线性表的建立与遍历

合集下载

C语言——线性表及其应用

C语言——线性表及其应用

C语⾔——线性表及其应⽤程序要求1.建⽴含n个数据元素的顺序表并输出该表中各元素的值及顺序表的长度。

2.利⽤前⾯的实验先建⽴⼀个顺序表L={21,23,14,5,56,17,31},然后在第i个位置插⼊元素68。

3.建⽴⼀个带头结点的单链表,结点的值域为整型数据。

要求将⽤户输⼊的数据按尾插⼊法来建⽴相应单链表。

输⼊和输出的格式1.顺序线性表的建⽴、插⼊及删除顺序表#include<stdio.h>#include<stdlib.h>#define ListSize 50typedef int DataType;//线性表的顺序存储⽅式typedef struct {DataType data[ListSize];int l;}SeqList;//创建顺序线性表void CreateList(SeqList *A,int n){int i;for(i=0;i<n;i++){scanf("%d",&(A->data[i]));}A->l=n;}//在顺序线性表中插⼊某个元素void InsertList(SeqList *A,DataType x,int i){int j;if(i<1 || i>A->l) //插⼊时的条件{printf("插⼊位置错误!\n");exit(0);}else{printf("插⼊成功!\n");}if(A->l >= ListSize){printf("列表溢出!\n");exit(0);}for(j=A->l-1;j>=i-1;j--){A->data[j+1]=A->data[j]; //插⼊时,把各个元素向后移动后,然后在进⾏插⼊}A->data[i-1]=x;A->l++;}//在顺序线性表中删除某个元素void DeleteList(SeqList *A,int i){int j;if(A->l==0) //删除时的条件{printf("列表为空!\n");exit(0);}if(i<1 || i>A->l){printf("删除位置错误!\n\n");exit(0);}for(j=i;j<=A->l-1;j++) //删除时,把各个元素向前移动,覆盖掉要删除的元素{A->data[j-1]=A->data[j];}A->l--;}//输出线性表void DisList(SeqList *L){int i;for(i=0;i<L->l;i++)printf("%d ",L->data[i]);printf("\n");}void main(){SeqList *A=(SeqList*)malloc(sizeof(SeqList));int a=7;printf("请输⼊7个整型元素:\n");CreateList(A,a);printf("输出SeqList的长度: \n");printf("长度=%d\n",A->l);printf("表内元素为");DisList(A);DataType x;printf("请输⼊需要插⼊的元素的位置!\n");int i;scanf("%d",&i);printf("请输⼊需要插⼊的元素!\n");scanf("%d",&x);InsertList(A,x,i);printf("长度=%d\n",A->l);printf("表内元素为");DisList(A);printf("请输⼊需要删除的元素的位置!\n");scanf("%d",&i);DeleteList(A,i);printf("表内元素为");DisList(A);printf("长度=%d\n",A->l);}输⼊和输出的格式顺序表输⼊输出:定义输⼊7个整型元素,回车进⾏插⼊和删除,输出线性表2.链式线性表的建⽴、插⼊及删除单链表#include <stdio.h>#include <stdlib.h>typedef int ElemType;//定义结点类型typedef struct Node{ElemType data; //单链表中的数据域struct Node *next; //单链表的指针域}Node,*LinkedList;//单链表的初始化LinkedList LinkedListInit(){Node *A;A = (Node *)malloc(sizeof(Node)); //申请结点空间if(A == NULL) //判断是否有⾜够的内存空间printf("申请内存空间失败\n");A->next = NULL; //将next设置为NULL,初始长度为0的单链表return A;}//单链表的建⽴LinkedList LinkedListCreat(){Node *A;A = (Node *)malloc(sizeof(Node)); //申请头结点空间A->next = NULL; //初始化⼀个空链表Node *r;r = A;ElemType x;while(scanf("%d",&x) != EOF){Node *p;p = (Node *)malloc(sizeof(Node));p->data = x;r->next = p;r = p;}r->next = NULL;return A;}//单链表的插⼊,在链表的第i个位置插⼊x的元素LinkedList LinkedListInsert(LinkedList A,int i,ElemType x){Node *pre; //pre为前驱结点pre = A;int tempi = 0;for (tempi = 1; tempi < i; tempi++)pre = pre->next; //查找第i个位置的前驱结点Node *p; //插⼊的结点为pp = (Node *)malloc(sizeof(Node));p->data = x;p->next = pre->next;pre->next = p;return A;}//单链表的删除,在链表中删除数据值为x的元素LinkedList LinkedListDelete(LinkedList A,ElemType x){Node *p,*pre; //pre为前驱结点,p为查找的结点。

线性表 知识点总结

线性表 知识点总结

线性表知识点总结线性表的特点:1. 有序性:线性表中的元素是有序排列的,每个元素都有唯一的前驱和后继。

2. 可变性:线性表的长度是可变的,可以进行插入、删除操作来改变表的元素数量。

3. 线性关系:线性表中的元素之间存在明确的前驱和后继关系。

4. 存储结构:线性表的存储结构有顺序存储和链式存储两种方式。

线性表的操作:1. 查找操作:根据元素的位置或值来查找线性表中的元素。

2. 插入操作:将一个新元素插入到线性表中的指定位置。

3. 删除操作:将线性表中的某个元素删除。

4. 更新操作:将线性表中的某个元素更新为新的值。

线性表的顺序存储结构:顺序存储结构是将线性表的元素按照其逻辑顺序依次存储在一块连续的存储空间中。

线性表的顺序存储结构通常采用数组来实现。

数组中的每个元素都可以通过下标来访问,因此可以快速的进行查找操作。

但是插入和删除操作会导致元素位置的变动,需要进行大量数据搬移,效率较低。

线性表的链式存储结构:链式存储结构是将线性表的元素通过指针相连,形成一个链式结构。

每个元素包含数据和指向下一个元素的指针。

链式存储结构不需要连续的存储空间,可以动态分配内存,适合插入和删除频繁的场景。

但是链式结构的元素访问不如顺序结构高效,需要通过指针来逐个访问元素。

线性表的应用场景:1. 线性表适用于数据元素之间存在明确的前后关系,有序排列的场景。

2. 顺序存储结构适用于元素的插入和删除操作较少,对元素的随机访问较频繁的场景。

3. 链式存储结构适用于插入和删除操作较频繁的场景,对元素的随机访问较少。

线性表的操作的时间复杂度:1. 查找操作:顺序存储结构的时间复杂度为O(1),链式存储结构的时间复杂度为O(n)。

2. 插入和删除操作:顺序存储结构的时间复杂度为O(n),链式存储结构的时间复杂度为O(1)。

线性表的实现:1. 顺序存储结构的实现:使用数组来存储元素,通过下标来访问元素。

2. 链式存储结构的实现:使用链表来实现,每个元素包含数据和指向下一个元素的指针。

【数据结构】线性表的基本操作

【数据结构】线性表的基本操作

【数据结构】线性表的基本操作【数据结构】线性表的基本操作1:定义1.1 线性表的概念1.2 线性表的特点2:基本操作2.1 初始化操作2.1.1 空表的创建2.1.2 非空表的创建2.2 插入操作2.2.1 在指定位置插入元素2.2.2 在表头插入元素2.2.3 在表尾插入元素2.3 删除操作2.3.1 删除指定位置的元素2.3.2 删除表头的元素2.3.3 删除表尾的元素2.4 查找操作2.4.1 按值查找元素2.4.2 按位置查找元素2.5 修改操作2.5.1 修改指定位置的元素 2.5.2 修改指定值的元素3:综合操作3.1 反转线性表3.2 合并两个线性表3.3 排序线性表3.4 删除重复元素3.5 拆分线性表4:线性表的应用场景4.1 数组的应用4.2 链表的应用4.3 栈的应用4.4 队列的应用附件:无法律名词及注释:- 线性表:根据某种规则排列的一组元素的有限序列。

- 初始化操作:创建一个空的线性表,或者创建一个已经包含一定元素的线性表。

- 插入操作:在线性表的指定位置或者表头、表尾插入一个新元素。

- 删除操作:从线性表中删除掉指定位置或者表头、表尾的元素。

- 查找操作:在线性表中按照指定的元素值或者位置查找元素。

- 修改操作:更改线性表中指定位置或者值的元素。

- 反转线性表:将线性表中的元素顺序颠倒。

- 合并线性表:将两个线性表合并成一个新的线性表。

- 排序线性表:按照某种规则对线性表中的元素进行排序。

- 删除重复元素:将线性表中重复的元素删除,只保留一个。

- 拆分线性表:将一个线性表分成多个不重叠的子线性表。

第2次课--顺序线性表的创建和输出、插入和删除

第2次课--顺序线性表的创建和输出、插入和删除
《C语言与数据结构》
第2次课----顺序线性表的定义、创建和输出、插入和删除
第5章
顺序线性表的创建
分析 ① 创建顺序线性表就是依次输入线性表元素,存 放到数组中,最后设置线性表的长度。 ② 为简便起见,设元素类型为整型。 typedef int Elemtype;
《C语言与数据结构》
第2次课----顺序线性表的定义、创建和输出、插入和删除
《C语言与数据结构》
第2次课----顺序线性表的定义、创建和输出、插入和删除
第5章
在有序顺序表中插入元素的实现
方法一的流程图 源程序
看源程序 (2_4) 运行程序 (2_4)
注意:创建线性表 时,要有序。
《C语言与数据结构》
第2次课----顺序线性表的定义、创建和输出、插入和删除
第5章
在有序顺序表中插入元素的实现
源程序
看源程序 (2_2) 运行程序 (2_2)
《C语言与数据结构》
第2次课----顺序线性表的定义、创建和输出、插入和删除
第5章
顺序线性表的输出
分析 顺序线性表的输出就是把线性表元素一个一个地 输出。 流程图
源程序
看源程序 (2_2) 运行程序 (2_2)
《C语言与数据结构》
第2次课----顺序线性表的定义、创建和输出、插入和删除
a1 ……
ai ai+1 …… an-1
b+(n-1)L
《C语言与数据结构》
第2次课----顺序线性表的定义、创建和输出、插入和删除
第5章
顺序线性表的类型定义
数组的最大 顺序线性表类型的定义 元素个数 #define MAXSIZE 100 struct sequence /* 定义顺序表类型 */ { Elemtype elem[MAXSIZE]; /* Elemtype表示元素的数据类型,如int */ int len ; /* 表长 */ }; 当前存储的 顺序线性表的定义 数据元素个 struct sequence v; 数,即表长

线性表的存储结构定义及基本操作

线性表的存储结构定义及基本操作

一、实验目的:. 掌握线性表的逻辑特征. 掌握线性表顺序存储结构的特点,熟练掌握顺序表的基本运算. 熟练掌握线性表的链式存储结构定义及基本操作. 理解循环链表和双链表的特点和基本运算. 加深对顺序存储数据结构的理解和链式存储数据结构的理解,逐步培养解决实际问题的编程能力二、实验内容:(一)基本实验内容(顺序表):建立顺序表,完成顺序表的基本操作:初始化、插入、删除、逆转、输出、销毁, 置空表、求表长、查找元素、判线性表是否为空;1.问题描述:利用顺序表,设计一组输入数据(假定为一组整数),能够对顺序表进行如下操作:. 创建一个新的顺序表,实现动态空间分配的初始化;. 根据顺序表结点的位置插入一个新结点(位置插入),也可以根据给定的值进行插入(值插入),形成有序顺序表;. 根据顺序表结点的位置删除一个结点(位置删除),也可以根据给定的值删除对应的第一个结点,或者删除指定值的所有结点(值删除);. 利用最少的空间实现顺序表元素的逆转;. 实现顺序表的各个元素的输出;. 彻底销毁顺序线性表,回收所分配的空间;. 对顺序线性表的所有元素删除,置为空表;. 返回其数据元素个数;. 按序号查找,根据顺序表的特点,可以随机存取,直接可以定位于第i 个结点,查找该元素的值,对查找结果进行返回;. 按值查找,根据给定数据元素的值,只能顺序比较,查找该元素的位置,对查找结果进行返回;. 判断顺序表中是否有元素存在,对判断结果进行返回;. 编写主程序,实现对各不同的算法调用。

2.实现要求:对顺序表的各项操作一定要编写成为C(C++)语言函数,组合成模块化的形式,每个算法的实现要从时间复杂度和空间复杂度上进行评价;. “初始化算法”的操作结果:构造一个空的顺序线性表。

对顺序表的空间进行动态管理,实现动态分配、回收和增加存储空间;. “位置插入算法”的初始条件:顺序线性表L 已存在,给定的元素位置为i,且1≤i≤ListLength(L)+1 ;操作结果:在L 中第i 个位置之前插入新的数据元素e,L 的长度加1;. “位置删除算法”的初始条件:顺序线性表L 已存在,1≤i≤ListLength(L) ;操作结果:删除L 的第i 个数据元素,并用e 返回其值,L 的长度减1 ;. “逆转算法”的初始条件:顺序线性表L 已存在;操作结果:依次对L 的每个数据元素进行交换,为了使用最少的额外空间,对顺序表的元素进行交换;. “输出算法”的初始条件:顺序线性表L 已存在;操作结果:依次对L 的每个数据元素进行输出;. “销毁算法”初始条件:顺序线性表L 已存在;操作结果:销毁顺序线性表L;. “置空表算法”初始条件:顺序线性表L 已存在;操作结果:将L 重置为空表;. “求表长算法”初始条件:顺序线性表L 已存在;操作结果:返回L 中数据元素个数;. “按序号查找算法”初始条件:顺序线性表L 已存在,元素位置为i,且1≤i≤ListLength(L)操作结果:返回L 中第i 个数据元素的值. “按值查找算法”初始条件:顺序线性表L 已存在,元素值为e;操作结果:返回L 中数据元素值为e 的元素位置;. “判表空算法”初始条件:顺序线性表L 已存在;操作结果:若L 为空表,则返回TRUE,否则返回FALSE;分析: 修改输入数据,预期输出并验证输出的结果,加深对有关算法的理解。

数据结构线性表

数据结构线性表

数据结构线性表一、引言数据结构是计算机存储、组织数据的方式,它决定了数据访问的效率和灵活性。

在数据结构中,线性表是一种最基本、最常用的数据结构。

线性表是由零个或多个数据元素组成的有限序列,其中数据元素之间的关系是一对一的关系。

本文将对线性表的概念、分类、基本操作及其应用进行详细阐述。

二、线性表的概念1.数据元素之间具有一对一的关系,即除了第一个和一个数据元素外,其他数据元素都是首尾相连的。

2.线性表具有唯一的第一个元素和一个元素,分别称为表头和表尾。

3.线性表的长度是指表中数据元素的个数,长度为零的线性表称为空表。

三、线性表的分类根据线性表的存储方式,可以将线性表分为顺序存储结构和链式存储结构两大类。

1.顺序存储结构:顺序存储结构是将线性表中的数据元素按照逻辑顺序依次存放在一组地质连续的存储单元中。

顺序存储结构具有随机访问的特点,可以通过下标快速访问表中的任意一个元素。

顺序存储结构的线性表又可以分为静态顺序表和动态顺序表两种。

2.链式存储结构:链式存储结构是通过指针将线性表中的数据元素连接起来,形成一个链表。

链表中的每个节点包含一个数据元素和一个或多个指针,指向下一个或前一个节点。

链式存储结构具有动态性,可以根据需要动态地分配和释放节点空间。

链式存储结构的线性表又可以分为单向链表、双向链表和循环链表等。

四、线性表的基本操作线性表作为一种数据结构,具有一系列基本操作,包括:1.初始化:创建一个空的线性表。

2.插入:在线性表的指定位置插入一个数据元素。

3.删除:删除线性表中指定位置的数据元素。

4.查找:在线性表中查找具有给定关键字的数据元素。

5.更新:更新线性表中指定位置的数据元素。

6.销毁:释放线性表所占用的空间。

7.遍历:遍历线性表中的所有数据元素,进行相应的操作。

8.排序:对线性表中的数据元素进行排序。

9.合并:将两个线性表合并为一个线性表。

五、线性表的应用1.程序语言中的数组:数组是一种典型的顺序存储结构的线性表,常用于存储具有相同类型的数据元素。

数据结构线性表ppt课件

数据结构线性表ppt课件

01
02
03
04
插入操作
在链表的指定位置插入一个新 节点,需要修改相邻节点的指
针。
删除操作
删除链表的指定节点,需要修 改相邻节点的指针。
查找操作
从链表的头节点开始,顺序遍 历链表,直到找到目标元素或
遍历到链表末尾。
遍历操作
从链表的头节点开始,顺序访 问每个节点,直到遍历到链表
末尾。
04 线性表应用举例 与问题分析
多项式表示与计算问题
01
02
03
多项式表示方法
数组表示法和链表表示法 。
数组表示法
将多项式的系数按次序存 放在一个数组中,通过下 标表示对应的幂次。
链表表示法
每个节点包含系数和指数 两个数据域,以及一个指 向下一个节点的指针域。
一元多项式相加算法设计
• 算法思想:将两个多项式中的同类项系数相加,得到新的 多项式。
删除操作
删除指定位置i的元素,需要将i之后的元素都向前移动 一个位置。
03 链式存储结构及 其实现
链式存储结构原理及特点
链式存储结构原理
使用一组任意的存储单元存储线 性表的数据元素(这组存储单元 可以是连续的,也可以是不连续 的)。
链式存储结构特点
逻辑上相邻的元素在物理位置上 不一定相邻,元素之间的逻辑关 系是通过指针链接来表示的。
...,an组成的有序序列。
性质
集合中必存在唯一的一个“第一元素 ”。
集合中必存在唯一的一个“最后元素 ”。
除最后元素之外,均有唯一的后继。
除第一元素之外,均有唯一的前驱。
线性表与数组关系
数组是线性表的一种表现和实现形式。
线性表更侧重于逻辑概念,而数组则是这种逻辑概念在计算机中的一种存储方式。

线性表基本操作的编程实现

线性表基本操作的编程实现

实验一线性表基本操作的编程实现【实验目的】线性表基本操作的编程实现要求:线性表基本操作的编程实现(2学时,验证型),掌握线性表的建立、遍历、插入、删除等基本操作的编程实现,也可以进一步编程实现查找、逆序、排序等操作,存储结构要求是链表存储结构(顺序存储结构建议作为课外实验完成),可以依次完成主要功能来体现功能的正确性,用菜单进行管理完成大部分功能,要求可以重复运行。

还鼓励学生利用基本操作进行一些更实际的应用型程序设计。

【实验性质】验证性实验(学时数:2H)【实验内容】1.线性表的链表存储,实现数据插入、删除运算。

为了体现功能的正常性,同时要编制数据输入函数和遍历函数,数据输入最好同时提供计算机自动产生数据。

2.其他建议改进的功能或细节:存储结构修改为循环链表、双向链表、循环双向链表等。

原始数据从文本文件读入。

结果存入文本文件【注意事项】1.开发语言:使用C++,不能使用C。

至于是否使用对象,初期可以不用,但是建议尽量尽快使用对象。

2.可以自己增加其他功能。

3.如果是自己开发的,请在程序界面上注明 ***原创。

如果是参考他人或改编他人的,则注明:*** 参考他人版。

希望大家诚实对待自己的努力。

如果有小组,版权页上写上全组人员。

4.在实验报告中也应该如实写出哪些程序功能是自己编的,哪些是参考别人的。

5.初始成绩全部学生都是不及格,然后逐步通过提交更好的版本来刷新成绩。

实验当日仅仅是不及格变为及格。

之后通过班长全班学生提交源代码,为了方便,建议把程序做成一个cpp。

之后在实验后的三天时间内提交实验报告。

过时不候。

结合实验当时的检测,实验后源代码的检测,实验报告的书写给出当次的成绩。

分为五级制。

程序提交在实验之后的三天里可以刷新。

但是一般不应该超过二次。

提交的程序必须要语法正确的。

目前由于老师的审查平台是c++6.0,所以为了统一起见,不接受其他平台的开发系统。

程序名一律类似为:T423-2-17-翁靖凯-链表实验程序.cpp所有信息之间为中横线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录
一、实验题目 ..................... 错误!未定义书签。

二、实验流程图 ................... 错误!未定义书签。

三、实验程序清单 ................. 错误!未定义书签。

四、实验验证数据 ................. 错误!未定义书签。

五、实验体会............................................ 错误!未定义书签。

实验一线性表的建立与遍历
一、实验题目
1、给定一个输入序列,建立顺序表,访问输出顺序表中各结点的内容。

2、给定一个输入序列,建立线性链表,访问输出线性链表中各结点的内容。

二、实验流程图
1、顺序表的建立流程图
图输入流程图图输出流程图
2、①链表头插法的建立及链表的输出
图链表输出图头插法建立链表
②尾插法建立
图尾插法建立
三、实验程序清单
1、/*顺序表的建立及遍历*/
#include <>
typedef struct{
int data[100];
int length;
}Seqlist;
void creat(Seqlist &L);
void show(Seqlist L);
int main()
{
Seqlist L;
=0;
creat(L);
show(L);
return 0;
}
void creat(Seqlist &L)
{
int a;
printf("请输入要创建的元素的个数:\t");
scanf("%d",&a);
for(int i=0;i<a;i++)
{
printf("请输入第%d个元素\t",i+1);
scanf("%d",&[i]);
++;
}
}
void show(Seqlist L)
{
int i;
printf("线性表中的元素为:\n");
for(i=0;i<;i++)
printf("%d\t",[i]);
printf("\n");
}
2、
①/*头插法链表的建立*/
#include <>
#include <>
typedef struct node
{
char data;
struct node *next;
}JD;
JD *CreateList_Front();
int main()
{
JD *head,*p;
head=CreateList_Front();
p = head;
while(p != NULL)
{
printf("%c ", p->data);
p = p->next;
}
printf("\n");
}
JD *CreateList_Front()
{JD *head, *p;
char ch;
head = NULL;
printf("依次输入字符数据(‘#’表示输入结束):\n");
ch = getchar();
while(ch != '#')
{
p = (JD*)malloc(sizeof(JD));
p->data = ch;
p->next = head;
head = p;
ch = getchar();
}
return head;
}
②/*链表尾插法建立及遍历*/
#include <>
#include <>
typedef struct link
{
char data;
struct link *next;
}linklist;
linklist *CreateList_End(); 用带头结点的尾插法创建单链表");
printf(" ");
printf("2.链表输出显示");
printf(" ");
printf("3.退出\n");
printf("做出选择:\n");
scanf("%d",&choice);
switch(choice)
{
//尾插法
case 1:
head = CreateList_End();
break;
//输出链表
case 2:
ShowLinklist(head);
break;
//退出程序
case 3:
return 0;
break;
default:
break;
}
}
return 1;
}
linklist *CreateList_End()
{
char ch;
linklist *head, *s, *r;
head = (linklist*)malloc(sizeof(linklist));
r=head;
printf("请依次输入字符数据('#'表示输入结束):\n");
ch = getchar();
while(ch != '#')
{
s = (linklist*)malloc(sizeof(linklist));
s->data = ch;
r->next=s;
r=s;
ch=getchar();
}
r->next = NULL;
return head;
}
void ShowLinklist(linklist *h)
{
linklist *s;
s = h;
while(s != NULL)
{
printf("%c ", s->data);
s = s->next;
}
printf("\n");
}
四、实验验证数据
1、顺序表的建立及输出结果如下:
图顺序输出2、链表头插法建立及遍历,结果如下:
图头插法
3、链表尾插法的建立及遍历,结果如下:
图尾插法
五、实验体会
通过这次实验的练习,虽然在编程的过程中出现的一些小的错误,例如变量未定义,但是在自己不断的修正下,结果不断完善。

通过这次实验让我更加明白一个顺序表怎么建立,先大体上估计一个数组的大小,自己来确定这个顺序表的长度,然后进行输出。

在链表实验中还做了头插法和尾插法建立及遍历链表,通过实验结果可以更加明白,插法建立链表输出结果是逆序的,而尾插法建立链表输出结果是正序。

相关文档
最新文档