误差来源与分类.
实验报告 误差分析

实验报告误差分析实验报告:误差分析引言:实验是科学研究中不可或缺的一部分,通过实验可以验证理论的正确性,探索未知的领域。
然而,实验中难免会出现误差,这些误差可能会对实验结果产生一定的影响。
因此,我们需要进行误差分析,以了解误差的来源、大小以及对实验结果的影响程度,从而更准确地解读实验结果。
一、误差的分类误差可以分为系统误差和随机误差两种类型。
1. 系统误差系统误差是由于实验设备、测量仪器、操作方法等方面的固有缺陷或不准确性引起的误差。
它具有一定的可预测性和一致性,会对实验结果产生持续性的偏差。
例如,如果实验仪器的刻度不准确,或者实验操作中存在固定的偏差,那么实验结果就会受到系统误差的影响。
2. 随机误差随机误差是由于实验过程中的各种偶然因素引起的误差,它具有不可预测性和不规律性。
随机误差会导致实验结果的波动和不确定性增加。
例如,实验中的环境条件、人为操作的不稳定性、测量仪器的灵敏度等都可能引起随机误差。
二、误差的来源误差的来源多种多样,下面列举几个常见的来源。
1. 人为误差人为误差是由于实验操作者的技术水平、主观判断等因素引起的误差。
例如,实验操作者对实验步骤的理解不准确、操作不规范、读数不准确等都可能导致人为误差的出现。
2. 仪器误差仪器误差是由于测量仪器的精度、灵敏度等方面的限制引起的误差。
例如,实验仪器的刻度不准确、仪器的响应时间较长等都可能导致仪器误差。
3. 环境误差环境误差是由于实验环境的变化、干扰等因素引起的误差。
例如,实验室温度的波动、噪音的干扰等都可能对实验结果产生影响。
三、误差的影响与控制误差对实验结果的影响程度取决于误差的大小和实验的目的。
在一些实验中,误差的影响可能会被忽略,而在一些对结果要求较高的实验中,误差的控制则显得尤为重要。
1. 影响程度误差的影响程度可以通过误差分析和数据处理来评估。
例如,可以通过计算误差的标准差、置信区间等指标来评估误差的大小,并根据实验目的和要求判断误差对结果的影响程度。
测量误差的分类

测量误差的分类一、误差的来源1.仪器误差:仪器本身及其附件的电气和机械性能不完善而引起。
2.影响误差(环境误差):由于受到外界的温度、湿度、气压、震惊等影响产生的误差。
3.方法误差(理论误差):由于测量时使用方法不完善、所依据理论不严格等缘由引起的误差。
例如:用一般模拟式万用表测量高阻上的电压。
图1 一般模拟式万用表测量高阻上的电压明显,选用高阻值的电压表,带来的方法误差比较小。
4.人身误差:人为缘由引起的误差。
5.使用误差(操作误差):由于安装、调整、使用不当等缘由引起的误差。
二、测量误差的分类1.系统误差在国家计量技术规范《通用计量术语及定义》(JF1001-1998)中,系统误差定义为:“在重复性条件下,对同一被测量无限多次测量所得的结果的平均值与被测量的真值之差。
”用ε表示系统误差,即,而产生系统误差的主要缘由有:①测量仪器设计原理及制作上的缺陷。
例如刻度偏差,刻度盘或指针安装偏心,使用过程中零点漂移,安放位置不当等。
②测量时的环境条件如温度、湿度及电源电压等与仪器使用要求不全都等。
③采纳近似的测量方法或近似的计算公式等。
④测量人员估量读数时习惯偏于某方向等缘由所引起的误差。
系统误差体现了测量的正确度,系统误差小,表明测量的正确度高。
2.随机误差(偶然误差、残差、随差)在国家计量技术规范《通用计量术语及定义》(JG1001—1998)中,随机误差定义为:“测量结果与在重复性条件下,对同一被测量进行无限多次测量所得结果的平均值之差。
”用δ表示随机误差,即;产生随机误差的主要缘由有:①测量仪器中零部件协作的不稳定或有摩擦,仪器内部期间产生噪声等。
②温度及电源电压的频繁波动,电磁场干扰,地基振动等。
③测量人员感官的无规律变化,读数不稳定等缘由引起的误差均可造成随机误差,使测量值产生上下起伏的变化。
图2 电阻测量值的随机误差从图2-2可以看到:①正误差消失了7次,负误差消失了6次,两者基本相等,正负误差消失的概率基本相等,反映了随机误差的对称性;②反映了肯定值小的随机误差消失的概率大,肯定值大的随机误差消失的概率小;③ ∑ui=0,正负误差之和为零,反映了随机误差的抵偿性;④全部随机误差的肯定值都没有超过某一界限,反映了随机误差的有界性。
测量学5

现在的位置:课程介绍 >> 理论部分 >> 电子讲稿第五章误差基本知识5.1误差的来源和分类一、定义:观测值与真值之差,记为:X为真值,即能代表某个客观事物真正大小的数值。
为观测值,即对某个客观事物观测得到的数值。
为观测误差,即真误差。
二、误差的来源1、测量仪器一是仪器本身的精度是有限的,不论精度多高的仪器,观测结果总是达不到真值的。
二是仪器在装配、使用化、松动或装配不到位使得仪器存在着自身的误差。
如水准仪的水准管轴不平行视准轴,使得水准管气泡居中后,视线并不水平。
水准尺刻划不均匀使得读数不准确。
又如经纬仪竖盘指标差都是仪器本身的误差。
2、观测者是由于观测者自身的因素所带来的误差,如观测者的视力、观测者的经验甚至观测者的责任心都会影响到测举例:如水准尺倾斜、气泡未严格居中、估读不准确、未精确瞄准目标都是观测误差。
3、外界条件测量工作都是在一定的外界环境下进行的。
例如温度、风力、大气折光、地球曲率、仪器下沉都会对观测结上述三项合称为观测条件a.等精度观测:在相同的观测条件下进行的一组观测。
b.不等精度观测:在不同的观测条件下进行的一组观测。
测量误差的分类根据测量误差表现形式不同,误差可分为系统误差、偶然误差和粗差。
1、系统误差定义:误差的符号和大小保持不变或者按一定规律变化,则称其为系统误差。
如:钢尺的尺长误差。
一把钢尺的名义长度为30m,实际长度为30.005m,那么用这把钢尺量距时每量一个整尺段距离就量短的量距误差,而且量取的距离越长,尺长误差就会越大,因此系统误差具有累计性。
如:水准仪的i角误差,由于水准管轴与视准轴不平行,两者之间形成了夹角i,使得中丝在水准尺上的读数不准确。
如果水差就会越大。
由于i角误差是有规律的,因此它也是系统误差。
正是由于系统误差具有一定的规律性,因此只要找到这种规律性,就可以通过一定的方法来消除或减弱系统具体措施有:(1)采用观测方法消除:如水准仪置于距前后水准尺等距的地方可以消除i角误差和地球曲率的影响。
误差分析—误差的来源及分类(试验设计与数据处理课件)

随机误差
试验数据误差的来源及分类
按性 质及 产生 的原 因分
1 随机误差 (ystematic error) 3 过失误差 (Mistake )
随机误差(Random error)
(1)定义:以不可预知的规律变化的误差。绝对误差时正时负,时大时小。 (2)产生的原因: 偶然因素(气温的微小变动,仪器的轻微振动,电压的微小波动等) (3)特点:具有统计规律
过失误差
试验数据误差的来源及分类
按性 质及 产生 的原 因分
1 随机误差 (Random error ) 2 系统误差(Systematic error) 3 过失误差 (Mistake )
过失误差
(1)定义:一种与事实不符的误差。 (2)产生的原因:失误, 实验人员粗心大意造成。 (3)特点:可以避免 ,没有一定的规律 。
系统误差
(1)定义: 一定试验条件下,由某个或某些因素按某些确定的规律起作用而产生的误差。 (2)产生的原因:多方面(仪器、操作步骤、操作者等) (3)特点:
① 系统误差大小及其符号在同一试验中恒定 ; ② 不能通过多次试验被发现; ③ 不能通过取多次试验值的平均值而减小; ④ 只有对系统误差产生的原因有了充分的认识,才能对它进行校正,或设法消除。
① 小误差比大误差出现机会多(呈正态分布); ② 正、负误差出现的次数近似相等; ③ 当试验次数足够多时,误差的平均值趋向于零 ; ④ 可通过增加试验次数减小随机误差; ⑤ 随机误差不可完全避免
系统误差
试验数据误差的来源及分类
按性 质及 产生 的原 因分
1 随机误差 (Random error ) 2 系统误差(Systematic error) 3 过失误差 (Mistake )
物理学中的测量与误差分析

物理学中的测量与误差分析在物理学中,测量是一项基本而重要的实验活动。
无论是在实验室中进行精确测量,还是在实际应用中进行估算,测量都是为了获取准确的数据。
然而,由于各种因素的存在,测量不可避免地会出现误差。
因此,对于测量结果的误差分析及其处理成为了物理学中一个重要的课题。
一、测量误差的来源1. 仪器误差:每个测量仪器在制造和使用过程中都存在一定的误差,这种误差称为仪器误差。
仪器的精确度和灵敏度决定了仪器误差的大小。
2. 人为误差:人为因素也是造成测量误差的重要原因之一。
例如,读数不准确、操作不熟练等。
3. 环境误差:环境因素对测量结果也会产生影响。
例如,温度、湿度、压力等环境因素的变化会导致测量结果的偏差。
二、误差的分类1. 绝对误差:绝对误差是指测量结果与真实值之间的差异。
绝对误差可以用以下公式表示:绝对误差 = 测量值 - 真实值绝对误差可以是正数也可以是负数,正数表示测量值偏大,负数表示测量值偏小。
2. 相对误差:相对误差是绝对误差与真实值之比。
相对误差可以用以下公式表示:相对误差 = (绝对误差 / 真实值) × 100%相对误差的值表示了测量结果偏离真实值的程度,其单位是百分比。
三、误差的处理1. 误差补偿:在一些特定情况下,可以通过一定的方法来抵消或减小误差,从而提高测量结果的准确性。
例如,在实验测量中采用零位校准、零误差补偿等方法来减小仪器误差。
2. 误差传递:当多个物理量相互影响时,其误差会相互传递,导致最终测量结果的不确定性增加。
在进行复杂实验时,需要考虑误差传递的影响,采取合适的方法来估计最终结果的误差。
3. 误差分析:误差分析是确定测量结果的不确定性的过程。
通过分析测量中的各种误差来源,评估其对结果的影响,可以得出一个误差范围,用于表达测量结果的准确性。
常用的误差分析方法有最大误差法、平均数法、最小二乘法等。
四、测量精确度的表示1. 绝对误差限:绝对误差限是指测量结果与真实值之间的最大允许误差。
实验报告误差分析

实验报告误差分析实验报告是科学研究的重要形式之一,用于总结、分析和呈现实验过程和结果。
其中,误差分析是不可或缺的步骤,它可以帮助研究者评估实验数据的准确性和稳定性,并识别可能影响结果的因素。
本文将介绍实验报告误差分析的基本原理和方法。
一、误差来源的分类误差是指测量值与真实值之差,其来源有多种可能。
一般来说,误差可以分为系统误差和随机误差两类。
系统误差是由于实验条件和测量设备的固有偏差而引起的,比如温度的不均匀分布、仪器漂移等。
随机误差是由于无法控制或随机变化的因素而引起的,比如人为误差、环境干扰等。
二、误差的评估方法为了评估误差的大小和影响,可以使用各种指标和方法。
以下是常用的几种:1. 绝对误差:即测量值与真值之差的绝对值,常用于评价单个数据的精度。
2. 相对误差:即绝对误差除以真值,以百分数表示,常用于评价多个数据的平均精度。
3. 标准差:是样本值的离散程度的度量,反映测量数据的分散情况,可用于评估随机误差的大小和稳定性。
4. 方差分析:可用于对比实验组之间的差异,通过分析变异原因和来源,识别可能存在的系统误差和随机误差。
三、误差改善和纠正方法如果发现误差较大或偏差较明显,需要采取一些措施来改善或纠正。
这些措施可能包括:1. 增加重复测量:通过多次测量并计算平均值,可以减少随机误差。
2. 校准仪器:及时检查、校准和维护仪器,可以降低系统误差和漂移。
3. 控制环境:保持实验室的稳定环境和恒定条件,可以减少人为和环境因素对实验结果的影响。
4. 比较标准:在某些实验中,可以选择一个公认的标准来与实验结果进行比较,以帮助评估误差大小和可靠性。
总之,误差分析是实验报告不可或缺的一部分,它可以帮助研究者识别可能对实验结果造成影响的因素,并采取适当的措施来改善和纠正误差。
通过严谨的误差分析和改善措施,可以提高实验结果的准确性和可靠性,为科学研究提供更加可信的依据。
数值分析 误差知识与算法知识

一、误差的来源与分类 二、 绝对误差、相对误差与有效数字
三、误差估计的基本方法
四、算法的计算复杂性 五、数值运算中的一些原则
1.2误差知识与算法知识
一、误差的来源与分类 模型误差 (描述误差 ) ( 测量误差) (方法误差 ) ( 计算误差 )
观测误差
截断误差 舍入误差
建模过程中 产生的误差
三、误差估计的基本方法 (一)误差估计的一般运算 一元函数:
e( f (a)) f (a) e(a)
二元函数:
( f (a)) f (a) (a)
f (a, b) f (a, b) e( f (a, b)) e(a) e(b) x y
f (a, b) f (a, b) ( f (a, b)) ( a) (b) x y
Tn an 秦九韶算法 Tk xTk 1 ak , k n 1, n 2,,1,0 p ( x) T 0 n
加法次数: n
n(n 1) 乘法次数: 2
pn ( x) a0 x(a1 x(a2 x(an1 xan ) )
有效数字=可靠数字+存疑数字
(3)有效数字 有效数字的定义: 设a是x的近似值,如果a的误差绝对值不超过x 的第k位小数的半个单位,即
则称近似值a准确到小数点后第k位。 从这个小数点后第k位数字直到最左边非零数 字之间的所有数字都叫有效数字。
1 k x a 10 2
1 1 2 (2.18) 10 (2.1200) 10 4 2 2
例8 设有三个近似数
a=2.31, b=1.93, c=2.24 它们都有三位有效数字,试计算 p a bc, ( p), r ( p), 并问:p的计算结果能有几位有效数字? 教材例4
数学建模中的误差分析与处理方法

数学建模中的误差分析与处理方法引言:数学建模是一门研究如何用数学方法解决实际问题的学科,它在科学研究、工程设计、经济管理等领域中扮演着重要的角色。
然而,在数学建模的过程中,由于各种因素的影响,误差是不可避免的。
本文将探讨数学建模中的误差分析与处理方法,帮助读者更好地理解和应用数学建模。
一、误差来源及分类1. 人为误差:人为误差是指由于实验者的主观因素引起的误差,例如实验操作不规范、读数不准确等。
2. 仪器误差:仪器误差是指由于仪器本身的精度和灵敏度限制引起的误差,例如仪器的零位漂移、量程限制等。
3. 环境误差:环境误差是指由于环境条件的变化导致的误差,例如温度、湿度等因素的变化。
4. 模型误差:模型误差是指由于建模过程中对实际问题的简化和假设引起的误差,例如忽略某些影响因素、使用近似公式等。
二、误差分析方法1. 绝对误差:绝对误差是指测量值与真值之间的差别,可以表示为|测量值-真值|。
绝对误差越小,表示测量结果越接近真值。
2. 相对误差:相对误差是指绝对误差与真值之间的比值,可以表示为|测量值-真值|/真值。
相对误差可以用来评估测量结果的准确度,一般以百分比形式表示。
3. 标准偏差:标准偏差是指一组数据的离散程度,用来衡量测量结果的稳定性。
标准偏差越小,表示测量结果越稳定。
4. 置信区间:置信区间是指在一定置信水平下,真值可能存在的范围。
通过构建置信区间,可以评估测量结果的可靠性。
常用的置信水平有95%和99%。
三、误差处理方法1. 数据平滑:数据平滑是指通过滤波等方法去除数据中的噪声,使得数据更加平稳。
常用的数据平滑方法有移动平均法、指数平滑法等。
2. 数据插值:数据插值是指通过已知数据点之间的关系,推测未知数据点的值。
常用的数据插值方法有拉格朗日插值法、牛顿插值法等。
3. 数据修正:数据修正是指通过对已知数据进行修正,使其更接近真值。
修正方法可以根据误差来源的不同而不同,例如对人为误差可以通过重新进行实验来修正,对仪器误差可以通过校正仪器来修正。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
测量误差的分类
按测量误差产生的规律,测量误差分为系统误差和偶然误 差两类。 1.系统误差 在一定的观测条件下,对某一变量进行一系列观测,若由 某一因素引起的测量误差,或者保持着相同的符号和大小 , 或者随着因素的变化,其引起的误差数值循着一定的规律 变化,则称为系统误差。例如,某一钢尺的名义尺长度为 50 m,经检验,知其实际长度为49.985 m。用它进行直线 丈量,每量一整尺,就比实际长度长0.015m。这种误差的 大小和符号都是一定的。又如钢尺因温度变化引起的尺长 误差、水准仪视准轴和水准管轴不平行所引起的误差,以 及经纬仪视准轴不垂直于横轴而引起的误差等也属系统误 差。系统误差多数来源于仪器设备本身。
测量误差的来源和分类
(一)测量误差的来源 测量误差的来源是多样的,概括起来可分为 下列三个方面:
1.仪器误差
测量工作是用特制的仪器来完成的,而完美无缺的 仪器是没有的。即使最先进、最精密的仪器,也含 有一定的误差。由于精度上的限制和结构上的缺陷, 或校正不完善而引起的误差,称为仪器误差。例如 J6级经纬仪测角,估读误差约为±3",这便是仪器 精度上的限制;又如水准仪水准管轴不平行于视准 轴,不论校正工作做得多么仔细,总是不可避免地 会有i角存在,这样,在观测时就必然会由此而产 生误差.
北京工业职业技术学院国家精品资源共享课程
成果转化、专业教学资源库
《地形测量》
授课一个未知量,如某个角度、 某两点间高差或距离进行多次重复测量,即使是 由同一人员,用同样的仪器在同样的外界条件下 进行观测,所得各次结果往往也存在着差异,如 对一平面三角形各内角进行观测,所得三内角之 和一般不等于理论值180º 。这种差异表现为各次 所得观测值与未知量的真值之间存在差值,这种 差值称为测量误差或称观测误差。任何观测成果, 都不可避免地有误差。因此,研究测量成果中的 误差问题,是测量工作者的重要任务之一。
系统误差具有累积性
系统误差具有累积性,对成果质量危害较大。 因此,不论进行任何测量,都应找出系统误 差的影响规律,通过计算改正数和改变观测 方法等加以消除。例如,尺长误差,可以在 量得的距离中加入尺长改正数。照准误差c 可用正倒镜观测加以抵消等等。
2.周围环境的影响
观测时,受周围环境条件,如温度、湿度、 风、雾、照明、大气折光等的影响而产生的 误差。如温度不仅给钢尺丈量带来误差,也 会给水平角观测和水准测量带来误差。周围 环境条件复杂多变,难以准确地掌握其规律
3.观测者的影响
由于观测的感觉器官的鉴别能力有限,所以在仪器 的安置、照准、读数等操作,都会使观测值产生误 差。上述因素是引起观测误差的根源。通常将这三 方面因素总称观测条件。观测条件好,测量误差就 小,观测质量就高。反之,观测条件差,测量误差 就大,观测质量就差。测量工作中,在观测条件基 本相同的情况下的观测,认为观测质量也基本上是 一致的,叫等精度观测。而不同观测条件下进行的 各项观测,则认为观测质量不一致,叫非等精度观 测.