高中解析几何知识点

合集下载

高中数学解析几何知识点总结大全

高中数学解析几何知识点总结大全

高中数学解析几何知识点总结大全解析几何是高中数学的重要分支之一,通过运用代数和几何的方法来研究几何图形的性质和变换。

下面是高中数学解析几何的知识点总结,供参考:一、直线与平面的位置关系1.直线与平面的交点个数:直线和平面可以有0个、1个或无数个交点。

2.平面与平面的位置关系:两个平面可以相交、平行或重合。

二、向量及其代数运算1.向量的概念:向量是具有大小和方向的量。

2.向量的表示方法:向量可以用有向线段或坐标表示。

3.向量的加法:向量的加法满足平行四边形法则。

4.向量的数乘:向量的数乘是一个向量与一个实数的乘积。

5.向量的数量积:向量的数量积是两个向量之间的乘积,结果是一个实数。

6.向量的乘法运算法则:分配律、结合律和交换律。

三、直线及其方程1.平面直角坐标系:平面直角坐标系包括坐标轴、坐标原点和相应的正方向。

2.直线的方程:直线可以用一般式、点斜式、两点式或截距式表示。

3.直线的性质:平行、垂直、斜率、倾斜角等。

4.直线的位置关系:两条直线可以相交、平行或重合。

四、曲线及其方程1.圆的方程:圆可以用标准方程、一般方程或截距方程表示。

2.椭圆、双曲线和抛物线的方程:椭圆、双曲线和抛物线可以用一般式表示。

3.曲线的性质:焦点、准线、离心率等概念的理解。

4.曲线的位置关系:两条曲线可以相交、相切或没有交点。

五、空间直线及其方程1.空间直线的方程:空间直线可以用对称式、参数方程或直角坐标式表示。

2.空间直线的位置关系:两条空间直线可以相交、平行或重合。

3.空间直线与平面的位置关系:空间直线可以与平面相交、平行或测度为零。

六、空间曲线及其方程1.空间曲线的方程:空间曲线可以用参数方程或直角坐标式表示。

2.空间曲线与平面的位置关系:空间曲线可以与平面相交、触及或完全包含。

七、立体图形1.点、线、面、体的概念:点是没有长度、宽度和高度的,线是一系列相连的点,面是一系列相连的线,体是一系列相连的面。

2.立体图形的表面积:立方体、长方体、正方体、球体、圆柱体、圆锥体和棱锥体的表面积计算公式。

高中数学解析几何知识点归纳总结

高中数学解析几何知识点归纳总结

高中数学解析几何知识点归纳总结
1. 直线与平面的位置关系
- 直线与平面的交点可以有三种情况:交于一点、平行或重合。

- 直线与平面的夹角可以分为三种情况:直线在平面内、直线
与平面垂直或直线在平面外。

- 两个平面的位置关系可以分为三种情况:相交于一直线、平
行或重合。

2. 平面的方程
- 平面的方程有两种形式:点法式和一般式。

- 点法式方程:通过平面上一点和法向量来确定平面方程。

- 一般式方程:由平面的法向量和一个常数项确定平面方程。

3. 直线的方程
- 直线的方程也有两种形式:点向式和一般式。

- 点向式方程:通过直线上一点和方向向量来确定直线方程。

- 一般式方程:由直线的法向量和一个常数项确定直线方程。

4. 平面和直线的距离
- 平面和直线的距离可以使用点到平面的距离公式或点到直线
的距离公式。

5. 直线与直线的位置关系
- 直线与直线的位置关系可以分为三种情况:相交于一点、平
行或重合。

6. 空间中的球面与圆
- 空间中的球面方程与二维平面上的圆方程类似。

- 空间中的球面与圆的方程可以通过中心点和半径来确定。

7. 二次曲线
- 二次曲线包括椭圆、双曲线和抛物线。

- 二次曲线的方程可以通过焦点、直径等要素来确定。

以上是高中数学解析几何的一些主要知识点。

通过研究和掌握
这些知识,你将能够更好地理解和应用解析几何的相关概念和方法。

高中解析几何知识总结

高中解析几何知识总结

(3)截距式: x y 1
a b
(2)直线距离: 点到直线距离:d= Ax0 By0 C
A 2 B2
(4)两点式: y y1 x x1 y2 y1 x2 x1
两直线间距离:d= C1 C2
A 2 B2
x x0 at (5)参数式: y y0 bt x x0 t cos α y y t sin 0
(3)两直线夹角 l1,l2: l1 到 l2 的角度 θ:tan θ= k2 k1 (0≤θ≤180°)
1 k2k1
(6)一般式:Ax+By+C=0 注:a,b,t∈R A,B,C∈R
l1,l2 的夹角 θ:tan θ=
k 2 k1 (0≤θ≤90°) 1 k 2 k1
圆锥曲线
定 义
PF 1 (2) PF 2 e(e 1) PP PP2 1
2 2 2 x2 y2 1 ( a +b = c ) a2 b2
(1) (2) PF e(e 1)
PP
解 析 式
(1)x2+y2=R2 (2) x r cos θ y r sin θ ①判断图像 ②方程移动 标准式:(x-a)2+(y-b)2=r2 一般式:x2+y2+Dx+Ey+F=0 设直线的斜率为 k: (1)相交弦长公式:d= 1 k 2 |x1-x2| (2)切线方程: (x0-a)(x-a)+(y0-b)(y-b)=r2 (3)两圆公共弦方程: (D1-D2)x+(E1-E2)y+(F1-F2)=0
设直线的斜率为 k: (1)相交弦长公式:同左 (2)焦点半径:x0+ P

高中数学解析几何知识点总结

高中数学解析几何知识点总结

高中数学解析几何知识点总结1.直线方程直线和圆的方程是解析几何中的重要知识点之一。

在直线方程的研究中,我们需要掌握以下几个要点:1.1 直线的倾斜角直线的倾斜角是指一条直线向上的方向与x轴正方向所成的最小正角。

当直线与x轴平行或重合时,其倾斜角为0度或180度。

需要注意的是,当直线垂直于x轴时,其斜率不存在。

1.2 直线方程的几种形式直线方程可以表示为点斜式、截距式、两点式和斜截式。

其中,当直线经过两点时,即在x轴和y轴上的截距分别为a和b(a≠0,b≠0)时,直线方程为y = (-a/b)x + 1.1.3 直线系直线系是指斜截式方程y = kx + b中的k和b均为确定的数值时,所表示的一组直线。

当b为定值,k变化时,它们表示过定点(0,b)的直线束;当k为定值,b变化时,它们表示一组平行直线。

2.平行和垂直的直线在解析几何中,平行和垂直的直线是常见的情况。

判断两条直线是否平行或垂直,需要注意以下几点:2.1 两条直线平行的条件两条直线平行的条件是:它们是两条不重合的直线,且在它们的斜率都存在的前提下,斜率相等。

需要特别注意的是,抽掉或忽视其中任一个“前提”都会导致结论的错误。

2.2 两条直线垂直的条件两条直线垂直的条件是:它们的斜率之积为-1.同样需要注意的是,在判断两条直线是否垂直时,需要确保它们的斜率都存在。

以上是解析几何中直线方程和平行、垂直直线的基本知识点总结。

掌握这些知识点,对于研究和理解解析几何的其他内容将会有很大的帮助。

本文主要介绍了直线和圆的方程,其中包括直线的平行和垂直方程,过定点的直线方程以及过两条直线交点的直线方程等内容。

同时还介绍了关于点和直线对称的性质,以及圆的标准方程和特例。

下面对每个部分进行小幅度的改写和格式修正。

一、直线方程1.直线的平行和垂直方程直线的平行和垂直方程是很重要的概念,它们可以帮助我们更好地理解直线的性质和特点。

其中,与直线 Ax+By+C=0平行的直线方程是 Ax+By+m=0(m为实数,且C≠m);与直线Ax+By+C=0 垂直的直线方程是Bx-Ay+m=0(m为实数)。

高中数学解析几何知识点总结

高中数学解析几何知识点总结

高中数学解析几何知识点总结直线:倾斜角与斜率:定义:直线与x轴正向所成的角称为直线的倾斜角,其正切值即为直线的斜率。

范围:倾斜角的范围为0°到180°。

特殊情况:当直线垂直于x轴时,斜率不存在。

直线方程:点斜式:已知直线上一点P(x0,y0)及直线的斜率k,则直线方程为y-y0=k(x-x0)。

注意,当斜率不存在时,此形式不适用。

斜截式:已知直线在y 轴上的截距b和斜率k,则直线方程为y=kx+b。

圆:圆的标准方程:描述圆的基本形式。

圆心与半径:定义圆的中心和大小。

切线、弧长、扇形、弓形:描述圆上或圆周围的特定部分。

二次曲线:椭圆:定义、标准方程、焦点、准线等性质。

双曲线:定义、标准方程、焦点、准线等性质。

抛物线:定义、标准方程、焦点、准线等性质。

向量:向量的运算:包括向量的加减、数量积、向量积等。

向量的性质:如向量的模、方向余弦等。

向量的几何应用:平面向量:涉及平面上点的坐标表示、点和点之间的距离、线段的中点、向量共线与垂直、三角形的重心、内心、外心、垂心等概念。

空间向量:涉及空间向量的坐标表示、点和点之间的距离、平面的方程、直线与平面的位置关系、平面与平面的位置关系、球与球的位置关系等概念。

空间中的直线与平面:直线的参数方程和对称方程:描述直线在三维空间中的位置和方向。

平面的一般式和截距式方程:描述平面在三维空间中的位置和方向。

以上仅为高中数学解析几何部分的主要知识点概述,具体内容可能因教材版本和学校教学计划而有所差异。

在实际学习过程中,还需结合具体教材和课堂讲解来深入理解各个知识点。

高中数学解析几何总结(非常全)

高中数学解析几何总结(非常全)

高中数学解析几何第一局部:直线一、直线的倾斜角与斜率1.倾斜角α(1)定义:直线l向上的方向与x轴正向所成的角叫做直线的倾斜角。

(2)X围:01802.斜率:直线倾斜角α的正切值叫做这条直线的斜率.ktan〔1〕.倾斜角为90的直线没有斜率。

〔2〕.每一条直线都有唯一的倾斜角,但并不是每一条直线都存在斜率〔直线垂直于x轴时,其斜率不存在),这就决定了我们在研究直线的有关问题时,应考虑到斜率的存在与不存在这两种情况,否那么会产生漏解。

〔3〕设经过A(,)和B(x2,y2)两点的直线的斜率为k,x1y1那么当x1x2时,yy12ktan;当xx12x1x时,2o90;斜率不存在;二、直线的方程1.点斜式:直线上一点P〔x0,y0〕及直线的斜率k〔倾斜角α〕求直线的方程用点斜式:y-y0=k(x-x0)注意:当直线斜率不存在时,不能用点斜式表示,此时方程为xx0;2.斜截式:假设直线在y轴上的截距〔直线与y轴焦点的纵坐标〕为b,斜率为k,那么直线方程:ykxb;特别地,斜率存在且经过坐标原点的直线方程为:ykx注意:正确理解“截距〞这一概念,它具有方向性,有正负之分,与“距离〞有区别。

3.两点式:假设直线经过(x1,y1)和(x2,y2)两点,且〔x1x2,y1y2那么直线的方程:y y2 y1y1xx2x1x1;注意:①不能表示与x轴和y轴垂直的直线;②当两点式方程写成如下形式(x2x)(yy)(yy)(xx)0时,方程可以适应在11211于任何一条直线。

4截距式:假设直线在x轴,y轴上的截距分别是a,b〔a0,b0〕那么直线方程:x a yb1 ;注意:1〕.截距式方程表不能表示经过原点的直线,也不能表示垂直于坐标轴的直线。

2〕.横截距与纵截距相等的直线方程可设为x+y=a;横截距与纵截距互为相反数的直1线方程可设为x-y=a5一般式:任何一条直线方程均可写成一般式:AxByC0;〔A,B不同时为零〕;反之,任何一个二元一次方程都表示一条直线。

高中数学解析几何知识点总结

高中数学解析几何知识点总结解析几何是数学中的一个重要分支,它是几何和代数的结合,通过代数方法研究几何问题。

在高中数学学习中,解析几何是一个重要的知识点,它涉及到直线、圆、曲线等图形的性质和相关定理。

下面将对高中数学解析几何的知识点进行总结。

一、直线的方程。

1.点斜式方程。

点斜式方程是解析几何中直线的一种常见方程形式,它的形式为y-y₁=k(x-x₁),其中(x₁,y₁)为直线上的一点,k为直线的斜率。

利用点斜式方程,可以方便地确定直线的位置和性质。

2.一般式方程。

一般式方程是直线的另一种常见方程形式,它的形式为Ax+By+C=0,其中A、B、C为常数且A和B不同时为0。

一般式方程可以直接得到直线的斜率和截距,方便进行直线的分析和运算。

二、圆的方程。

1.标准方程。

圆的标准方程是(x-a)²+(y-b)²=r²,其中(a,b)为圆心坐标,r为半径。

通过标准方程,可以直接得到圆的圆心和半径,方便进行圆的性质和位置分析。

2.一般方程。

圆的一般方程是x²+y²+Dx+Ey+F=0,其中D、E、F为常数。

一般方程可以通过配方和化简得到圆的标准方程,也可以直接得到圆的圆心坐标和半径长度。

三、曲线的方程。

1.抛物线的方程。

抛物线的一般方程为y=ax²+bx+c,其中a、b、c为常数且a≠0。

抛物线是解析几何中的重要曲线,通过抛物线的方程可以确定抛物线的开口方向、顶点坐标等重要性质。

2.椭圆的方程。

椭圆的一般方程为(x-h)²/a²+(y-k)²/b²=1,其中(h,k)为椭圆的中心坐标,a、b分别为椭圆在x轴和y轴上的半轴长度。

椭圆是解析几何中的另一种重要曲线,通过椭圆的方程可以确定椭圆的中心、长短轴长度等重要性质。

综上所述,高中数学解析几何知识点总结包括直线的方程、圆的方程和曲线的方程。

通过对这些知识点的学习和掌握,可以帮助学生更好地理解和运用解析几何知识,提高数学解题能力。

高中数学解析几何知识点总结

高中数学解析几何知识点总结一、基本概念1. 点、直线和平面•点:在平面上,点是最基本的几何对象,可以用坐标表示。

在空间中,点可以用三维坐标表示。

•直线:由无数个点连成的无限延伸的轨迹,可以由两个不重合的点唯一确定。

•平面:由无数点在同一平面上组成。

2. 基本图形•线段:连接两点的线段,有起点和终点,可以用线段的长度表示。

•射线:一个起点和一个终点在同一条直线上的线段,有起始点但没有终结点。

•角:由两条半直线和公共端点组成,以顶点为中心点,夹在两条半直线之间。

二、坐标系与向量1. 坐标系•笛卡尔坐标系:直角坐标系,是一个由两条垂直的坐标轴组成的平面,用于表示点的位置。

•极坐标系:以一个点为极点,在此点设一根射线作为极轴,并规定每一个点到该射线的距离和与该射线正方向所成角度来表示该点的坐标。

2. 向量•向量的定义:向量是有大小和方向的量,表示一段膨胀或者收缩的箭头。

•向量的运算:向量可以做加法和乘法运算,具备平移、缩放和旋转的特性。

•向量的表示:向量可以用有序数组、列矩阵或坐标表示。

三、直线与圆1. 直线的方程•点斜式方程:通过已知点和斜率来表示直线的方程。

•斜截式方程:通过截距和斜率来表示直线的方程。

•两点式方程:通过两个已知点来表示直线的方程。

•一般式方程:直线的一般方程为Ax + By + C = 0。

2. 圆的方程•标准方程:圆的标准方程为(x−a)2+(y−b)2=r2,其中(a,b)为圆心坐标,r为半径长度。

•一般方程:圆的一般方程为x2+y2+Dx+Ey+F=0。

四、曲线与曲面1. 二次曲线•椭圆:由平面上到两个定点的距离之和为常数的点的轨迹组成。

•抛物线:由平面上到一个定点的距离与到一条定直线的距离相等的点的轨迹组成。

•双曲线:有两个定点F1和F2称为焦点,对于任意一点P的到两个焦点的距离之差是常数。

2. 二次曲面•椭球面:由空间中到两个定点的距离之和为常数的点的轨迹组成。

•抛物面:由空间中到一个定点的距离与到一条定直线的距离相等的点的轨迹组成。

最新高二数学解析几何知识点

最新高二数学解析几何知识点1.平面几何基础知识-直线、线段、射线的概念及性质-平面、点、角的概念及性质2.向量基本概念-向量的定义、加法、减法及其性质-向量的数量积、向量积及其性质3.平面向量的应用-平面向量的模、方向和零向量的概念-平面向量共线与方向相同、反向及垂直的判断方法-平面向量的线性运算及坐标表示-平面向量的投影及夹角的计算4.直线与圆的性质-直线的方程、斜率和与坐标轴的交点-圆的基本概念、圆心和半径的计算公式-直线与圆的位置关系及相交情况的判断方法5.二次函数与图像-二次函数的图像、拐点、对称性及最值-根据已知条件求解二次函数的相关参数-二次函数与坐标轴的交点及与抛物线的位置关系6.空间几何基本概念-空间直线、平面的方程及其相交情况的判断方法-点关于直线、平面的投影和距离的计算公式7.空间向量的基本概念-空间向量的坐标、夹角、共线性和垂直性的判断方法-空间向量的线性运算及应用8.空间解析几何的一般方程-空间点的坐标表示及不同平面之间的关系-直线和平面的交点及与坐标轴的交点的计算方法9.空间解析几何的方向向量与法向量-空间向量的方向余弦及方向角的计算-直线与平面的向量形式方程及其应用10.空间解析几何的方程-平面的一般方程及各种特殊方程的表示方法-空间直线和平面相交的条件及交点的计算方法11.空间解析几何的位置关系与距离-点和直线、点和平面的位置关系的判断方法-直线和平面的距离及点到直线、点到平面的距离的计算公式12.空间曲线基本概念与参数方程-空间三角形和四边形的定向面积及体积的计算方法-平面与空间曲线的相交关系及切线方程的求解方法13.空间曲线方程的一般方程-空间直线和平面的位置关系及相交情况的判断方法-空间曲线的一般方程及其解析式的推导和应用14.空间曲线的旋转曲线-极坐标、球坐标及柱坐标中曲线方程的表示方法-曲线在旋转过程中的投影和旋转体的体积计算方法15.空间曲线的其他表示方法-参数方程、一般方程、向量方程与轴测图之间的转换关系-空间曲线在不同坐标系中的表示及转换方法16.空间几何的相关题型解析-空间几何题型的解题方法和技巧的总结与应用。

高_中数学解析几何知识点大总结.

高_中数学解析几何知识点大总结.一、实数系统:1、有理数体系:有理数是可以用有限个整数的乘积和商来表示的运算对象,它们形成有理数体系。

常用的有理数有整数、分数和真分数。

2、无理数体系:无理数是不具备有限个整数的乘积和商来表示的运算对象,它们形成无理数体系。

常用的无理数有平方根数和立方根数。

二、几何:1、点,直线,圆和椭圆:点是几何的基本元素,是距离的集合,没有大小和形状;由两点确定的直线是几何中的基本要素,没有长度和粗细;圆是一种特殊的曲线,它的半径不变,圆的形状是无限的;椭圆是一种曲线,它的一个轴长不变,另一个轴可以改变长度,所以有无限多种椭圆。

2、平行,垂直和相交:平行线是指在同一平面内,相互偏离而永不相交的两条或多条直线;垂直线是指在同一平面内,两条直线在顶点处刚好相交;相交线是指在同一平面内,它们在某一点有交点。

3、向量:向量是用来表示直线上的一点到另一点的距离,它有两个特征:方向和大小。

三、解析几何:1、给定两个点:如果已经给定了两个点,则可以从这两个点构造一条连续的直线,从而求出这两个点之间的距离。

2、给定一点和直线:如果已经给定了一点和一条直线,则可以求出该点到直线的距离。

3、给定两条直线:如果已经给定了两条直线,则可以求出它们之间有无交点,以及两条直线之间的距离。

4、给定一点和它所在的圆心:如果已经给定了一点和它所在的圆心,则可以求出该点到圆心的距离。

5、给定两个圆:如果已经给定了两个圆,则可以求出它们之间有无交点,以及两个圆之间的距离。

四、三维几何:1、球形:球是一个由三维几何中的最精简的图形,它是一种空间图形,由中心点和半径确定。

它可以用来描述运动物体在空间中的运动轨迹。

2、胶囊:胶囊是一种特殊的三维几何,它由一组圆环构成,每个圆环都是完整的并且平行。

3、多边体:多边体是由于把一个或多个多边形拼接而成的空间图形,它可以用来描述运动物体在三维空间中的位置。

4、棱锥:棱锥是一种线框体,它由一系列类似多边形的棱面组成,每个棱面都是平的或者曲的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解析几何知识点
一、基本内容
(一)直线的方程
1、直线的方程
确定直线方程需要有两个互相独立的条件,而其中一个必不可少的条件是直线必须经过一已知点.确定直线方程的形式很多,但必须注意各种形式的直线方程的适用范围.
2、两条直线的位置关系
两条直线的夹角,当两直线的斜率k1,k2都存在且k1·k2≠
外注意到角公式与夹角公式的区别.
(2)判断两直线是否平行,或垂直时,若两直线的斜率都存在,可用斜率的关系来判断.但若直线斜率不存在,则必须用一般式的平行垂直条件来判断.
3、在学习中注意应用数形结合的数学思想,即将对几何图形的研究,转化为对代数式的研究,同时又要理解代数问题的几何意义.
(二)圆的方程
(1)圆的方程
1、掌握圆的标准方程及一般方程,并能熟练地相互转化,一般地说,具有三个条件(独立的)才能确定一个圆方程.在求圆方程时,若条件与圆心有关,则一般用标准型较易,若
已知圆上三点,则用一般式方便,注意运用圆的几何性质,去简化运算,有时利用圆系方程也可使解题过程简化.
2、 圆的标准方程为(x -a )2+(y -b )2=r 2;一般方程x 2+y 2+Dx+Ey +F =0,圆心坐标(,)22D E --,半径为22142
D E F +-。

3、 在圆(x -a )2+(y -b )2=r 2,若满足a 2+b 2 = r 2条件时,能使圆过原点;满足a=0,r
>0条件时,能使圆心在y 轴上;满足b r =时,能使圆与x 轴相切;满足
2a b
r -=条件时,能使圆与x -y =0相切;满足|a |=|b |=r 条件时,圆与两坐标轴相切.
4、 若圆以A (x 1,y 1)B (x 2,y 2)为直径,则利用圆周上任一点P (x ,y ), 1PA PB k k =-求出圆方程(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0
(2) 直线与圆的位置关系
①在解决的问题时,一定要联系圆的几何性质,利用有关图形的几何特征,尽可能简化运算,讨论直线与圆的位置关系时,一般不用△>0,△=0,△<0,而用圆心到直线距离d <r ,d=r ,d >r ,分别确定相关交相切,相离的位置关系.涉及到圆的切线时,要考虑过切点与切线垂直的半径,计算交弦长时,要用半径、弦心距、半弦构成直角三角形,当然,不失一般性弦长式
③已知⊙O 1:x 2+y 2 = r 2,⊙O 2:(x -a )2+(y -b )2=r 2;⊙O 3:x 2+y 2+Dx+Ey +F =0则以M (x 0,y 0)为切点的⊙O 1切线方程为xx 0+yy 0=r 2;⊙O 2切线方程
条切线,切线弦方程:xx 0+yy 0=r 2.
(三)曲线与方程
(1)在平面内建立直角坐标系以后,坐标平面内的动点都可以用有序实数对x 、y 表示,这就是动点的坐标(x ,y ).当点按某种规律运动而形成曲线时,动点坐标(x ,y )中的变量x ,y 存在着某种制约关系.这种制约关系反映到代数中,就是含有变量x ,y 方程F (x ,y )=0. 曲线C 和方程F (x ,y )=0的这种对应关系,还必须满足两个条件:
(1)曲线上的点的坐标都是这个方程的解;
(2)以这个方程的解为坐标的点都在曲线上,这时,我们才能把这个方程叫做曲线的方程,
这条曲线叫做方程的曲线.这时曲线与方程就成为同一关系下的两种不同表现形式曲线的性质完全反映在它的方程上;方程的性质又完全反映在它的曲线上.这样,我们便可以利用方程来研究曲线,构成解析几何中解决问题的基本思想.
曲线与方程对应应满足的两个条件,其中条件(1)说明曲线上没有坐标不满足方程的点,即曲线上所有点都适合这个条件而毫无例外,也说成曲线具有纯粹性;条件(2)说明适合条件的所有点都在曲线上而毫无遗漏,也就是说曲线具有完备性.
(2)求曲线方程的五个步骤:
(1)建立适当的直角坐标系,用(x,y)表示曲线上任意一点M的坐标;建标
(2)写出适合条件P的点M的集合P={M|P(M)};设点
(3)用坐标表示条件P(M),列出方程f(x,y)=0 列式
(4)化方程f(x,y)=0为最简方程化简
(5)证明以化简后的方程的解为坐标的点都是这条曲线上的点.
除个别情况外,化简过程都是同解变形过程,步骤(5)可以不写,也可以省略步骤(2),直接列出曲线方程.
(3)求曲线方程主要有四种方法:
(1)条件直译法:如果点运动的规律就是一些几何量的等量关系,这些条件简单、明确,易于表达,我们可以把这些关系直译成含“x,y”(或ρ,θ)的等式,我们称此为“直译法”.(2)代入法(或利用相关点法):有时动点所满足的几何条件不易求出,但它随另一动点的运动而运动,称之为相关点.如果相关点满足的条件简明、明确,就可以用动点坐标把相关的点的坐标表示出来,再用条件直译法把相关点的轨迹表示出来,就得到原动点的轨迹.
(3)几何法:利用平面几何或解析几何的知识分析图形性质,发现动点运动规律.
(4)参数法:有时很难直接找出动点的横纵坐标之间关系.如果借助中间参量(参数),使x,y之间的关系建立起联系,然后再从所求式子中消去参数,这便可得动点的轨迹方程.(四)圆锥曲线
(1)椭圆
(1)椭圆的定义
平面内与两个定点F1,F2的距离之和等于常数(大于|F1F2|)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做焦距.
这里应特别注意常数大于|F1F2|因为,当平面内的动点与定点F1,F2的距离之和等于|F1F2|时,其动点轨迹就是线段F1F2;当平面内的动点与定点F1,F2的距离之和小于|F1F2|时,其轨迹不存在.
(2)椭圆的标准方程
之所以称它为标准方程,是因为它的形式最简单,这与利用对称性建立直角坐标系有关.同时,还应注意理解下列几点,
1)标准方程中的两个参数a和b,确定了椭圆的形状和大小,是椭圆的定形条件.
2)焦点F1,F2的位置,是椭圆的定位条件,它决定椭圆标准方程的类型.也就是说,知道了焦点位置,其标准方程只有一种形式,不知道焦点位置,其标准方程具有两种类型.
3)任何一个椭圆,只需选择适当的坐标系,其方程均可以写成标准形式,当且仅当椭圆的中心在原点,其焦点在坐标轴上时,椭圆的方程才具有标准形式.
1)范围:焦点在x轴时,椭圆位于直线x=±a和y=±b所围成的矩形里.
2)对称性:椭圆关于x轴,y轴和原点都是对称的,这时坐标轴为椭圆的对称轴,原点是椭圆的对称中心.椭圆的对称中心叫做椭圆中心.
3)顶点:椭圆与对称轴的交点为椭圆的顶点A1(-a,0)A2(a,0)B1(0,b)B2(0,-b)线段A1A2,B1B2分别叫做椭圆的长轴,短轴,长分别为2a,2b.
<1.e越接近于1,则椭圆越扁,反之,e越接近于0,椭圆越接近于圆.
5)焦半径:椭圆上任一点到焦点的距离为焦半径.
如图所示,当焦点在x轴上时,任一点到左焦点的焦半径为r1=a+ex0.
6)|A1F1|=a-c|A1F1|=a+c
10)椭圆的第二定义:平面内的点到定点的距离和它到定直线的距离的比为常数e(e<1=的点的轨迹.。

相关文档
最新文档