;(2)当a=400,b=100,r=10时,空地的面积=400×100﹣π×102=(40000﹣100π)(平方米).23.【分析】(1)先去括号,再合并同类项即可;(2)结果为常数,则其他项的系数为0,据此可求解.【解答】解:(1)(2x2﹣6x+5)﹣(﹣6x+5x2﹣2)=2x2﹣6x+5+6x﹣5x2+2=﹣3x2+7;(2)设“□”是m,则有:(mx2﹣6x+5)﹣(﹣6x+5x2﹣2)=mx2﹣6x+5+6x﹣5x2+2=(m﹣5)x2+7,∵答案的结果是常数,∴m﹣5=0,解得:m=5,即“□”=5.24.【分析】(1)根据观察,可发现规律:系数是(﹣1)n+1×()n,字母部分是x2y n,可得答案;(2)根据观察,可发现规律:系数是(﹣1)n+1×()n,字母部分是x2y n,可得答案.【解答】解:由观察下列单项式:y,﹣x2y2,x2y3,﹣x2y4,…,得系数是(﹣1)n+1×()n,字母部分是x2y n,第8个单项式﹣()8x2y8;(2)由观察下列单项式:y,﹣x2y2,x2y3,﹣x2y4,…,得第n个单项式是(﹣1)n+1×()n x2y n,系数是(﹣1)n+1×()n,字母部分是x2y n,次数n+2.25.【分析】(1)去括号,合并同类项即可解答;(2)由等式2A+B=﹣x+6,变形得到等式B=﹣x+6﹣2A,再把表示A的式子代入即可解答;(3)用“+,﹣,×,÷”四种运算都计算出结果,就可以找到符合题意的运算.【解答】解:(1)A=(2x﹣3)﹣(3x﹣5)=2x﹣3﹣3x+5=﹣x+2;(2)①∵2A+B=﹣x+6,∴B=﹣x+6﹣2A=﹣x+6﹣2(﹣x+2)=﹣x+6+2x﹣4=x+2;②∵A+B=(﹣x+2)+(x+2)=4,是不含一次项的整式,A﹣B=(﹣x+2)﹣(x+2)=﹣2x,是含有一次项的整式,A×B=(﹣x+2)(x+2)=4﹣x2,是不含一次项的整式,A÷B=(﹣x+2)÷(x+2)=﹣是分式,不是整式,所以A和B相加或相乘时不含一次项的整式,结果分别是:4和4﹣x2.26.【分析】(1)根据三位数的数的特征列式进行表示;(2)①根据三位数的数的特征列式进行表示;②先列式,然后去括号,合并同类项,最后根据数的整除的概念进行分析判断.【解答】解:(1)∵一个三位数的百位数字是a,十位数字是b,个位数字是c(a≠0,c≠0),∴这个三位数为:100a+10b+c;(2)①由题意,这个新的三位数,其百位数字是c,十位数字是b,个位数字是a,∴这个新三位数为:100c+10b+a;②新三位数与原三位数之差的绝对值能被9整除,理由如下:∵|(100c+10b+a)﹣(100a+10b+c)|=|99c﹣99a|=99|c﹣a|.∵a,c均为整数,∴|c﹣a|为整数,∴99|c﹣a|能被9整除,∴新三位数与原三位数之差的绝对值能被9整除.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章整式的加减单元检测试卷一.选择题(共10 小题)1.下列式子中,是单项式的是()A.x3y2 B.x+y C.﹣m2﹣n2 D.2.若2x5a y b+4 与﹣的和仍为一个单项式,则b a 的值是()A.2 B.﹣2 C.1 D.﹣13.若单项式﹣2a m b3 与a5b 2﹣n 是同类项,则m﹣n=()A.2 B.4 C.6 D.84.下列各式中,去括号或添括号正确的是()A.a2﹣(2a﹣b+c)=a2﹣2a﹣b+c B.﹣B.2x﹣t﹣a+1=﹣(2x﹣t)+(a﹣1)C.3x﹣[5x﹣(2x﹣1)]=3x﹣5x﹣2x+1D.a﹣3x+2y﹣1=a+(﹣3x+2y﹣1)5.在多项式﹣3x3﹣5x2y2+xy 中,次数最高的项的系数为()A.3 B.5 C.﹣5 D.16.如图,两个三角形的面积分别是7 和3,对应阴影部分的面积分别是m、n,则m﹣n 等于()A.4 B.3 C.2 D.不能确定7.在式子a2+2,,ab2,,﹣8x,0 中,整式有()A.6 个B.5 个C.4 个D.3 个8.如图,小红做了4 道判断题每小题答对给10 分,答错不给分,则小红得分为()A.0 B.10 C.20 D.309.下列运算中,正确的是()A.3÷6×=3÷3=1 B.﹣|﹣5|=5C.﹣2(x﹣3y)=6y﹣2x D.(﹣2)3=﹣610.如果﹣2xy n+2 与3x3m﹣2y 是同类项,则|n﹣4m|的值是()A.3 B.4 C.5 D.6二.填空题(共7 小题)11.下列各式中,3a+4b,0,﹣a,am+1,﹣xy,,﹣1,单项式有个,多项式有个12.若单项式2x2y m﹣1 与﹣x n y3 是同类项,则m n 的值是.13.若﹣2a2b m 与4a n b 是同类项,则m﹣n= .14.如图,有两个矩形的纸片面积分别为26 和9,其中有一部分重叠,剩余空白部分的面积分别为m 和n(m>n),则m﹣n= .15.如图,已知正五角星的面积为5,正方形的边长为2,图中对应阴影部分的面积分别是S1、S2,则S1﹣S2的值为.16.请从以下两个小题中任选一个作答,若多选,则按所选的第一小题计分.(1)若单项式﹣x m y n+4 与5x2y 是同类项,则n m 的值为.(2)实施西部大开发战略是党中央的重大决策,我国国土面积约为960 万平方千米,而我国西部地区的面积占我国国土面积的,用科学记数法表示我国西部地区的面积约为平方千米.17.已知多项式2+3x4﹣5xy2﹣4x2y+6x.将其按x 的降幂排列为.三.解答题(共6 小题)18.先化简,再求值:(1)(5a2+2a+1)﹣4(3﹣8a+2a2)+(3a2﹣a),其中.(2),其中19.佳佳写出一个正确的运算过程,用手捂住一个二次三项式后形为:﹣3x=x2﹣5x+1.(1)求捂住的二次三项式;(2)若x=﹣1,求捂住的二次三项式的值.20.已知代数式A=3x2﹣x+1,马小虎同学在做整式加减运算时,误将“A﹣B”看成“A+B”了,计算的结果是2x2﹣3x﹣2.(1)请你帮马小虎同学求出正确的结果;(2)x 是最大的负整数,将x 代入(1)问的结果求值.21.已知:A=x2﹣2,B=2x2﹣x+3(1)化简:4A﹣2B;(2)若2A﹣kB 中不含x2 项,求k 的值.22.如果两个关于x、y 的单项式2mx a y3与﹣4nx3a﹣6y3是同类项(其中xy≠0).(1)求a 的值;(2)如果它们的和为零,求(m﹣2n﹣1)2018 的值.23.已知A=2x2+3xy﹣2x﹣1,B=x2﹣xy﹣1.(1)化简:4A﹣(2B+3A),将结果用含有x、y 的式子表示;(2)若式子4A﹣(2B+3A)的值与字母x 的取值无关,求y3+A﹣ B 的值.参考答案一.选择题(共10 小题)1.下列式子中,是单项式的是()A.x3y2 B.x+y C.﹣m2﹣n2 D.A.2.若2x5a y b+4 与﹣的和仍为一个单项式,则b a 的值是()A.2 B.﹣2 C.1 D.﹣1B.3.若单项式﹣2a m b3 与a5b2﹣n 是同类项,则m﹣n=()A.2 B.4 C.6 D.8C.4.下列各式中,去括号或添括号正确的是()A.a2﹣(2a﹣b+c)=a2﹣2a﹣b+c B.﹣2x﹣t﹣a+1=﹣(2x﹣t)+(a﹣1)C.3x﹣[5x﹣(2x﹣1)]=3x﹣5x﹣2x+1 D.a﹣3x+2y﹣1=a+(﹣3x+2y﹣1)D.5.在多项式﹣3x3﹣5x2y2+xy 中,次数最高的项的系数为()A.3 B.5 C.﹣5 D.1C.6.如图,两个三角形的面积分别是7 和3,对应阴影部分的面积分别是m、n,则m﹣n 等于()A.4 B.3 C.2 D.不能确定A.7.在式子a2+2,,ab2,,﹣8x,0 中,整式有()A.6 个B.5 个C.4 个D.3 个B.8.如图,小红做了4 道判断题每小题答对给10 分,答错不给分,则小红得分为()A.0 B.10 C.20 D.30 C.9.下列运算中,正确的是()A.3÷6×=3÷3=1 B.﹣|﹣5|=5C.﹣2(x﹣3y)=6y﹣2x D.(﹣2)3=﹣6C.10.如果﹣2xy n+2 与3x3m﹣2y 是同类项,则|n﹣4m|的值是()A.3 B.4 C.5 D.6 C.二.填空题(共7 小题)11.下列各式中,3a+4b,0,﹣a,am+1,﹣xy,,﹣1,单项式有 3 个,多项式有 3 个12.若单项式2x2y m﹣1 与﹣x n y3 是同类项,则m n 的值是16 .13.若﹣2a2b m 与4a n b 是同类项,则m﹣n= ﹣1 .14.如图,有两个矩形的纸片面积分别为26 和9,其中有一部分重叠,剩余空白部分的面积分别为m 和n(m>n),则m﹣n= 17 .15.如图,已知正五角星的面积为5,正方形的边长为2,图中对应阴影部分的面积分别是S1、S2,则S1﹣S2的值为 1 .16.请从以下两个小题中任选一个作答,若多选,则按所选的第一小题计分.(1)若单项式﹣x m y n+4 与5x2y 是同类项,则n m 的值为9 .(2)实施西部大开发战略是党中央的重大决策,我国国土面积约为960 万平方千米,而我国西部地区的面积占我国国土面积的,用科学记数法表示我国西部地区的面积约为 6.4×106 平方千米.三.解答题(共 6 小题)17.先化简,再求值:(1)(5a2+2a+1)﹣4(3﹣8a+2a2)+(3 a2﹣a),其中.(2),其中【解答】解:(1)∵(5a2+2a+1)﹣4(3﹣8a+2a2)+(3a2﹣a)=5a2+2a+1﹣12+32a﹣8a2+3a2﹣a=33a﹣11,∴当a=时,原式=33a﹣11=33×﹣11=0;(2)∵=2x2﹣2x2﹣2+5x2﹣3=5x2﹣5,∴x=﹣时,原式=5x2﹣5=5×(﹣)2﹣5=﹣.19.佳佳写出一个正确的运算过程,用手捂住一个二次三项式后形为:﹣3x=x2﹣5x+1.(1)求捂住的二次三项式;(2)若x=﹣1,求捂住的二次三项式的值.【解答】解:(1)根据题意知,捂住的二次三项式为x2﹣5x+1+3x=x2﹣2x+1;(2)当x=﹣1 时,捂住的二次三项式=x2﹣2x+1=(﹣1)2﹣2×(﹣1)+1=1+2+1=4.20.已知代数式A=3x2﹣x+1,马小虎同学在做整式加减运算时,误将“A﹣B”看成“A+B”了,计算的结果是2x2﹣3x﹣2.(1)请你帮马小虎同学求出正确的结果;(2)x 是最大的负整数,将x 代入(1)问的结果求值.【解答】解:(1)根据题意知B=2x2﹣3x﹣2﹣(3x2﹣x+1)=2x2﹣3x﹣2﹣3x2+x﹣1=﹣x2﹣2x﹣3,则A﹣B=(3x2﹣x+1)﹣(﹣x2﹣2x﹣3)=3x2﹣x+1+x2+2x+3=4x2+x+4;(2)∵x 是最大的负整数,∴x=﹣1,则原式=4×(﹣1)2﹣1+4=4﹣1+4=7.21.已知:A=x2﹣2,B=2x2﹣x+3(1)化简:4A﹣2B;(2)若2A﹣kB 中不含x2 项,求k 的值.【解答】解:(1)原式=4(x2﹣2)﹣2(2x2﹣x+3)=4x2﹣8﹣4x2+2x﹣6=2x﹣14(2)2A﹣kB=2(x2﹣2)﹣k(2x2﹣x+3)=2x2﹣4﹣2kx2+kx﹣3k∵2A﹣kB 中不含x2 项,∴2﹣2k=0,∴k=122.如果两个关于x、y 的单项式2mx a y3与﹣4nx3a﹣6y3是同类项(其中xy≠0).(1)求a 的值;(2)如果它们的和为零,求(m﹣2n﹣1)2018 的值.【解答】解:(1)依题意,得a=3a﹣6,解得a=3;(2)∵2mx3y3+(﹣4nx3y3)=0,故m﹣2n=0,∴(m﹣2n﹣1)2018=(﹣1)2018=1.23.已知A=2x2+3xy﹣2x﹣1,B=x2﹣xy﹣1.(1)化简:4A﹣(2B+3A),将结果用含有x、y 的式子表示;(2)若式子4A﹣(2B+3A)的值与字母x 的取值无关,求y3+A﹣ B 的值.【解答】解:(1)4A﹣(2B+3A)=4A﹣2B﹣6A=A﹣2B=(2x2+3xy﹣2x﹣1)﹣2(x2﹣xy﹣1)=5xy﹣2x+1(2)若式子4A﹣(2B+3A)的值与字母x 的取值无关,则5y﹣2=0,∴y= ,∴A﹣2B=1,∴y3+ A﹣ B=y3+ (A﹣2B)=+=。